Introduction to Hadron Collider Physics. Mark Lancaster. Oct 6 th

Similar documents
Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Physics at Hadron Colliders

La ricerca dell Higgs Standard Model a CDF

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

Search for WZ lνbb at CDF: Proving ground of the Hunt for the

arxiv:hep-ph/ v1 17 Apr 2000

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Physics at Hadron Colliders Part II

Discovery potential of the SM Higgs with ATLAS

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Results on top physics by CMS

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

LHC State of the Art and News

Recent Results on New Phenomena and Higgs Searches at DZERO

The Quark-Gluon Plasma and the ALICE Experiment

W/Z + jets and W/Z + heavy flavor production at the LHC

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

SUSY at Accelerators (other than the LHC)

Top and Electroweak Physics at. the Tevatron

Higgs Searches at CMS

Last Friday: pp(bar) Physics Intro, the TeVatron

B-physics with ATLAS and CMS

Collider physics. Introduction Some e + e - collider physics. Hadronic machines. R(e + e - hadrons/ e + e - µ - µ + ) Z 0 and W at LEP

Searching for the Higgs at the Tevatron

High p T physics at the LHC Lecture III Standard Model Physics

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Standard Model of Particle Physics SS 2012

Testing QCD at the LHC and the Implications of HERA DIS 2004

TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC

Searches for exotica at LHCb

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

First physics with the ATLAS and CMS experiments. Niels van Eldik on behalf of the ATLAS and CMS collaborations

Reconstruction and identification of hadronic τ decays with ATLAS

Dario Barberis. Physics with 2 nd Generation Pixel Detectors. Pixel 2002, Carmel (Ca), Sept Dario Barberis Genova University/INFN 1

Jet reconstruction in LHCb searching for Higgs-like particles

FYST17 Lecture 6 LHC Physics II

SUSY at Accelerators (other than the LHC)

ALICE and LHCb in the HL-LHC era

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

Recent results from rare decays

CDF recent results Paolo Mastrandrea (INFN Roma) on behalf of the CDF Collaboration

Review of Higgs results at LHC (ATLAS and CMS results)

Mini-Bias and Underlying Event Studies at CMS

The HL-LHC physics program

Searches for Standard Model Higgs Boson at the D Detector at the Tevatron. Alexander Khanov Oklahoma State University SUSY 06

Top quark at LHC. M. Villa. Bologna, oggi

Early physics with the LHCb detector

Outline. Heavy elementary particles. HERA Beauty quark production at HERA LHC. Top quark production at LHC Summary & conclusions

7 Physics at Hadron Colliders

Flavour physics in the LHC era

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Progress in Top Quark Physics

The Higgs boson. Marina Cobal University of Udine

Search for a heavy gauge boson W e

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

LHCb Discovery potential for New Physics

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production.

Flavour Physics at LHC

FYST17 Lecture 6 LHC Physics II

Higgs Boson Searches at ATLAS

Title Text. ATLAS Higgs Boson Discovery Potential

ATLAS-CONF October 15, 2010

The Hunt for the Higgs (and other interesting stuff at the Tevatron) Robert Roser Fermi National Accelerator Laboratory

Evidence for Single Top Quark Production. Reinhard Schwienhorst

LHCb results and prospects

2 ATLAS operations and data taking

Highlights of top quark measurements in hadronic final states at ATLAS

The W-mass Measurement at CDF

Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC

Top hadron colliders. Zofia Czyczula Particle Physics II - FYS4560

14 Top Quark. Completing the Third Generation

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

VBF SM Higgs boson searches with ATLAS

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

Recent Results from 7 GeV proton proton running at CMS

HIGGS Bosons at the LHC

Jet Energy Calibration. Beate Heinemann University of Liverpool

Frontiers in Theoretical and Applied Physics 2017, Sharjah UAE

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY.

