Unit operations are ubiquitous in any chemical process. Equilibrium-Staged Separations using Matlab and Mathematica. ChE class and home problems

Similar documents
LIQUID-LIQUID EQUILIBRIUM FOR THE DESIGN OF EXTRACTION COLUMN

Reflections on the use of the McCabe and Thiele method

ERT 313 BIOSEPARATION ENGINEERING EXTRACTION. Prepared by: Miss Hairul Nazirah Abdul Halim

Solving mass transfer problems on the computer using Mathcad

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Liquid-liquid extraction

Computer Aided Design Module for a Binary Distillation Column

MODELING AND SIMULATION OF DISTILLATION COLUMN

COMPUTATION OF RESIDUE CURVES USING MATHEMATICA AND MATLAB

Examples Liquid- Liquid- Extraction

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

GRAPHICAL REPRESENTATION OF THE CHANGES OF SECTOR FOR PARTICULAR CASES IN THE PONCHON SAVARIT METHOD

Solid-Liquid Extraction

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

A Sequential and Hierarchical Approach for the Feasibility Analysis and the Preliminary Synthesis and Design of Reactive Distillation Processes

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

What is "In" and What is "Out" in Engineering Problem Solving

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

Distillation is a method of separating mixtures based

MODULE 5: DISTILLATION

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package

Dr. Hatem Alsyouri Heat and Mass Transfer Operations

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Historical Perspective on Numerical Problem Solving

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Design and Analysis of Divided Wall Column

Dividing wall columns for heterogeneous azeotropic distillation

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Heterogeneous Azeotropic Distillation Operational Policies and Control

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

NPTEL. Mass Transfer Operations I - Web course. Chemical Engineering. COURSE OUTLINE

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Liquid Liquid Extraction

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

HTU of Acetone-Toluene-Water Extraction in a Pulsed Column

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation

Shortcut Design Method for Columns Separating Azeotropic Mixtures

See section and the dew and bubble point calculations in example 11.9.

ChemSep Case Book: Handling Missing Components

Chapter 4: Column Distillation: Internal Stage-by-Stage Balances

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

Dynamic Effects of Diabatization in Distillation Columns

Outline of the Course

Distillation is the most widely used separation

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

MODULE 5: DISTILLATION

Cork Institute of Technology. Autumn 2005 CE 2.7 Separation Process & Particle Technology (Time: 3 Hours) Section A

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation

SOLUTION CONCENTRATIONS

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay. Lecture No. #23 Gas Separation

Eldridge Research Group

Distillation the most important unit operation. Predict Distillation Tray Efficiency. Reactions and Separations

Efficient Feed Preheat Targeting for Distillation by Feed Splitting

METHYL ACETATE REACTIVE DISTILLATION PROCESS MODELING, SIMULATION AND OPTIMIZATION USING ASPEN PLUS

CHAPTER / CONTENT. Definition & Application. Solvent selectivity. LLE for Partially Miscible Solvent. LLE for Immiscible Solvent

CL-333 Manual. MT 303: Batch Distillation

Feasibility Study of Heterogeneous Batch Extractive Distillation

Chemical Engineering

Distillation Course MSO2015

Optimal Synthesis of Energy Efficient Distillation Columns Sequence Using Driving Force Method

Vapor-liquid equilibrium

The most important nomenclature used in this report can be summarized in:

Make distillation boundaries work for you!

Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

CHEMISTRY. Faculty. The Chemistry Department. Programs Offered. Repeat Policy. Careers in Chemistry

Analyzing solubility of acid gas and light alkanes in triethylene glycol

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

Processes and Process Variables

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing

McCabe Thiele Graphical Equilibrium-Stage

Latin American Applied Research an International Journal of Chemical Engineering. 1997, vol. 27, 1-2, (Accepted: March 20, 1996).

