Geo-neutrinos Status and Prospects

Similar documents
Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

Global models of Earth s composition and geoneutrino flux around Jinping

PoS(HQL 2012)053. The study of geo-neutrinos. Sandra Zavatarelli 1

Perspectives for geoneutrinos after KamLAND results

POTASSIUM GEONEUTRINOS AND THEIR DETECTION

KamLAND. Studying Neutrinos from Reactor

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

KamLAND. Introduction Data Analysis First Results Implications Future

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Proton decay and neutrino astrophysics with the future LENA detector

The dawn of neutrino geophysics. G.Gratta Physics Department Stanford University

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Models of the Earth: thermal evolution and Geoneutrino studies

Neutrino Experiments with Reactors

Solar Neutrinos in Large Liquid Scintillator Detectors

Neutrino Studies with the KamLAND detector. Yuri Efremenko University of Tennessee

International Workshop : Neutrino Research and Thermal Evolution of the Earth. KamLAND. Hiroko Watanabe

Recent Discoveries in Neutrino Physics

Solar Neutrino Oscillations

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Revealing the Earth s mantle from the tallest mountains using the Jinping Neutrino Experiment

The LENA Neutrino Observatory

Daya Bay and joint reactor neutrino analysis

Geo-neutrinos Status and Prospects

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Neutrinos from the Sun and other sources: Results from the Borexino experiment

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Detecting a Nuclear Fission Reactor at the Center of the Earth

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Directional Measurement of Anti-Neutrinos with KamLAND

The ultimate measurement?

Neutrino Geoscience a brief history

Neutrino Experiments with Reactors

Results from Borexino 26th Rencontres de Blois

Reactor Neutrino Oscillation Experiments: Status and Prospects

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Radioactivity. Lecture 11 The radioactive Earth

Radio-chemical method

Radioactivity. Lecture 11 The radioactive Earth

Status of Reactor Neutrino Oscillation and Geo Neutrino Measurement in KamLAND

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Correlated Background measurement in Double Chooz experiment

The Daya Bay Reactor Neutrino Experiment

Monte Carlo Simulations for Future Geoneutrino Detectors

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Scintillator phase of the SNO+ experiment

Andrey Formozov The University of Milan INFN Milan

The Daya Bay Reactor Neutrino Oscillation Experiment

Li in a WbLS Detector

Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

Applied Anti-neutrino Workshop Introduction

4p 4 He + 2e + +2ν e. (1)

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Astroparticle physics

Earth models and primordial heat... and geonu emission from deep mantle piles

The Double Chooz Project

Geoneutrino and Hydridic Earth model. Version 2

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 )

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Neutron background and possibility for shallow experiments

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Recent solar and geo-ν results from Borexino

Questions. 1. What kind of radiation dominates the first phase of radiation emission from a nuclear fireball?

Other Physics with Geo-Neutrino Detectors

Daya Bay Neutrino Experiment

Potential of the large liquid-scintillator detector LENA in particle and astrophysics

SNO+ and Geoneutrino Physics

Astroparticle physics

New results from RENO and prospects with RENO-50

1. Neutrino Oscillations

Neutrino oscillation experiments: Recent results and implications

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

arxiv:hep-ph/ v1 4 Oct 2006

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

arxiv: v1 [hep-ex] 22 Jan 2009

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Current Results from Reactor Neutrino Experiments

Recent Results from RENO & Future Project RENO-50

Neutrino Sources in the Universe

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

Neutrinoless Double Beta Decay Search with SNO+

PoS(NEUTEL2017)007. Results from RENO. Soo-Bong Kim. for the RENO collaboration Seoul National University, Republic of Korea

The Double Chooz reactor neutrino experiment

Recent results from Super-Kamiokande

Neutrinos from nuclear reactors

Status of 13 measurement in reactor experiments

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014

Advanced School on Understanding and Prediction of Earthquakes and other Extreme Events in Complex Systems. 26 September - 8 October, 2011

Outline. (1) Physics motivations. (2) Project status

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

Searches for sterile neutrinos at the DANSS experiment. Dmitry Svirida for the DANSS Collaboration ITEP-JINR

50 years of Friendship Mikhail Danilov, LPI(Moscow)

Neutrino Oscillations

Transcription:

Geo-neutrinos Status and Prospects SNOLAB Grand Opening Workshop May 2012 e+ νe W u pu Steve Dye Hawaii Pacific University d d u d n

Outline Radiogenic heat/thermal evolution Radiogenic heat/geo-neutrinos Detecting geo-neutrinos Geo-neutrino data Geo-neutrino analyses Project updates Prospects

Planetary Power Aq = Mh Mc( T/ t) Surface heat flow- Aq Internal heating- Mh Heat to change temperature- Mc( T/ t) Temperature change rate: T/ t = Aq/Mc (Mh/Aq 1) Planetary Urey ratio - U = Mh/Aq

Surface Heat Flow Pollack et al., 1993 Added for Davies, Davies, 2010 mw m-2 Heat flow probethermal conductivity, dt/dx Heat conductionq = -k dt/dx Total Flow Aq = 47 ±2 TW

Internal Heating Geology predicts 16-42 TW of radioactive power Mass loss rate dm/dt = -(6-15) tonne y-1? ~20% escapes to space as geo-neutrinos ~80% remains to heat planet Other known sources of internal heating small Internal heating Mh = 13 34 TW

Thermal Evolution of Earth Temperature change rate: T/ t = Aq/Mc (Mh/Aq 1) U = Mh/Aq U>1 T U<1 T Surface heat flow- Aq = 47 ±2 TW (Davies, Davies, 2010) Internal heating- Mh = 13 to 34 TW (various models) Planetary Urey ratio - U = Mh/Aq = 0.28 to 0.70 Geology predicts a cooling planet

Earth Heating Elements 238 U 206Pb +8α +6e +6ν e +51.698 MeV 235 U 207Pb +7α +4e +4ν e +46.402 MeV 232 Th 208Pb +6α +4e +4ν e +42.652 MeV 40 K 40Ca +e +ν e +1.311 MeV (89.3%) 40 K +e 40Ar +ν e +1.505 MeV (10.7%) Uranium Thorium Potassium h(μw/kg) 98.5 26.3-3 3.33 x 10-1 (1) -1 l(kg μs ) 76.4 16.2-3 27.1 x 10 U, Th, K produce heat and geo-neutrinos

Geo-neutrino Intensity Spectra [ A, Z ] [ A, Z + 1] + e + ν e + Qβ per decay we = (Qβ + me Eν e ) [ 2 pe = (Qβ + me Eν e ) ] 2 1/ 2 me dn( Eν e ) / deν e we Eν e 2 pe2γ 1eπη Γ( γ + iη ) 2 γ = 1 α 2 ( Z + 1) 2 η = α ( Z + 1) we pe Internal heating and geo-neutrinos connected

Antineutrino Interactions Electron elastic scattering Inverse β-decay νe + e - νe + e - νe + p n + e+ Electron target Proton target No energy threshold Cross-section σ(eν)~4.0x10-45 Eν1 cm2 e- Ethresh 1.80 MeV Cross-section σ(eν)~9.5x10-44 (Eν-1.3)2 cm2 W Z0 p νe e+ νe e- νe u d u u d d n

Cross Sections ν e + e ν e + e Tmax = Eν e 1 + me 2 Eν e 2 2 E T m T ν 44 σ e ( Eν e ) = 0.43 x Tmax + ( x + 1) 2 e 1 (1 max )3 x( x + 1) e max 10 3 Eν e 2 Eν2e ν e + p e+ + n ( ) σ p ( Eν e ) = 9.52( Eν e ) 2 1 me2 Eν e 2 10 44 Te = Eν e me

Cross Sections Nue-bar elastic scattering observed by Reines, Gurr, Sobel in 1976 Sensitivity below 1.8 MeV; no tag 4 e- / p+ in CH2 LS Resolve e- direction to find signal? Nue-bar quasi-elastic scattering used by Reines and Cowan in 1950 s Coincidence counting; weak direction Works great for geo-nue-bars Uncertainties small

Detected Spectra

Inverse-β Interaction Kinematics transverse n Initialptrans= 0 νe pν Finalptrans= 0 p θe ' longitudinal e+ Batygov Watanabe θn pν θe e+

