The Analyzer. We will deal mainly with magnetic sector instruments here although we will talk briefly about other separation methods later.

Similar documents
1) Introduction. 2) Types of Mass Analyzers - Overview. Assigned Reading: Nier mass spectrometry paper Extra Reading:

ICPMS Doherty Lecture 1

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP

Phys102 Lecture 16/17 Magnetic fields

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry

Assignment 3 Due September 27, 2010

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Secondary ion mass spectrometry (SIMS)

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Interface (backside) & Extraction Lens

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

THE HEAVY ION BEAM PROBE

Harris: Quantitative Chemical Analysis, Eight Edition

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Status of the MAGIX Spectrometer Design. Julian Müller MAGIX collaboration meeting 2017

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

Deflection of a particle beam by a bending magnet

Extraction from cyclotrons. P. Heikkinen

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Introduction to GC/MS

P5 Revision Questions

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis

Chemistry 311: Topic 3 - Mass Spectrometry

Introduction to the Q Trap LC/MS/MS System

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

CHAPTER D3 TOF ION OPTICS

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Speed of Light in Glass

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

ICP-MS. plasma 17OO. High Resolution Multi-Collector ICP-MS.

object objective lens eyepiece lens

P 3 SOURCE SOURCE IMAGE

1 (a) Define magnetic flux [1]

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture

of mass spectrometry

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Design Note TRI-DN Low Energy Beam Transport Line for the CANREB Charge State Breeder

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

Physical Principles of Electron Microscopy. 2. Electron Optics

Practical Quadrupole Theory: Peak Shapes at Various Ion Energies

Version 087 EX4 ditmire (58335) 1

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

For more sample papers visit :

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points)

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

~1 V ~20-40 V. Electron collector PLASMA. Ion extraction optics. Ionization zone. Mass Resolving section Ion detector. e - ~20 V Filament Heater

Atomic Spectra HISTORY AND THEORY

Astronomy 203 practice final examination

EFFECT OF THE FIRST AXIAL FIELD SPECTROMETER IN THE CERN INTERSECTING STORAGE RINGS (ISR) ON THE CIRCULATING BEAMS

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

Secondary Ion Mass Spectrometry (SIMS)

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW

Problems set # 7 Physics 169 March 31, 2015

Minicourse on Experimental techniques at the NSCL Fragment Separators

Beta Spectrum. T β,max = kev kev 2.5 ms. Eγ = kev

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Astronomy. Optics and Telescopes

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

Information about the T9 beam line and experimental facilities

Analysis of Polar Metabolites using Mass Spectrometry

The Diffraction Grating

CHAPTER 20 Magnetism

Transfer Matrices and Periodic Focusing Systems

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Basic structure of SEM

Differential Cross Section Measurements in Ion-molecule Collisions

EEE4106Z Radiation Interactions & Detection

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

Electrostatics Notes 1 Charges and Coulomb s Law

Free electron lasers

Extrel Application Note

Diagnostics Requirements for the ARIEL Low Energy Beam Transport

Mass Spectrometry. Fundamental LC-MS. Mass Analysers

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Chromatic Corrections for the LCLS-II Electron Transport Lines

TANDEM MASS SPECTROSCOPY

Secondary Ion Mass Spectroscopy (SIMS)

The Grating Spectrometer and Atomic Spectra

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry.

A MASS SPECTROMETER. Ion production and detection 5. Beam geometry, magnetic focusing, and mass resolution 6. Hall probe 9

How do they work? Chapter 5

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Tolerances for magnetic fields in the Gun-To-Linac region of the LCLS Injector *

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

where the magnetic field is directed from south to north. It will be deflected:

Towards SHRIMP SI: Developments in Stable Isotope Analysis with SHRIMP

A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets

Telescopes: Portals of Discovery

Transcription:

The Analyzer The analyzer is where the beam of ions generated in the ion source is separated into multiple beams each representing a single charge to mass ratio (ideally). We will deal mainly with magnetic sector instruments here although we will talk briefly about other separation methods later. Remember from our discussion of ion sources that our ion beam is a roughly rectangular shaped beam that is diverging in the y direction (beam coordinates). Divergence or convergence in the z-direction need not concern us for the moment.

An ion beam that continually diverged would result in poor separation of mass. Fortunately, however, most magnetic and electric shapes have some focusing properties (just as most random pieces of glass will focus some light). Just as in the case with light some shapes are better than others. By shaping the magnetic field (I will deal mainly with magnetic separation for the moment) properly it is possible to refocus the separated ion beams and thus maximize the mass separation.

Is there an ideal shape? Sort of! The shape shown below will focus a highly divergent ion beam to a perfect focus.