THERMODYNAMIC INSIGHT ON EXTRACTIVE DISTILLATION WITH ENTRAINER FORMING NEW AZEOTROPES

Separation Trains Azeotropes. S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

CHEMISTRY. Careers in Chemistry. Faculty. The Chemistry Department. Programs Offered. Repeat Policy

Pressure Swing Distillation with Aspen Plus V8.0

LIQUID-LIQUID EQUILIBRIUM IN BINARY MIXTURES OF 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE AND HYDROCARBONS

Azeotropic distillation Example 1

ChemSep Tutorial: Distillation with Hypothetical Components

KTH ROYAL INSTITUTE OF TECHNOLOGY. Design of a Solvent Recovery System in a Pharmaceutical Manufacturing Plant

Processes and Process Variables

Simulation of Molecular Distillation Process for Lactic Acid

Experimental and Theoretical Study of Multicomponent Batch Distillation

Process Classification

Modeling, design and control of cyclic distillation systems

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning

Enhancing Core Chemical Engineering Courses with Computationally-Intense Course Modules

AP Chemistry. Text Chemistry The Central Science; Brown LeMay Bursten Murphy, 11 th edition; Pearson Prentice Hall, [CR1]

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

EXPERIMENT 7 - Distillation Separation of a Mixture

Modeling and Simulation of Distillation + Pervaporation Hybrid Unit: Study of IPA - Water Separation

The Tangent Parabola The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp

Level 4: General structure of separation system

Transcription:

ChE class and home problems The object of this column is to enhance our readers collections of interesting and novel problems in chemical engineering. Problems of the type that can be used to motivate the student by presenting a particular principle in class, or in a new light, or that can be assigned as a novel home problem, are requested, as well as those that are more traditional in nature and that elucidate difficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied by the originals of any figures or photographs. Please submit them to Professor James O. Wilkes (e-mail: wilkes@umich.edu), Chemical Engineering Department, University of Michigan, Ann Arbor, MI 4819-2136. Equilibrium-Staged Separations using Matlab and Mathematica Housam Binous National Institute of Applied Sciences and Technology Tunis, Tunisia Unit operations are ubiquitous in any chemical process. One of their main purposes is to achieve separation in order to recycle unconverted reactants or reach product purity specifications. If two phases are brought into intimate contact, a few components migrate from one phase to the other in every stage of the unit. Then, the two phases are separated. When we consider equilibrium-staged separations, we assume that both phases leaving each stage are in equilibrium and one is richer in one or more components. The most common unit operation is distillation. It is used, for instance, to separate crude petroleum into its various fractions such as kerosene and gasoline. In the pharmaceutical industry, liquid-liquid extraction is often employed. For example, antibiotics in aqueous fermentation are recovered using organic solvents. Finally, absorption and stripping are often involved in gas treatment plants such as units used to remove acid gases (CO 2 and H 2 S) from natural gas. In the present paper, we solve two problems while showing how graphical methods can be used to design the unit operations. The first problem treats liquid-liquid extraction while the second problem deals with binary distillation. Extraction of Acetic Acid from Water Using Isopropyl Ether We want to separate [1] acetic acid from water using isopropyl ether in a single-feed countercurrent extractor. Use the Housam Binous is a full-time faculty member at the National Institute of Applied Sciences and Technology in Tunis. He earned a Diplome d ingenieur in biotechnology from the Ecole des Mines de Paris and a Ph.D. in chemical engineering from the University of California at Davis. His research interests include the application of computers in chemical engineering. Copyright ChE Division of ASEE 28 Vol. 42, No. 2, Spring 28 69

