Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 2007.

Similar documents
Experiment # 13 PREPARATION OF ASPIRIN

Experiment 8 Synthesis of Aspirin

Preparation of an Ester Acetylsalicylic Acid (Aspirin)

Experiment 8 Synthesis of Aspirin

2. Synthesis of Aspirin

Experiment: Synthesis of Aspirin

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

Aspirin Synthesis H 3 PO 4

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Synthesis. Figure 1 Acetylsalicylic acid (aspirin), C 9 H 8 O 4

Lisa Barton CHEM 2312 Organic Chemistry Performed: 2/4/12. Synthesis of Aspirin

CHEM 123L Lab Report. Synthesis of Acetaminophen. [Type the author name]

Experiment 17. Synthesis of Aspirin. Introduction

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

The Synthesis and Analysis of Aspirin

Acetylsalicylic Acid (Aspirin) Synthesis

University of Wisconsin Chemistry 116 Preparation and Characterization of Aspirin and Some Flavoring Esters *

Lab #5 - Limiting Reagent

Experiment 6. Synthesis Of Aspirin (Acetylsalicylic Acid) Purpose: Background:

Name Date Class THE ARITHMETIC OF EQUATIONS

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Esterification of Salicylic Acid via Acetic Anhydride for the Pro- duction of Acetylsalicylic Anhydride (Aspirin)

Experiment 12: Grignard Synthesis of Triphenylmethanol

media), except those of aluminum and calcium

5: SYNTHESIS OF TRIS(ETHYLENEDIAMINE)NICKEL(II) CHLORIDE

Recovery of Copper Renee Y. Becker Manatee Community College

Stoichiometry ( ) ( )

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD

Synthesis of Benzoic Acid

EXPERIMENT 6 Empirical Formula of a Compound

Expt 9: The Aldol Condensation

Chemical Reactions: The Copper Cycle

ORG1 Syntheses of Acetaminophen and Aspirin

IODINE CLOCK REACTION KINETICS

GRIGNARD REACTION Synthesis of Benzoic Acid

Scheme 1. Outline in the acid-base extraction of Bengay, hydrolysis to salicylic acid, and esterification to synthesize aspirin.

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

8.01 Quantities in Chemical Reactions

SYNTHESIS: TECHNIQUES FOR MAKING AND ISOLATING COMPOUNDS rev 10/12

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis.

Experiment 10. Acid Base Titration

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Date Completed: Lab Partner(s):

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography

Experiment 7: The Synthesis of Artificial Hyacinth Odor (1-bromo-2-phenylethene), Part I

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

12BL Experiment 1: The Diels-Alder Reaction

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Week 10 Chemical Synthesis

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT 5 THE ASSAY OF ASPIRIN

Chapter 3. Mass Relationships in Chemical Reactions

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

Studies of a Precipitation Reaction

12BL Experiment 7: Vanillin Reduction

Synthesizing Alum Reaction yields and green chemistry

Lab Activity 3: Gravimetric Stoichiometry 2

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309

Experiment 3: Preparation of Lidocaine

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

Reactions and Stoichiometry.

Acid-Base Titration Acetic Acid Content of Vinegar

R C OR' H 2 O carboxylic acid alcohol ester water side product

2.12. Percentage Yield

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

Chapter 9 STOICHIOMETRY

CH O 2 2 H 2 O + CO 2

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #1: Oxidation of Alcohols to Ketones - Borneol Oxidation (2 weeks)

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experiment 11 Synthesis and Analysis of Aspirin

ORGANIC SYNTHESIS: MICROWAVE-ASSISTED FISCHER ESTERIFICATION

Experiment 7: Synthesis of an Alkyne from an Alkene

Part II. Cu(OH)2(s) CuO(s)

Chapter 12 Stoichiometry. Mr. Mole

CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY

Chapter 9. Stoichiometry. Mr. Mole. NB page 189

Stoichiometry. Please take out your notebooks

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

Upon completion of this lab, the student will be able to:

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

PART II: ANALYSIS OF IRON COORDINATION COMPOUND

Laboratory 23: Properties of Aldehydes and Ketones

Experiment 11: Dehydration of Cyclohexanol

Science of Slime. Fig. 1 Structure of poly (vinyl alcohol)

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

Stoichiometry. Cartoon courtesy of NearingZero.net

EXPERIMENT 7: THE LIMITING REACTANT

DATE: Friday February 18 th Experiment #3 (A) : p - acetotoluidide. TITLE: PABA and its Chemistry RESULTS: p toludine

AP Chemistry Test (Chapter 3) Multiple Choice and FIB (45%) 1) Which of these lab errors would cause a low % yield O 2?