The God particle at last? Science Week, Nov 15 th, 2012

Tutorial 8: Discovery of the Higgs boson

Search for a Z at an e + e - Collider Thomas Walker

Modern Accelerators for High Energy Physics

Non-Standard Higgs Decays

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

Physics at the LHC: from Standard Model to new discoveries

arxiv: v1 [hep-ex] 5 Sep 2014

Recent results from the LHCb experiment

Top Physics. Claudio Campagnari University of California Santa Barbara

CDF top quark " $ )(! # % & '

ATLAS Discovery Potential of the Standard Model Higgs Boson

Physics Highlights from 12 Years at LEP

Experimental Summary 40 th Rencontres de Moriond QCD and High Energy Hadronic Interactions. Heidi Schellman Northwestern University

Thesis. Wei Tang. 1 Abstract 3. 3 Experiment Background The Large Hadron Collider The ATLAS Detector... 4

Transcription:

Introduction to Hadron Collider Physics Mark Lancaster Oct 6 th 2009 http://www.hep.ucl.ac.uk/~markl/teaching/postgrad/hadron_collider

1974 (J/Ψ) (BNL AGS : pn) 1995 (FNAL Tevatron p-pbar) 1977 (FNAL : pn) 1962 (BNL AGS : ν from pn) 1983 (CERN SPS) : p-pbar 2000 (FNAL Tevatron : ν from pn)

Some history - hadron colliders have typically been at energy 10 x electron machines 2005!!! Now :Tevatron/FNAL : CDF/D0 at 1.96 TeV Nearly: the LHC at 900 GeV or 10 TeV or 14 TeV..

As well as fundamental particles; hadron colliders were responsible for: - discovery of CP violation in Kaon sector (BNL AGS : 1964) - discovery of heaviest meson (Bc) (CDF : FNAL Tevatron 1998) - first observation of CP violation in B sector (CDF : FNAL Tevatron : 1999) - first observation of Bs oscillations (CDF: FNAL Tevatron : Sep 2006) - first observation of Σ b baryons (CDF: FNAL Tevatron: Oct 2006) And as we will see a wealth of : - electroweak physics - QCD physics - B physics - exotic limits That said - we ALSO need lepton colliders and lepton-hadron colliders - lepton colliders : clean environment for precision measurements - lepton-hadron colliders : precision probes for QCD (PDFs) I will not talk about heavy ion colliders (e.g RHIC at BNL, ALICE @ LHC)

Gold on Gold Collision @ RHIC

Why hadron colliders: - easy to get to high energy : less synchrotron radiation - naturally scan in centre of mass energy Synch Rad ~ E 4 /(M 4 R) At LEP2 (100 GeV) beams - 2 GeV per turn was being lost For protons this would not happen until E = 200 TeV. Synch Rad. at LHC is 3 KeV - higher cross sections (factor 3 from color)

Ultimate hadron collider proposed by Fermi in 1954!

Since hadron colliders collide composite objects the extraction of the physics is often ''messy'' and not straight-forward. - underlying event, multiple interactions - proliferation of QCD radiation - high event rates - places a premium on - real-time triggering (selection of interesting events) - accurate detectors with some redundancy - understanding QCD

Total event rate varies slowly (logarithmically) with CMS E 'Interesting'' physics events (high pt/mass) are enhanced at high CMS E But they can still be at a rate of 11 orders of magnitude below the soft proton-proton scattering events... Event Rates

Single W,Z Precision (loop) physics (0.2 fb -1 ) Di-Bosons SM tests : gauge couplings (1 fb -1 ) Single Top Observed now at 4-sigma (2 fb -1 ) Higgs Excluded between 160-170 GeV (4 fb -1 )

What happens when two hadrons collide: 1. ~ 25% ELASTIC collisions hadrons change direction/momenta but there is no energy loss : dull! 2. ~ 75% INELASTIC collisions one or both of the hadrons have a change in energy & direction : rate ~ 1/Q 4 : Q is energy transfer mostly dull! In a collider we have bunches of hadrons circulating the accelerator - each bunch contains ~ 10 11 protons (anti-protons are lower ~ 10 9 ) We can have more than one collision as the bunches pass through each other at the interaction region : ''Multiple Interaction'' The bunches have a significant size longitudinally (5-20 cm) 30 µm : BUNCH BUNCH : 10 11 P 15cm