The author brings to the reader s attention that a program to determine the number of equilibrium stages using the Graphical User Interface (GUI) of Matlab is available. [8] This GUI program, written by Claudio Gelmi, was inspired by the earlier code of Dr. Housam Binous. Hunter and Nash [2] Graphical approach to compute the number of equilibrium stages required. Assume equilibrium data, at 1 atm and 25 C, given by Wankat. [1] Solvent and feed flow rates are equal to 1 kg/hr and 1475 kg/hr, respectively. Feed, a binary mixture of water and acetic acid, contains 35 wt % acetic acid. We wish to obtain a raffinate with only 1 wt % acetic acid. 1 8 6 4 2 2 4 6 8 1 Figure 1. Equilibrium diagram for the ternary system obtained using Mathematica. difference point 7 6 5 4 3 2 1-1 solvent extract Feed location Solution -6-4 -2 2 4 6 8 1 To study the separation [1] of acetic acid from water using isopropyl ether for a single-feed countercurrent extractor, we will use the graphical method derived by Hunter and Nash [2] and later by Kinney [3] to obtain the number of equilibrium stages required to achieve a particular raffinate specification. This separation is usually difficult to realize with distillation due to the presence of a severe tangent pinch at high compositions of water, which prevent the distillate from being acidfree. A graphical solution performed by hand calculation has been presented by Wankat. [1] We will show how one can use Mathematica and Matlab to solve this problem more easily and accurately using the graphical approach of Hunter and Nash. [2] Equilibrium data, at 1 atm and 25 C, are given by Wankat [1] and can be used to plot Figure 1 where the tie lines have been drawn (obtained using Mathematica). The same figure was obtained by the author using Matlab. Note that the conjugate line can be easily constructed using the equilibrium points. The feed is 1, kg/hr of a solution composed of 35 wt % acetic acid and 65 wt % water. The solvent used to perform the extraction is pure isopropyl ether with a flow rate equal to 1,475 kg/hr. We require that the raffinate composition in acid not exceed 1 wt %. First, we locate the mixing point and the difference point (see Figure 2 obtained using Matlab). Then, we step off stages using alternatively the tie lines and the operating lines until we reach a raffinate composition lower than 1 wt %. This method is illustrated in Figure 3, obtained using Matlab. A similar figure was obtained by the author using Mathematica. We find that 5.35 equilibrium stages are required to achieve 1 wt % of acid in the raffinate. mixing point raffinate The Mathematica notebooks and Matlab programs are available from the author upon request or from the Mathematica Information Center [4] and Matlab File Exchange Center. [5] Separation of a Mixture of Benzene and Toluene Consider a binary mixture composed of benzene and toluene. Assume a constant relative volatility equal to 2.45. Use b Figure 2. Mixing and operating points obtained using Matlab. 7 Chemical Engineering Education

the McCabe and Thiele graphical approach to compute the number of equilibrium stages required. Assume feed, bottom, and distillate mole fractions are equal to.5,.1, and.9 mole % benzene, respectively. Take a reflux ratio 1.5 times greater than the minimum reflux ratio. Solution 5 We want to separate a binary ideal mixture formed of benzene and toluene. The relative 4 volatility in this ideal case is the ratio of the 3 vapor pressures of benzene and toluene. A straightforward calculation shows that this 2 mixture s relative volatility varies only between 2.35 and 2.6 for a benzene mole frac- 1 tion ranging from to 1. Thus, as a simplifying assumption, we take an average value of 2.45. The feed is a two-phase mixture with a -1 feed quality equal to.85. The distillate, feed, and bottom mole fractions are.9,.5, and.1, respectively. The reflux ratio is taken to be 1.514, which is approximately 1.5 times larger than the minimum reflux ratio. To obtain the minimum reflux ratio, we require that the two operating lines, the feed line, and the equilibrium curve intersect, as shown in Figure 4 which was obtained using Mathematica. Then, we draw the McCabe and Thiele Diagram (see Figure 5 (next page), obtained using Matlab). A similar figure was obtained by the author using Mathematica. We conclude benzene vapor mole fraction (y) 1..8.6.4 equilibrium curve feed line 1.2 stripping operating line...2.4.6.8 1. 9 8 7 6 Operating lines -6-4 -2 2 4 6 8 1 Figure 3. Hunter and Nash diagram obtained using Matlab. rectifying operating line benzene liquid mole fraction (x) Figure 4. Finding the minimum reflux ratio using Mathematica. that the required number of theoretical plates, to achieve product and bottom specifications, equals nine. The Mathematica notebooks and Matlab programs are available from the author upon request or at the Mathematica Information Center [6] and the Matlab File Exchange Center. [7] The author brings to the reader s attention that a program to determine the number of equilibrium stages using the Graphical User Interface (GUI) of Matlab is available. [8] This GUI program, written by Claudio Gelmi, was inspired by the earlier code of Housam Binous. The Manipulate Command of Mathematica 6. Use the new dynamic capabilities of Mathematica to prepare a demonstration where parameters such as relative volatility, feed composition, and solvent and feed flow rates... can be manipulated by sliders in order to study their impact on the number of equilibrium stages. Solution: The output of Manipulate, a new function available in the new version of Mathematica (version 6.), is an interactive object containing sliders. The output is not just a static result, it is an interactive program that allows the user to specify several selected simulation parameters using the sliders. The program then performs the computation and displays the result, usually in the form of a plot or a table. The slider is a control object, which can be dragged by the user in order to set a specified value of one parameter. The Vol. 42, No. 2, Spring 28 71 tie lines