Coincidence Counting Prompt event Positron Ee Eν 1.8 MeV Evis Eν 0.8 MeV Ionization energy + 2γ Deposition time ~ few ns <Re> ~ 0.4 cm Delayed event Neutron En 1-100 kev Thermal diffusion Evis depends capture nucleus Deposition time ~ 20 200 μs <Rn> ~ 5 15 cm Watanabe

Antineutrino Detection Antineutrino (Eν>1.8 MeV) interacts with free proton γ νe e- p + n p+ γ e+ γ Prompt event deposits energy of Eν-0.8 MeV Delayed event deposits energy of 2.2 MeV ~10,000 γ/mev PMTs measure position and amount of deposited energy 3-October-2010 Steve Dye, HPU 15

238 Geo-neutrino Event Spectrum U 232 1α, 1β 234 Pa 1α, 1β νe 2.3 MeV νe 2.1 MeV 5α, 2β 214 Bi Pb 228 Ac 4α, 2β νe 3.3 MeV νe 2.3 MeV 2α, 3β 206 Th 212 Bi 1α, 1β Th/U in source regions determines spectral shape 208 Pb

Neutrino Oscillations- θ13>0 3-ν mixing Pee3ν = 1 {cos 4 (θ13 ) sin 2 (2θ12 ) sin 2 ( 21 ) + sin 2 (2θ13 )[cos 2 (2θ12 ) sin 2 ( 31 ) + sin 2 (2θ12 ) sin 2 ( 32 )]} ji = 1.27( δm 2ji L) / Eν e [ δm 2ji m 2j mi2 2 2 2 δm31 δm32 >> δm21 Pee 1 cos 4 (θ13 ) sin 2 (2θ12 ) sin 2 ( 21 ) + 0.5 sin 2 ( 2θ13 ) [ Error dominated by solar mixing angle ] ] 024 Pee 1 0.5 cos 4 (θ13 ) sin 2 (2θ12 ) + sin 2 (2θ13 ) = 0.536 +..013 Fogli et al., 2011 ; An et al., 2012 ; Ahn et al., 2012

Average Oscillation Probability θ13 : 0 º 10 º <Pee> : 0.58 0.54 Lowers reactor & crust flux predictions Using <Pee> overestimates a(u) & a(th) and underestimates Th/U Pronounced at sites enriched in U & Th such as Sudbury basin Perry et al., 2009 Dye, 2012 arxiv:1111.6099v2

Reactor Antineutrino Background Φ(E) OLD- θ13=0 Pν e ν e 1 sin 2 (2θ12 ) sin 2 (1.27 m212 L / Eν e ) N(E) σ(e) Geo ν (Enomoto, Neutrino Sciences 2007) OLD- Japan? Expected reactor signals depend on location

Non-neutrino Background Fast neutron background from muons outside veto <1 TNU at Gran Sasso Accidental background 3.4±0.2 TNU KL (2005) 1.3±0.2 TNU BX (2010) Mei and Hime, 2006 Isotope background (β,n) ~0.5 TNU Radon contamination 210 Po 206Pb + α 13 C(α,n)16O <0.3 TNU Abe et al., 2010

Existing Gν Detectors KamLAND- Kamioka, Japan 1 kt LS 80% dodecane 20% PC w/ 1.36 g/l PPO ~1800 PMTs 34% solid angle Borexino- Gran Sasso, Italy 0.278 kt PC w/ 1.5 g/l PPO 2212 8-in PMTs ~30% solid angle ~500 pe/mevvis ~0.17x1031 p ~250 pe/mevvis (5.98±0.12)x1031 p Both existing detectors are in Eurasia at ~40 ⁰ N and separated in longitude by ~120 ⁰

Gν Data: Existing Detectors KamLAND Borexino Mar-02 to Nov-09 : 3.49±0.07 TNU-1 Dec-07 to Dec-09 : 0.152 TNU-1 Total events- 841 Background- 730±32 Geo-nu- 111±43 Gando et al., 2011 Nature Geoscience 4, 647 Total events- 15 Background- 5.3±0.3 Geo-nu- 9.7±3.9 Bellini et al., 2010 Phys. Lett. B 687, 299