Mass Relationships in Chemical Reactions

Minneapolis Community and Technical College. Separation of Components of a Mixture

Sodium Borohydride Reduction of Benzoin

A student prepared an ester by two different methods. alcohol + acid anhydride. alcohol + acyl chloride ...

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

Transcription:

Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 007. Aspirin (acetylsalicylic acid) is the most common medicinal drug in use today. Aspirin is an analgesic (pain reliever), an antipyretic (fever reducer), and anti-inflammatory medicine. While aspirin has many benefits, there are side effects, which include dizziness, nausea, upset stomach, and bleeding of the stomach. Aspirin is produced by the esterification of salicylic acid. An ester is an organic functional group with the following structure: Figure 1 Ester functional group 1 The R and R represent different organic segments, they may be simple alkyl chains (carbon and hydrogen) or more complex structures. The reaction to produce aspirin occurs in a one to one ratio between salicylic acid and acetic anhydride according to the following reaction: Figure Synthesis of aspirin In this experiment you will measure the amount of aspirin produced and calculate the percent yield. Chemical reactions will continue as long as there are reactants present. As soon as a reactant is consumed the reaction will stop, no matter how much of the other reactants remaining. The reactant that runs out first is called the limiting reagent. The term limiting reagent refers to the fact that the amount of product that can be produced is dependant upon that chemical, thus it 1 Image source, http://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/ester-general.png/781px-estergeneral.png, accessed September 1, 007. Image source, http://www.chemheritage.org/educationalservices/pharm/asp/images/asp310.gif, accessed September 1, 007.

limits the reaction. The reactants that are not entirely consumed are referred to as excess reagents. Given the combustion reaction that occurs between methane and oxygen: CH (g) + O (g) CO (g) + H O (g) (1) The above reaction can be read in two ways, either in terms of atoms/ molecules or in terms of moles. The more practical approach is to read the reaction in terms of moles, since we seldom deal with individual atoms or molecules in the lab. Thus the above reaction could be read as one mole of methane reacts with two moles of oxygen and forms one mole of carbon dioxide and two moles of water. In order to determine the limiting reagent it is necessary to determine the number of moles of all reactants present. Example 1: If 1.0 g of methane reacts with 0.0 g of oxygen, which reactant is the limiting reagent? How much product would be formed? How much excess reagent would be left? Step 1: Determine the moles present of each reactant 1 mol 1.0 g CH = 16.0 g 0.750 mol CH () 1 mol 0.0 g O = 3.0 g 1.5 mol O (3) Step : Determine the amount of oxygen needed to completely react with 0.750 mol of methane. Multiply by the molar ratio, the values in the ratio come from the coefficients in the reactant. mol O 0.750 mol CH = 1.50 mol O 1 mol CH needed () This calculation indicates that 1.50 moles of oxygen are needed to completely react with all of the methane. Comparing this amount to the actual amount of oxygen, shows that there isn t enough oxygen (we only have 1.5 mol). Thus the oxygen is the limiting reagent. Step 3: Now that the limiting reagent has been determined we can calculate the amount of product that will be produced. Make sure that you start the calculation with the actual amount of limiting reagent. 1 mol CO 1.5 mol O = 0.65 mol CO mol O (5)