author has modified his previous program using Mathematica (version 5.2) to take advantage of this new feature. Figure 6 shows how the liquid-liquid extraction static simulation has been modified into an interactive program where one benzene vapor mole fraction (y) 1.9.8 can change the solvent and feed flow rates, the raffinate specification, and the acetic acid composition in the feed. Figure 7 presents the simulation where sliders have been set up for feed quality, feed composition, distillate and bottom specifications, and relative volatility. These programs are available, among hundreds of demonstrations made with Manipulate, at the Wolfram Demonstration Project. [9, 1, 11] In both cases the program displays the number of equilibrium stages..7 Mathematica and Matlab:.6 tools for teaching unit operations.5 Teaching unit operations requires presenting to undergraduate students graphical.4 methods such as the McCabe and Thiele or.3 the Hunter and Nash model. These methods allow for the determination of the number.2 of equilibrium stages for liquid-liquid extraction, distillation and absorption, and.1 stripping problems. With powerful computer software such as Mathematica and.1.2.3.4.5.6.7.8.9 1 Matlab, chemical engineering faculties can show readily how to compute the number of benzene liquid mole fraction (x) equilibrium stages for these classic junior or Figure 5. McCabe and Thiele Diagram obtained using Matlab. senior level problems. The author uses this opportunity not only to introduce students acetic acid composition in feed 35 to separation science but also to convince them feed flow rate that Mathematica and Matlab can be applied to 1 many other interesting chemical engineering and solvent flow rate 16 applied mathematics problems. raffinate specification 12.22 show difference point Conclusion 3 stages acetic acid 5 4 3 2 1 1 5 5 1 water 1 2 Figure 6. Liquid-Liquid extraction using the Manipulate command. In this study, we show how Mathematica and Matlab can be used to solve problems that previously required tedious numerical and graphical techniques. First, we present the extraction of acetic acid from water using isopropyl ether. The graphical method, derived by Hunter and Nash, is used to obtain the number of equilibrium stages for a specific raffinate purity. Next, the McCabe-Thiele method is employed to give the number of equilibrium stages for a binary distillation problem. These classic problems are junior- and senior-level study material at the National Institute of Applied Sciences in Tunis. Students excel in these types of problems despite the fact that it is their first experience using Mathematica and Matlab. 72 Chemical Engineering Education

relative volatility distillate specification bottom specification feed composition feed quality 1..8.6.4.2 number of stages 8 References 1. Wankat, P.C., Equilibrium Stages Separations, Prentice Hall, Englewood Cliffs, N. J. (1988) (example 18-2, pp. 595 and example 18-3, pp. 69). 2. Hunter, T.G., and A.W. Nash, J. Soc. Chem. Ind., 53 (1934) 3. Kinney, G.F., Ind. Eng. Chem., 34, 112 (1942) 4. <http://library.wolfram.com/infocenter/mathsource/584/> 5. <http://www.mathworks.com/matlabcentral/fileexchange/loadfile.do? objectid=13673&objecttype=file> 6. <http://library.wolfram.com/infocenter/mathsource/577/> 7. <http://www.mathworks.com/matlabcentral/fileexchange/loadfile.do? objectid=4472&objecttype=file> 8. <http://www.mathworks.com/matlabcentral/fileexchange/loadfile.do? objectid=1387&objecttype=file> 9. <http://demonstrations.wolfram.com/mccabethielegraphicalmethod/> 1. <http://demonstrations.wolfram.com/ ExtractionOfAceticAcidFrom- WaterUsingIsopropylEther/> 11. <http://demonstrations.wolfram.com> p.2.4.6.8 1. Figure 7. Distillation using the Manipulate command. Vol. 42, No. 2, Spring 28 73