P ΔE 1 P ELASTIC : ΔE i = 0 (~ 25 %) P ΔE 2 P P P INELASTIC : NON DIFFRACTIVE (~ 55 %) P ΔE 1 P P ΔE i > 0 P ΔE 2 P P P INELASTIC : DOUBLE DIFFRACTIVE (~ 8 %) INELASTIC : SINGLE DIFFRACTIVE (~ 12 %)

Total Cross Section at Tevatron ~ 80 mb At LHC : don t know until we measure it : 90-130 mb - despite talk of Higgs etc this will be one of the first LHC measurements Need to measure it so we have a prediction of the number of additional events overlapping the interesting physics. Poisson distributed - important at low lumi since skewed, less so at high lumi. LHC crossing interval = 25ns Assuming cross section of 130 mb. How many min bias interactions per crossing at LHC nominal lumi of 10 34 cm -2 s -1 How many in 2009 at 10 28????

HARD & SOFT!! Most of interactions involve a low transverse momentum transfer (pt) from the initial to final state : - these are termed SOFT interactions - in such interactions a few/no particles are produced with significant pt (pt > 2 GeV) In contrast an electron from the decay of a W has a pt of ~ 40 GeV - interactions involving the emission of at least one particle with appreciable pt are termed HARD interactions A given bunch crossing can involve a mixture of separate HARD and SOFT interactions. A given interaction can have HARD and SOFT components (see later). HARD and SOFT terminology is not exact but it is frequently used Why do we care? - HARD interactions have a high scale e.g. mass of W or high pt particle and can be calculated reliably using perturbative QCD - SOFT interactions are NOT easily calculable within QCD and rely on ad-hoc models which are taken from data (with some ''theory'')

- first hard hadronic process wasn't seen until early 1970s at BNL & CERN! soft physics model - jets of hadrons were not seen until the SppS in 1980s by UA1 and UA2 (the gluon was only discovered from 3 jet events in e + e - collisions in 1979) - triggers for hard processes invariably involve a pt threshold or the presence of a resonance. - if no trigger then data rate from LHC would be 250 Tb of data per second!

Identification of hard components of the event is key to getting to the physics. - Higgs event at LHC with additional soft interactions hard QCD radiation

What is a minimum bias event? - event accepted with the only requirement being some activity in the detector with minimal pt threshold [100 MeV] (zero bias events have zero requirements) - a minimum bias event is therefore most likely to be either: - a low pt (soft) non-diffractive event - a soft single-diffractive event - a soft double diffractive event (some people do not include the diffractive events in the definition!) - it is characterised by: - having no high pt objects : jets; leptons; photons - being isotropic - see low pt tracks at all phi in a tracking detector - see uniform energy deposits in calorimeter as function of rapidity - these events occur in 99.999% of collisions. So if any given crossing has two interactions and one of them has been triggered due to a high pt component then the likelihood is that the accompanying event will be a dull minimum bias event.

CDF event charged tracks tracks from additional min bias events JET # charged tracks vs rapidity in min bias interactions

What is the (soft) underlying event (SUE): - everything else in the event not to do with a hard (high pt) sub-process - sometimes people add into this definition, the concurrent min bias events; such that underlying event is a generic term meaning ''all that's not high pt'' - this is not an exact science neither is the theory! This includes: - the remnants (quarks) of the proton not participating in the hard scatter - the soft (i.e. low pt) particles produced by the colour field (which will radiate) connecting the hard scatter with the remnant - soft gluons (QCD radiation) emitted from the hard scatter quarks - Where soft gluons become hard gluons and not part of the underlying event is not an exact definition if it's of high enough pt to hadronise into a jet then it's generally considered hard but that also depends on your jet algorithm! - soft physics also referred to as infra-red or long-range physics (= low energy)

The production of a W in a proton anti-proton collision showing the separate hard and soft components within a single interaction

Event Terminology Summary Already... - hard sub-process / hard scatter; (soft) underlying event ; miminum bias event; diffractive / inelastic / elastic - Multiple interaction - generally used to mean a hard scatter process + independent overlapping min bias event from different hadrons in same bunch - Multiple / Double Parton Interaction (DPI) - extremely rare (but have been observed by CDF) process when two partons in the same interacting hadrons undergo two independent hard scatters or more likely have one hard and one soft-ish. - Mini-jets - generally low pt (soft-ish) jets associated with the soft scatter in a double parton interaction. - DPI and mini-jets may be important at LHC since at the LHC there is a high probability of a low-x quark being involved in an interaction

