A Crash Course in Topological Groups

Similar documents
int cl int cl A = int cl A.

12. Hilbert s fifth problem for compact groups: Von Neumann s theorem

Diagonalize This. Iian Smythe. Department of Mathematics Cornell University. Olivetti Club November 26, 2013

VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES

GLOBALIZING LOCALLY COMPACT LOCAL GROUPS

Definably amenable groups in NIP

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

Chapter 3: Baire category and open mapping theorems

ne varieties (continued)

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Notes 2 for MAT4270 Connected components and universal covers π 0 and π 1.

INVERSE LIMITS AND PROFINITE GROUPS

Locally definable groups and lattices

BASIC GROUP THEORY : G G G,

LECTURE 3 Functional spaces on manifolds

4 Countability axioms

On the absolute continuity of Gaussian measures on locally compact groups

THE EULER CHARACTERISTIC OF A LIE GROUP

Locally compact groups

Tame definable topological dynamics

Nonstandard methods in Lie theory

ON THE UNIQUENESS OF POLISH GROUP TOPOLOGIES. by Bojana Pejić MA, University of Pittsburgh, 2006 MMath, University of Oxford, 2002

CW-complexes. Stephen A. Mitchell. November 1997

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold.

Geometry 2: Manifolds and sheaves

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Margulis Superrigidity I & II

10 Typical compact sets

MTG 5316/4302 FALL 2018 REVIEW FINAL

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

Introduction to Dynamical Systems

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

The projectivity of C -algebras and the topology of their spectra

Measures and Measure Spaces

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES

CHODOUNSKY, DAVID, M.A. Relative Topological Properties. (2006) Directed by Dr. Jerry Vaughan. 48pp.

Topological properties

Chapter 2 Metric Spaces

A universal Polish G-space

Math General Topology Fall 2012 Homework 8 Solutions

TOPOLOGICAL GROUPS MATH 519

Simple Abelian Topological Groups. Luke Dominic Bush Hipwood. Mathematics Institute

ON THE EXISTENCE AND UNIQUENESS OF INVARIANT MEASURES ON LOCALLY COMPACT GROUPS. f(x) dx = f(y + a) dy.

Etale cohomology of fields by Johan M. Commelin, December 5, 2013

Some algebraic properties of. compact topological groups

MATRIX LIE GROUPS AND LIE GROUPS

The weak topology of locally convex spaces and the weak-* topology of their duals

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

GALOIS EXTENSIONS ZIJIAN YAO

An introduction to totally disconnected locally compact groups. Phillip R. Wesolek

CLASSIFYING MATCHBOX MANIFOLDS

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Borel complexity and automorphisms of C*-algebras

1 MONOTONE COMPLETE C*-ALGEBRAS AND GENERIC DYNAMICS

Classification and Measure for Algebraic Fields

TOPOLOGY TAKE-HOME CLAY SHONKWILER

Cantor Groups, Haar Measure and Lebesgue Measure on [0, 1]

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

10. The subgroup subalgebra correspondence. Homogeneous spaces.

1 Smooth manifolds and Lie groups

G δ ideals of compact sets

1. Classifying Spaces. Classifying Spaces

Solutions to Problem Set 1

4 Choice axioms and Baire category theorem

Two-sided multiplications and phantom line bundles

Bredon, Introduction to compact transformation groups, Academic Press

Math 426 Homework 4 Due 3 November 2017

E.7 Alaoglu s Theorem

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Real Analysis Notes. Thomas Goller

Math 249B. Nilpotence of connected solvable groups

Homogeneous spaces and Wadge theory

The Lorentz group provides another interesting example. Moreover, the Lorentz group SO(3, 1) shows up in an interesting way in computer vision.

ALGEBRAIC GROUPS J. WARNER

Fuchsian groups. 2.1 Definitions and discreteness

Notes for Functional Analysis

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

Topologies induced by group actions

COARSE STRUCTURES ON GROUPS. 1. Introduction

Reflexivity of Locally Convex Spaces over Local Fields

Problem Set 2: Solutions Math 201A: Fall 2016

7 About Egorov s and Lusin s theorems

SOLUTIONS TO THE FINAL EXAM

Notes 10: Consequences of Eli Cartan s theorem.