However, there are some restrictions: It only works for mono-energetic ions with the same m/q ratio. Variations in energy will cause blurring of the focal point and different m/q values will follow different paths. It assumes the ion source is a point. If the ion source has some dimension in the y-direction (again in beam coordinates) the focal point will not longer be a point (it will be both larger and blurrier). It assumes a perfect magnet, that is, the magnetic field starts and stops abruptly at the pole faces and has a value of zero outside the magnet and a constant value inside the pole faces.

Real Magnets In light of the previous restrictions and the fact that the ideal shape is not easy to machine, real magnetic sector mass spectrometers are a compromise. They usually are an approximation to some segment of the ideal shape This means that the focusing is never perfect, the ion beam focuses to a fuzzy image of the exit slit Factors that affect the size, or fuzziness, of the image: Size of the source exit slit Divergence angle Magnet geometry Miscellaneous effects

Nier Geometry The Nier Geometry has been the workhorse of magnetic sector mass spectrometry for many years Characteristics: Magnet poles are sectors of a circle (the traditional sectors have been 60o and 90o) The ion beam nominally enters and exits the magnet at 90o Assuming an ideal magnet, the object focus (the exit slit of the source) and the image focus lie on a horizontal line that passes thru the apex of the magnet

Consequences of Nier Geometry Object and image focal points lie a distance D from the magnet given by: D= R tan θ 2 Where R is the radius of curvature, and is the sector angle. So for = 90o R= D The Nier geometry achieves first order focusing Other masses come to focus on a curved focal plane that passes through the axial focal point

Nier Geometry continued Advantages of Nier Geometry Simple to machine and set up Very compact footprint especially at 900 Other sources of aberration can usually be ignored Disadvantages Focal plane curved, hard to set-up multiple detectors Mass separation poor at high masses especially for small magnets First order focusing limits resolution (typical beam width at focal point is 50% larger than width at source exit slit To get around some of these problems we can go to what is known as extended geometry

Extended Geometry By rotating the entrance and exit pole faces of the magnet so that the entrance and exit angles are no longer 900 we can improve things: The focal plane becomes flat (or near flat) over a wide mass range The effective radius of curvature increases becoming twice the true radius at an angle of 26.5o This doubles the separation between masses and doubles the distance of the focal points from the magnet Most importantly we achieve second order focusing, the beam width increasing by about 15%

Advantages of Extended geometry: 1. Focal plane is relatively flat, multiple detectors easier to use 2. Twice the mass separation for the same size Nier magnet 3. Second order focusing improves mass resolution Disadvantages: 1. Footprint larger 2. Focal plane at an angle to the incoming beams, detectors must be staggered en echelon 3. Other aberrations must be considered Disadvantage 2 can be gotten around, that is the focal plane can be made to intersect the beams at a right angle (for the axial beam)

Extended Geometry as practiced by GV and precursors By shaping the pole faces and making the exit face angle adjustable it is possible to bring the focal plane at right angles to the axial beam:

The Z-direction and Fringe Fields If there is no z-focusing in the ion lens the ions diverge in the z-direction The flight tube internal dimension at the magnet pole gap determines the beam s z dimension and divergence

Z-focusing With Z-focusing lenses we can confine the beam to the pole gap However, Z-focusing is complicated by fringe fields and other factors

Fringe Fields The magnetic field of the magnet extends outside of the pole face: Characteristics of fringe field: Strongly curved outside of magnet and just inside pole face Lower field just inside pole face Strength depends on magnetic properties Of magnet material and pole gap

Effects of Fringe field In Nier magnet the fringe field moves the focal points and adds aberrations from a z component to the magnetic force These aberrations can be mitigated somewhat by z-focusing In extended geometry the fringe field can be used to focus in the z-direction especially when combined with z-focusing lenses Still produces small amount of aberration

Dispersion Dispersion is the actual physical distance between the focal points of two adjacent masses at the focal plane. Where d is the dispersion.

Dispersion continued For a symmetrical mass spectrometer (i.e., where object and image distances are the same) there is a relatively simple equation to calculate dispersion: m d= R eff m where Reff is the effective radius of curvature of the magnet (for a Nier magnet this is the actual radius of curvature, for extended geometry it is twice the real radius), m is the axial mass and m is the difference in mass. Note this equation is a simplification of a more complex equation and is not exact for a number of reasons but is very close as long as m is not too large.

Dispersion For example, an extended geometry magnet with an Reff of 540 mm has a dispersion at mass 88 of 6.136 mm per amu but only 2.269 mm per amu at mass 238. These would be one half these numbers for a Nier magnet. Dispersion is also sometimes given as ppm of the effective radius, i.e.: d m = 1x10 6 R eff m For the examples above: At mass 88 the dispersion is 11363 ppm. At mass 238 the dispersion is 4202 ppm. Note that the dispersion is independent of the magnet angle and ion energy. This equation can also be used for calculating any physical distance at the focal plane or converting a distance to mass equivalent. We will see more of this when we discuss resolution.