- Example double parton interaction

Triggering at a hadron collider - this is the key e.g - b quark was discovered at rate of one b event per 10 10 collisions - top quark was discovered at rate of one top per 10 12 collisions! - by comparison this is trivial at a lepton collider Needle in a haystack moving at 186,000 miles per second... 7.5 MHz L1 : hardware 5 khz CHALLENGES - ensuring high trigger efficiency & retaining purity - knowing what the trigger efficiency is (use pass-through triggers and rely on pre-scaled triggers with lower thresholds) L2 : firmware 375 Hz Rejection factor of 1:20,000 after level-2 L3 : software 75 Hz Tape Robot ~ few Tb / day disks...

Factorisation and PDFs Factorisation is a fundamental theorem of perturbative QCD - it is vital for the theory to have any predictive power i.e be of any use

K-factors - factors that account for truncation of hard-scatter cross section e.g. they account for higher order effects. - generally a LO K-factor i.e one taking into account all non leading order diagrams is approx 25-50%. e.g. for Z production at the Tevatron it is 30%. NLO K factor is smaller...

Knowledge of PDFs is vital - they determine the rate of processes - we define ''luminosity functions'' to determine what the important partonic sub-processes will be. - this is where HERA measurements are vital

gluon-gluon production of ET=500 GeV jet is 4 orders of magnitude larger at LHC than Tevatron Gluon-Gluon Parton Luminosity LHC Tevatron X1 X2 (LHC) = 1/50 X1 X2 (Tevatron) : there are a lot of gluons at low x

Tevatron : jet production It works here we have data and perturbative NLO QCD agreeing over 9 orders of magnitude Beware log scales!!!

Heavy Flavour Production : Top or Bottom Quarks - for the most part the Tevatron is a quark anti-quark collider and the LHC is a gluon-gluon collider. - - understanding these processes is vital since e.g. bb is the dominant decay mode - of a light Higgs

Vector Boson Production Prompt Photon Production

Physics Areas : Past - CERN : SppS / ISR : 1970s and 1980s - discovery of W,Z and first measurement of mass - establishing QCD as a credible theory through jet measurements Physics Areas : Present - TEVATRON : Run-0 (1988-89), Run-1 (1992-95), Run-2 (2001-2010) - Electroweak - precision measurements of W properties complementing LEP (1989-2000) - Top Quark - can only be done at the Tevatron. Measurements of mass, xsec, helicity - Bottom - huge cross section - establish existence of oscillations in Bs system - measure properties of heaviest meson (Bc) and compare with lattice QCD - search for rare decays as indicator of new physics - QCD - measure jets at highest energy search for proton sub-structure - understand soft physics / mini-jets as precursor to LHC - hard diffractive processes e.g. diffractive W production; - Exotics - Usual suspects : Higgs, SUSY, extra-dimensions, monopoles, etc, etc

Doing Physics at a hadron collider key concepts: - do not measure proton remnant so not possible to add constraints in longitudinal direction. Only constraints are conservation of transverse momentum - e.g in W events we measure ''missing E T '' and a transverse mass. - jet backgrounds are huge & present in every non-jet analysis e.g. rarely a jet may contain only a p 0 and a p + very close together CDF II Preminary CDF II Preminary

- To tag/identify b quarks vital for top/new physics - need to measure a displaced secondary vertex. - d 0 is called the ''impact parameter'' - L XY is a pseudo-decay distance (related to lifetime of particle)

Silicon Vertex B-tagging efficiency (top) Improving b-tagging efficiency and knowing its efficiency is a key challenge at the Tevatron And it will be at the LHC h bb

Identification of taus: - popular decay product in many SUSY models (enhanced coupling) and also owing to its high mass has a non negligible higgs coupling. PRONG TERMINOLOGY - 65% of taus decay hadronically of this 65% : ~70% decays to one particle/ prong and 30% to three ''prong' : draw Feynman diagrams - why only odd # prongs..