Gν Data Analysis Borexino KamLAND unconstrained fit NU = 65 ; NTh = 33 Th/U ~ 8 ε(u) = 0.807 ε(th) = 0.751 Best fit: 9.9(+4.1/-3.4) gν events ε=0.85±0.01 Fixing Th/U=3.9 N(U+Th) = 106±29 Fixing Th/U=3.9 40.0±10.5(stat)±11.5 (sys) TNU systematic > statistical Gando et al., 2011 Nature Geoscience 4, 647 64±25(stat)±2(sys) TNU statistical >> systematic Bellini et al., 2010 Phys. Lett. B 687, 299

Gν Analysis- I Observed Gν Observed Gν Predicted Crust Surface heat flux Old value. Revised lower by Coltorti et al., 2011. Mh (U+Th) = 20 ± 9 TW Gando et al., 2011 Nature Geoscience 4, 647

Gν Analysis- II Increased total signals KL R(U+Th) 40 43 TNU BX R(U+Th) 64 67 TNU R(U+Th) >0 at ~4.2σ θ13>0 decreases expected crust KL (Enomoto et al., 2007).54/.59=.92 BX (Coltorti et al., 2011).54/.57=.95 Gando et al., 2011 Add to increase mantle signal Mantle = Total Crust Fiorentini et al., 2012 arxiv:1204.1923v1

Gν Analysis- II Residual mantle signal w/ model comparisons 1.7 Th/U 3.9 Rmantle = 23 ± 10 TNU R>0 at ~2.4σ Geophysical- consistent Geochemical- excluded >90% CL Cosmochemical- constrained Mh(U+Th) > 19 TW (68% CL) No model excluded at ~>2σ Fiorentini et al., 2012 arxiv:1204.1923v1

Gν Analysis- III Method M=N-B C δm = (N + δb2 + δc2)1/2 Assumptions Th/U = 3.9 ; C model MKL= MBX Combined result: consistent w/ GP, GC weakly excludes CC Rmantle = 17 ± 10 TNU Weighted average BX > KL but consistent with BX=KL Dye, 2012 arxiv:1111.6099v2 Sramek et al., 2012

Gν Analysis- III KamLAND (2011) data consistent with models, prefers Mh < Aq Borexino (2010) data consistent with GP and Mh = Aq KL+BX (weighted averages) consistent w/ GP & GC weakly exclude CC Min Mh = 28 ± 13 TW Max Mh = 33 ± 16 TW Dye, 2012 arxiv:1111.6099v2 Homogeneous mantle DM w/ enriched basement layer

Resolving Geological Models- Prospects Crust systematic dominates rate uncertainty Single measurement at continental or existing site does not resolve models Single measurement at oceanic site does resolve models Dye, 2012 arxiv:1111.6099v2

Expected Signals: Existing Sites KL before and after reactor shutdown BX can operate for many years before systematic uncertainty significant

Expected Signals: Future & Prospective Sites Continental Observatories Next year!!! + Baksan Mount Elbrus Village Neutrino 43 14 N 42 41 E Oceanic Observatory

Geo-neutrino Observatory Network Pyhäsalmi Baksan Homestake Sramek et al., 2012

Borexino Project Updates doubled statistics and improved FV definition... Data look nice. Aldo Ianni KamLAND acquiring good data but wont publish for a year until reactors come back Kunio Inoue SNO+ Data next year, crust study LENA White paper published in Astropart. Phys.- M. Wurm Baksan Discussing 10-50 kt detector- V. Sinev Hanohano Discussing 2-3 kt GeoPANO

Projection to Year 2020 KamLAND : 9 TNU-1 δm = ± 6 TNU Borexino : 1 TNU-1 δm = ± 10 TNU SNO+ : 3 TNU-1 δm = ± 9 TNU -----------------------------------------------Total : 13 TNU-1 δm = ± 4-5 TNU OR GeoPANO : 3 TNU-1 δm = ± 3 TNU GeoPANO : 6 TNU-1 δm = ± 2 TNU OR Network- Five x 10 TNU-1 δm = ± 3 TNU

Gν Summary Observing planetary U & Th; no K or direction Data accumulating in two geo-ν detectors: KL & BX Beginning to address geological models SNO+ next year! First continental observatory 5-y statistical error ±6 TNU (~12% Gν measurement) First measurement of Th/U Oceanic observatory resolves geological models Model resolution possible with network of continental observatories SNO+, LENA, Baksan, Homestake, plus KL & BX