This is the stoichiometric yield for carbon dioxide, which is the amount that would be produced if 100 % of the limiting reagent reacts. The stoichiometric yield of water could also be determined in the same manner. It is oftentimes more useful to express the stoichiometric yield in terms of mass, this can be done by simply multiplying by molar mass..0 g 0.65 mol CO = 1 mol 7.5 CO g (6) Step : In order to determine the amount of excess reagent that remains it is first necessary to determine the amount that reacted. Again you want to start this calculation with the limiting reagent. 1 mol CH 1.5 mol O = 0.65 mol CH mol O reacted (7) Now the amount of methane that reacted can be subtracted from the initial amount methane present to determine the amount remaining. 0.750 mol 0.65 mol = 0.15 mol CH left over (8) Often times reactions do not proceed to completion, that is they do not reach the stoichiometric yield. There can be many reasons for a reaction to stop short of completion, including non-ideal conditions and competing reactions. A measure of a reaction s efficiency is percent yield: % actual yield yield X 100 stoichiome tric yield = (9) The actual yield is the amount of product formed during the experiment. By definition the actual yield cannot exceed the stoichiometric yield. Example : Suppose that the actual yield of carbon dioxide from the reaction in example 1 was measured to be 1. g. The percent yield would then be: 1. g % yield = X100 = 77.1% (10) 7.5 g

Procedure: Caution: Some of the chemicals used in this experiment are dangerous, always follow proper safety procedures. The aspirin that you make will not be pure enough to take do not consume your aspirin! 1.) Fill a 00 ml beaker with approximately 100 ml of water. Place the beaker on a hot plate and bring to a boil..) Add between and 6 g of salicylic acid to a flask. Record the exact mass in your notebook. 3.) In a hood, measure out between 5 and 7 ml of acetic anhydride (d = 1.08 g/ml) and add this to the flask with the salicylic acid. Record the exact volume of acetic anhydride in your notebook. To the flask slowly add 7 to 10 drops of concentrated sulfuric acid. After every two or three drops swirl the flask for a few seconds..) Place the flask in the water bath (no need to clamp). Heat the contents for 15 minutes. If any solid remains after this time consult your instructor. 5.) Remove the flask from the water bath and cool it by running it under cold water. Cool the flask further by adding about 30 ml of ice water, and placing the flask inside an ice bath. Aspirin crystals should start to form at this time. If crystals are slow to form, it may help to scratch the inside of the flask with a stirring rod. Leave the flask in the ice until it appears no more crystals are forming. 6.) Set up a Büchner funnel and filter flask according to your instructor s directions. Filter the crude aspirin. Use your stir rod and squirt bottle to transfer all of the aspirin from the flask to the funnel. 7.) When it appears that your aspirin is dry, weigh a watch glass. Scrape your aspirin from the funnel on to the watch glass. 8.) Store your aspirin for one week. 9.) At the beginning of the next lab, weigh the watch glass and aspirin.

Name: Section: Aspirin Data Sheet CHE 101 Data (show calculations in the space at the bottom): Mass of Salicylic Acid: Volume of Acetic Anhydride Density of Acetic Anhydride Mass of Acetic Anhydride Moles of Salicylic Acid Moles of Acetic Anhydride Limiting Reagent Theoretical Moles of Aspirin Produced Theoretical Mass of Aspirin Produced Mass of watch glass Actual Mass of Aspirin %-Yield Calculations:

Name: Section: Aspirin Questions CHE 101 1.) Draw the structure of aspirin, circle the ester group..) Salicylic acid will reach with methanol (CH 3 OH), and form methyl salicylate. This is another esterification reaction, only this reaction occurs with the carboxylic acid group (-COOH), not the alcohol (-OH) group on salicylic acid. Draw the reaction, circle the ester group in the product. Make sure the reaction is balanced (there is a second product.) 3.) In moist environments aspirin can undergo hydrolysis and forms two products, salicylic acid and acetic acid. What smell would you expect to notice from a bottle of aspirin that has undergone hydrolysis?

Name: Section: Aspirin Questions CHE 101.) If 75.0 g of copper (II) sulfide reacts with 0.0 g of oxygen and forms 5.0 g of copper (II) oxide, what is the percent yield? (Hint: this is a limiting reagent problem.) CuS (s) + 3O (g) CuO (s) + SO (g)

Name: Section: Synthesis of Aspirin Pre Lab Questions CHE 101 1.) Calculate the molar masses for the following compounds: a.) salicylic acid b.) acetic anhydride c.) aspirin.) Acetic acid is the active ingredient in what common food? 3.) Why do you have to store your aspirin for a week before weighing it?.) What are the common side effects associated with the use of aspirin? 5.) Define the following terms: Antipyretic Analgesic