Hadron Identification - vital for B physics : knowing difference between pion, kaon & proton - use TOF or Cerenkov counter or de/dx

Bring these together discover a new particle

Why is top interesting - it is by far the heaviest fundamental particle known (175 GeV) - it's mass is at the same scale as W,Z it may offer insights into the nature of electroweak symmetry breaking - its decay is so quick - that it's the only quark that doesn't hadronise - we can thus study its QCD radiation without hadronisation complications e.g. there are effects due to the fact that its massive means that the usual co-linear gluon radiation does not happen.. Need precise W and Top Masses - it has the largest contribution to the radiative corrections to the W/Higgs mass

Top events all-jets mode is difficult since backgrounds are large

You always do better than you expect (eventually.) LHC New result - Neural Net to remove background - Use matrix element to maximise information - Constrain Jet energy scale using known W mass. Errors: energy scale, PDFs, background, QCD

Single Top Production (via weak interaction) Why search for single top? Probe V tb directly 0.88 +/- 0.11 pb 1.98 +/- 0.25 pb < 0.1 pb New physics! s-channel Sensitive to resonances Z t-channel Sensitive to FCNCs Similar topology to Higgs Signature (WH Wbb)

Search for Single Top Topology: Somewhere between W+jets and top pair Vtb = 0.91 ± 0.11 (exp.) ± 0.07 (theory)

W, Z + Photon u- or t-channel s-channel final-state radiation

WW, WZ, ZZ Production WW (SM 12.5 ± 0.8 pb vs 13.0 +- 3.0 pb measured) Trilinear Gauge Coupling - hard to beat LEP (40k WW) Tevatron can produce higher mass than LEP. Important backgrounds to Higgs search (H -> WW)! - WZ established at > 5-sigma - ZZ established at ~ 5-sigma

B Physics Tevatron is the only place to produce heavier B mesons : Bs, Bc - - Why is this interesting! - it is calculable - fundamental QM in mixing phenomena : lifetime & mass differences

One of the few vindications of Lattice QCD

B s, B d, D 0 µ + µ - SM expectations: Br(B s µµ) ~ 3.8 x 10-9 Br(D 0 µµ) ~ 10-13 SUSY: Br(B s µµ) ~ tan 6 β Can be enhanced by 10-1000. e.g. tanβ ~ 40 for Br ~ 10-7 95% CL µ + µ - Br limits: B s : 2 x 10-7 (unique to Tevatron) B d : 4 x 10-8 D 0 : 2.5 x 10-6 Excludes SO 10 space Large parts of R-parity violating SUSY. Smaller exclusion in msugra MSSM

Higgs Search Direct Search Limit : mh > 114 GeV from LEP2.

Higgs Search Indirect Limit (95% CL) : mh < 154 GeV 95% CL

Higgs Indirect Limit If CDF achieves its aim of 30 MeV then it only takes < 1σ Mw and we exclude the SM Higgs to be below the LEP exclusion at 95% CL Mw (TEV) = 80445 ± 25 M H = 75 ± 20 M H = 83 ± 30 (1 sigma - now)

Higgs Search

Higgs Search Low Mass (115 GeV) Tricky : since requires : - Sacrifical Offering to Likelihood / NN God - Best possible b-tagging efficiency - Understanding of SM backgrounds - Understanding of QCD background - Optimum mass/jet energy resolution High Mass (165 GeV)

Higgs Search σ(mssm/sm) = 1-100 depending on SUSY parameters; Tevatron sensitive to large tanβ

Higgs Search Bingo

Higgs Search @ FNAL

Higgs Search @ FNAL

Typical SUSY Mass spectrum MSSM Higgs Search

MSSM Higgs Search Beware statistical fluctuations - one year ago SUSY had been discovered at 160 GeV but now it s gone. 8 fb -1 At high tanβ: enhanced x-sections heavy flavor (b, τ) preferred

With 10fb -1 66% chance Tevatron will exclude Higgs in entire predicted region Will this happen before the LHC has enough data???

Tevatron performance to date

10 fb -1 is very likely before mid 2011

More on QCD from Robert Thorne Lecture More on LHC physics & Higgs from Antonella De Santo Lecture