At the focal plane Beams are isolated at focal plane by slits Slits must be wider than beam width at focal plane to allow total beam to reach detector and also to allow for variations in magnetic field and ion energy (Flat Topped Peaks) The ability to resolve two closely spaced peaks depends on the dispersion, the beam width at the focal plane and the collector slit width

Cross Section of Beam Intensity at the Focal Plane These are cross sections through the beam at the focal plane along the medial plane Ideal Focusing First Order Focusing Second Order Focusing

What do we see at the detector? Observed peak is wider than beam Peak top is flat (intensity does not change) while beam is in slit Intensity of Peak is the beam integrated over its whole width Collector Slit

Calculating beam parameters Observed Peak Beam Slit WT WS WP WB WT = WS WB W p = WS + WB

Some Examples For WB = 0.35 mm and WS = 1.0 mm WT = 0.65 mm and WP = 1.35 mm Note that these values are mass independent However, in terms of amu these values will vary depending on the mass we are looking at: At mass 88 WB = 0.057 amu, WS = 0.163 amu, W T = 0.106 amu and WP = 0.220 amu At mass 208 WB = 0.135 amu, WS = 0.385 amu, W T = 0.250 amu and WP = 0.520 amu WP represents the minimum spacing between two peak before they overlap at the baseline level, WP / 2 represents the spacing at which two peaks overlap at peak top center We can now look at mass spectrometer resolution

Resolution Resolution is a measure of the ability to distinguish two closely spaced ion beams. Resolution is usually defined as: m R= m10% where R is the resolution, m is the mass whose resolution is being measured and m10% is the mass change necessary to get the peak intensity down to 10% of its maximum intensity.

Resolution continued The mass at 10% intensity can be hard to calculate, it is sometimes more useful to use the baseline width calculated above: For Sr: 88/0.11 = 800 For Pb: 208/0.260 = 800 Notice that this is also the radius of curvature (effective) divided by one-half the peak width (WP) So for example at mass 208 we could have two peaks separated by 0.260 amu and still measure the correct beam intensity (just barely) if we centered on the peak top of each peak However, in mass spectrometers with multiple detectors the limiting factor is usually how close we can get the detectors to one another.

Abundance Sensitivity Even with perfect focusing we would find a widening of the beam width at the focal plane, especially on the low mass side of the beam This is because of interactions between the ion beam and residual air in the mass spectrometer We can distinguish two end member types of interaction (with most interactions falling in between): Head-On Collision: + AIR Glancing Collision: + AIR

Head-On Collisions Direction of motion of ion changed little, some energy is lost by the ion however If this occurs after the ion has passed through the magnet, No Problem If it occurs before or during passage through the magnet the path of the ion will be different from the ions of the same mass that have not lost energy. The effect is greatest when the energy loss is high or if the loss occurs early in the flight path. Energy loss causes the ion to behave like a slightly less massive ion, so it will reach the focal plane at a mass position slightly lower than its true mass This produces a tail on the low mass side of an ion beam which for intense ion beams can be significant evens a few amu away. This makes it difficult to measure a very small beam on the low mass side of a very intense beam For example: 234 U next to 235U, 236U and 237U next to 238U 230 Th next to 232Th

Glancing Collisions Ion loses little energy but its direction of travel can change significantly The effect is greatest if it occurs early in the flight path Changes in direction are symmetric The result is to produce tails on both the high and low mass sides of the beam, or alternatively to widen the base of the beam Abundance Sensitivity Abundance sensitivity is a measure of the extent of this effect and is defined as: Α= ΙΜ 1 6 10 ΙΜ Where A = abundance sensitivity in ppm, IM-1 is the intensity 1 amu below the main peak at mass M and IM is the intensity of the main peak

Abundance Sensitivity Depends on the quality of the vacuum in the mass spectrometer For machines like the Sector 54, Isolab or Triton with only a magnetic sector at a pressure of 10-9 torr the typical abundance sensitivities are 1 to 10 ppm This means that isotope ratios lower than a few times 10-5 would be difficult to measure It is difficult to get vacuums much below 10-9 torr with machines this size (and for other reasons) So how can we improve abundance sensitivity?

Improving Abundance Sensitivity In lieu of a perfect vacuum there are ways to improve abundance sensitivity Add an electrostatic filter: Works reasonably well, usually gives a factor of 10 or so Electrostatic Filter improvement in Abundance sensitivity Magnet Disadvantages: Bends beam Still lets through range of energies Does little to remove glancing collision particles Source

Improving Abundance Sensitivity continued WARP, RPQ filters Both use an aperture to pass only ions that have lost less than a certain amount of energy: +7999 V +7995 V Ion +8KeV ion A quadrupole or long aperture is used to remove ions entering at high angle (the glancing collisions)