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS

1 Hermitian symmetric spaces: examples and basic properties

Pseudogroups of foliations Algebraic invariants of solenoids The discriminant group Stable actions Wild actions Future work and references

Lebesgue Measure on R n

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

Math 676. A compactness theorem for the idele group. and by the product formula it lies in the kernel (A K )1 of the continuous idelic norm

Filters in Analysis and Topology

Master Algèbre géométrie et théorie des nombres Final exam of differential geometry Lecture notes allowed

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

Chapter 2 Linear Transformations

Factorization of unitary representations of adele groups Paul Garrett garrett/

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

MAA6617 COURSE NOTES SPRING 2014

Transcription:

A Crash Course in Topological Groups Iian B. Smythe Department of Mathematics Cornell University Olivetti Club November 8, 2011 Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 1 / 28

Outline 1 Examples and definitions 2 Basic topological properties 3 Basic algebraic properties 4 Further Results Harmonic analysis on locally compact groups Descriptive set theory on Polish groups Hilbert s Fifth Problem Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 2 / 28

Examples and definitions Motivating examples A Lie group G is a group, which is also a smooth manifold, such that the group operations (multiplication and inversion) are smooth. In particular, G is a topological space such that the group operations are continuous. A Banach space X is a complete normed vector space. In particular, X is an abelian group and a topological space such that the group operations (addition and subtraction) are continuous. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 3 / 28

Examples and definitions Main Definition Definition A topological group is a group G, which is also a topological space, such that the group operations, : G G G, where G G has the product topology, and 1 : G G, are continuous. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 4 / 28

Examples and definitions Examples Lie groups: GL n (R), SL n (R), O(n), U(n), PSL 2 (C)... The underlying additive group of a Banach space (or more generally, topological vector space): R n, L p (X, µ), C 0, C c (X),... Groups of homeomorphisms of a nice topological space, or diffeomorphisms of a smooth manifold, can be made into topological groups. Any group taken with the discrete topology. Any (arbitrary) direct product of these with the product topology. Note that, for example, (Z/2Z) ω is not discrete with the product topology (it is homeomorphic to the Cantor set). Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 5 / 28

Basic topological properties Homogeneity A topological group acts on itself by certain canonical self-homeomorphisms: inversion, left (or right) translation by a fixed element, and conjugation by a fixed element. Translation by elements gives a topological group a homogeneous structure, i.e. we can move from a point h in the group to any other point k by the homeomorphism g kh 1 g. This allows us to infer certain topological information about the whole group from information at any particular point (such as the identity). Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 6 / 28

Basic topological properties Homogeneity (cont d) Proposition Let G and H be topological groups. Denote by N G the set of all open neighbourhoods of e in G. Then, {gu : g G, U N G } is exactly the topology on G. A group homomorphism ϕ : G H is continuous on G if and only if ϕ is continuous at one point of G. Proof. If V is any nonempty open set in G, it contains some g G. g 1 V N G and V = g(g 1 V ). This proves the first claim. We may assume that ϕ is continuous at e G. Let g G, and W H an open set containing ϕ(g). By continuity at e G, there is U N G with ϕ(u) ϕ(g) 1 W. So, ϕ(gu) = ϕ(g)ϕ(u) W. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 7 / 28

Basic topological properties Homogeneity (cont d) Similarly, we can extend many local properties from any particular point in a topological group to the whole group. Proposition Let G be a topological group. G is locally compact if and only if there is one point of G with a local basis of compact sets. G is locally (path) connected if and only if there is one point of G with a local basis of open, (path) connected sets. G is locally euclidean if and only if there is one point of G with a neighbourhood homeomorphic to an open subset of R n. G is discrete if and only if there is one point of G which is isolated. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 8 / 28

Basic topological properties Separation Properties Recall the following terminology: Definition Let X be a topological space. X is T 0 if for any pair of distinct points x, y X, there exists an open set containing one but not the other. X is T 1 if for any pair of distinct points x, y X, there are open sets containing each point, and not containing the other. X is T 2 (Hausdorff) if for any pair of distinct points x, y X, there are disjoint open sets containing each. X is T 3 if X is T 1 and regular: i.e. if U X is an open set containing x, then there is an open set V with x V V U. In general, T 3 = T 2 = T 1 = T 0, and these implications are strict. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 9 / 28

Basic topological properties Separation Properties (cont d) The distinctions between the aforementioned separation properties dissolve in a topological group. Lemma Let G be a topological group. For every U N G, we have U U 1 U. Proof. Let g U. Since Ug is an open neighbourhood of g, Ug U. That is, there are u 1, u 2 U with u 1 g = u 2, so g = u 1 1 u 2 U 1 U. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 10 / 28

Basic topological properties Separation Properties (cont d) Proposition Every topological group G is regular, and if G is T 0, then G is T 3. Proof. Let U N G. By continuity of multiplication and inversion, one can show that there is V N G such that VV U and V 1 = V. By the lemma, V V 1 V = VV U. Hence, G is regular at e, which suffices by homogeneity. Suppose G is T 0, and let g, h G be distinct. We may assume that there is U N G such that h / Ug. So, hg 1 / U, and thus, g / U 1 h. That is, G is T 1 and regular, hence T 3. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 11 / 28

Basic topological properties Separation Properties (cont d) In fact, more is true (with significantly more work): Theorem Every topological group G is completely regular, i.e. for any closed F G with g / F, there is a continuous function f : G [0, 1] such that f (g) = 0 and f (F) = {1}. If G is T 0, then G is T 3 1 (or Tychonoff). 2 Further, a result of Birkhoff and Kakutani shows that topological groups satisfy the ultimate separation property, metrizability, under very weak assumptions: Theorem A topological group G is metrizable if and only if G is T 0 and first countable (i.e. every point has a countable local basis). Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 12 / 28

Basic algebraic properties Algebra with topological groups The class of all topological groups forms a category where the morphisms are continuous group homomorphisms. Isomorphisms in this setting are continuous group isomorphisms with continuous inverses, and embeddings are continuous group embeddings which are open onto their images. Some of the classical constructions from group theory can be carried over to topological groups in a natural way. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 13 / 28

Basic algebraic properties Algebra with topological groups (cont d) Definition Let G be a topological group, and N a normal subgroup. The quotient topological group of G by N is the group G/N together with the topology formed by declaring U G/N open if and only if π 1 (U) is open in G, where π : G G/N is the canonical projection. π : G G/N is a quotient map in the topological sense, i.e. it is continuous, open and surjective. However, care must be taken when forming quotients in light of the following (easy) fact: Proposition G/N is Hausdorff if and only if N is a closed normal subgroup of G. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 14 / 28

Basic algebraic properties Algebra with topological groups (cont d) The familiar UMP for quotients holds in this setting: Proposition Let G and H be topological groups, ϕ : G H a continuous group homomorphism, and N a normal subgroup of G. If N ker(ϕ), then there exists a unique continuous group homomorphism ϕ : G/N H such that ϕ = ϕπ. That is, G ϕ H π G/N ϕ Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 15 / 28

Basic algebraic properties Algebra with topological groups (cont d) What about the isomorphism theorems? Proposition The First Isomorphism Theorem fails for topological groups. Proof. Consider the additive group R with its usual topology, and denote by R d the additive group of reals with the discrete topology. The identity map id : R d R is a continuous group homomorphism with trivial kernel, but R d / ker(id) = R d R as topological groups. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 16 / 28

Basic algebraic properties Algebra with topological groups (cont d) Proposition The Second Isomorphism Theorem fails for topological groups. Proof. Consider the additive group R with its usual topology, and the closed (normal) subgroups N = Z and H = {αn : n Z}, where α is irrational. Clearly H N = {0}, and so H = H/(H N) as topological groups; in particular, both are discrete. However, H + N is a dense subset of R, so (H + N)/N is a dense subset of the compact group R/Z = U(1). In particular, (H + N)/N is not discrete, and (H + N)/N H/(H N) as topological groups. Strangely enough, the Third Isomorphism Theorem holds (exercise). Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 17 / 28

Basic algebraic properties The Connected Component of the Identity An important, and elementary, example of the interplay between algebra and topology within a topological group is the connected component of the identity. Recall from topology: Definition Let X be a topological space, and x X. The connected component of x in X is the largest connected subset of X containing x. Proposition Let G be a topological group, and denote by G 0 the connected component of e in G. Then, G 0 is a closed, normal subgroup of G. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 18 / 28

Basic algebraic properties The Connected Component of the Identity (cont d) Proof. That G 0 is closed is topology (connected components are closed). We know that e G 0 by definition. Let g, h G 0. Multiplication on the right is a homeomorphism, so G 0 h 1 is connected, and it contains e since h G 0. Thus, G 0 h 1 G 0, and in particular gh 1 G 0, showing that G 0 is a subgroup. Conjugation by any fixed element of G is a homeomorphism which sends e e, so G 0 is normal in G (in fact, G 0 is fully invariant under continuous endomorphisms of G). Corollary Let G be a topological group, then G/G 0 is the (totally disconnected) group of connected components of G. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 19 / 28

Further Results Further results We will now survey some deeper results on certain classes of topological groups relevant to analysts, set theorists, and topologists, respectively. For the remainder of this talk, all topological groups are assumed to be T 0, and in particular Hausdorff. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 20 / 28

Further Results Harmonic analysis on locally compact groups Harmonic analysis on locally compact groups Definition A topological group G is locally compact if the underlying space is locally compact. Equivalently, e has a compact neighbourhood. The following theorem, due to Haar (1933) and Weil (1940), allows us to do analysis in a meaningful way on such groups: Theorem Every locally compact group G admits a (left) translation invariant Borel measure, called the (left) Haar measure µ on G. That is, µ is a measure on the Borel subsets of G such that µ(gb) = µ(b), for all g G, and Borel sets B G. Moreover, µ(k ) is finite for every compact K G, and µ is unique up to multiplication by a positive constant. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 21 / 28

Further Results Harmonic analysis on locally compact groups Harmonic analysis on locally compact groups (cont d) The proof establishing the existence of the Haar measure is nonconstructive, but many examples can be given explicitly. Lebesgue measure on R n. det(x) n dx on GL n (R), where dx is Lebesgue measure on R n n. Counting measure on any discrete group. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 22 / 28

Further Results Descriptive set theory on Polish groups Descriptive Set Theory and Polish Groups The following important class of spaces is a core object of study in descriptive set theory: Definition A topological space X is said to be Polish if it is separable and completely metrizable. Naturally, Definition A topological group G is said to be Polish if its underlying space is Polish. Examples include Lie groups, separable Banach spaces, countable discrete groups, and any countable products of these. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 23 / 28

Further Results Descriptive set theory on Polish groups Descriptive Set Theory and Polish Groups (cont d) Definition Let X be a topological space. A X is nowhere dense, if the interior of the closure of A is empty. M X is meager if its contained in a countable union of nowhere dense sets B X has the Baire property if there is an open set U X such that B U is meager. Definition Let X and Y be topological spaces. A function f : X Y is Baire measurable if inverse images of open sets have the Baire property. It can be shown that every Borel subset of a Polish space has the Baire property. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 24 / 28

Further Results Descriptive set theory on Polish groups Descriptive Set Theory and Polish Groups (cont d) The following theorem of Pettis (1950) shows that, in some sense, every homomorphism that we can describe between Polish groups is continuous. Theorem Let G and H be Polish groups. If ϕ : G H is a Baire measurable homomorphism, then ϕ is continuous. Shelah (1984) showed that it is consistent with ZF that every subset of every Polish space has the Baire property. Hence, it is consistent with ZF that every homomorphism between Polish groups is continuous, and constructing non-continuous homomorphisms between such groups requires use of the Axiom of Choice. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 25 / 28

Hilbert s Fifth Problem Further Results Hilbert s Fifth Problem In 1900, David Hilbert published a list of what he considered to be the 23 most important problems in mathematics. The fifth problem on this list was stated as follows: How far Lie s concept of continuous groups of transformations is approachable in our investigations without the assumption of the differentiability of the functions. This problem is notably vague and has been understood in many different ways. The interpretation which received the most attention was as follows: Is every locally euclidean topological group isomorphic to a Lie group? Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 26 / 28

Further Results Hilbert s Fifth Problem Hilbert s Fifth Problem (cont d) von Neumann (1933) established the positive answer to the previous question in the case of compact groups, and work of Gleason (1952) and Montgomery-Zippin (1952) established the general answer: Theorem A topological group G is locally euclidean if and only if it is isomorphic to a Lie group. Moreover, a locally euclidean group can be (uniquely) endowed with the structure of a real-analytic manifold. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 27 / 28

Further Results Hilbert s Fifth Problem Hilbert s Fifth Problem (cont d) Due to the vagueness of Hilbert s original question, the story of this problem is far from over. The following result, due to Goldbring (2010), concerns spaces having group operations locally around an identity: Theorem A local group G is locally euclidean if and only if a restriction of G to an open neighbourhood of the identity is isomorphic to a local Lie group. Alternatively, one can also interpret Hilbert s problem in the form of the Hilbert-Smith Conjecture: Conjecture If G is a locally compact group which acts continuously and effectively on a connected manifold M, then G is isomorphic to a Lie group. This question remains open to this day. Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 28 / 28