Chirality, Carbonyls and Carboxylic Acids

Similar documents
Module 4 revision guide: Compounds with C=O group

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

Carbonyls. Aldehydes and Ketones N Goalby chemrevise.org. chemrevise.org

H H O C C O H Carboxylic Acids and Derivatives C CH 2 C. N Goalby chemrevise.org. Strength of carboxylic acids.

(a) Which test always gives a positive result with carbonyl compounds? (b) Which test would give a positive result with ethane-1,2-diol?

Chemical tests to distinguish carbonyl compounds

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question

e.g. propan-2-ol ethane-1,1-diol propane-1,2,3-triol H H

4. Carbonyl chemistry

Page 2. Q1.Which one of the following is not a correct general formula for the non-cyclic compounds listed? alcohols C nh 2n+2O. aldehydes C nh 2n+1O

CARBONYL COMPOUNDS - Aldehydes and Ketones

A drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme.

3.7 Organic naming and Isomerism continued

4.4, 4.5 HW MS 1. (a) nucleophilic addition 1 M2. (b) (i) 2-hydroxybutanenitrile 1 (ii) 2 H 3C O H

4.2.1 Alcohols. N Goalby chemrevise.org 1 C O H H C. Reactions of alcohols. General formula alcohols C n H 2n+1 OH

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

3.5 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

Name this organic reagent and state the conditions for the preparation. Reagent... Conditions (3)

PMT. This question is about the reaction sequence shown below

17. Organic Chemistry II

(a) (i) Give the equation representing the overall reaction. (1) Give the equation representing the formation of the electrophile.

Organic Chemistry Review: Topic 10 & Topic 20

Empirical formula: shows the simplest whole number ratio of atoms of each element in the compound

23 Synthetic Routes. Chirality in pharmaceutical synthesis. N Goalby chemrevise.org 1

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid

It is possible for organic molecules with the same molecular formula to have different structures

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

It belongs to a homologous series with general formula C n H 2n+1 O

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

CARBONYL COMPOUNDS. Section A. Q1 Acrylic acid is produced from propene, a gaseous product of oil refineries.

CHEMISTRY FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Organic: module 4 revision guide. Basic definitions to know. Drawing Displayed formulae

Chapter 16. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) C 6 H 12 O 6 2C 2 H 5 OH + 2CO 2 (ii) fermentation

Acyl chloride/ acid anhydride

6.5 Alcohols H H H H. N Goalby chemrevise.org 1. Bond angles in Alcohols. Different types of alcohols H 2 C CH 2 CH 2

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

15.1: Hydrocarbon Reactions

Organic Chemistry. Unit 10

Name Date Class. aryl halides substitution reaction

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar

Isomerism and Carbonyl Compounds

Definition: A hydrocarbon is an organic compound which consists entirely of hydrogen and carbon.

Chemistry Assessment Unit A2 1

Worksheet Chapter 10: Organic chemistry glossary

Level 3 Chemistry Demonstrate understanding of the properties of organic compounds

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence

3.8 Aldehydes and ketones

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon.

IB Topics 10, 20 & 21 MC Practice

Haloalkanes. Isomers: Draw and name the possible isomers for C 5 H 11 Br

91391 Demonstrate understanding of the properties of organic compounds

CHAPTER 19: Carboxylic Acids and Derivatives I

Alkanes and Alkenes. The Alkanes

FACTFILE: GCE CHEMISTY

Carboxylic acid derivatives

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

ADVANCED HIGHER 1 Organic

Carbon and its Compounds

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry


Q1. The following pairs of compounds can be distinguished by simple test tube reactions.

ADVANCED CHEMISTRY 2

10 Halogenoalkanes. Classifying Halogenoalkanes. Reactions of Halogenoalkanes. Nucleophilic substitution reactions. N Goalby chemrevise.

AS Organic Chemistry Revision. Part 1

Optical Isomerism. Types of isomerism. chemrevise.org 20/08/2013. N Goalby Chemrevise.org. Isomerism. Structural isomerism.

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

HYDROXY COMPOUNDS. Section A. Q1 In the reaction pathway below, an alkane is converted into a carboxylic acid through several stages.

1. Study the reaction scheme below, then answer the questions that follow.

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

Empirical formula: shows the simplest whole number ratio of atoms of each element in the compound

Chemistry *P45044A0128* Pearson Edexcel P45044A

10.2 ALCOHOLS EXTRA QUESTIONS. Reaction excess conc, H SO 180 C

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CARBONYL COMPOUNDS


PhysicsAndMathsTutor.com

ORGANIC MOLECULES (LIVE) 10 APRIL 2015 Section A: Summary Notes and Examples Naming and Functional Groups

Week 6 notes CHEM

2.26 Intermolecular Forces

GRADE 11F: Chemistry 6. UNIT 11FC.6 10 hours. Some functional groups. Resources. About this unit. Previous learning. Expectations

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

Section A. 1 at a given temperature. The rate was found to be first order with respect to the ester and first order with respect to hydroxide ions.

Module 4: Further Organic, Physical and Inorganic Chemistry

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 14 SECOND YEAR PRACTICAL. Name: Group: Date:

Unit 12 Organic Chemistry

Chem!stry. Organic Chemistry Multiple Choice Questions

*AC212* *28AC21201* Chemistry. Assessment Unit A2 1 [AC212] FRIDAY 27 MAY, MORNING

Q.1 Draw structures for all amines of molecular formula C 4 H 11 N. Classify them as primary, secondary or tertiary amines.

Benzedrine is a pharmaceutical which stimulates the central nervous system in a similar manner to adrenalin. Benzedrine Adrenalin

Correct Answer D Titration with standard acid solution 1. A Collecting and measuring the volume of gas 1

Mechanisms. . CCl2 F + Cl.

MODULE-16 HYDROCARBONS. Hydrocarbons can be classified according to the types of bonds between the carbon atoms:

3) Between aldehyde and ketones which one is confirmed using Tollen s reagent.

TWO correct Names and / or structure. Definition correct OR Isomer correct

Chapter 11. Introduction to Organic Chemistry

Organic Chemistry HL IB CHEMISTRY HL

22 & 23 Organic Chemistry

Transcription:

hirality, arbonyls and arboxylic Acids Questions on this unit may include material from UNIT 2 see syllabus Isomerism Structural isomerism. Structural isomerism was dealt with in UNIT 2. All isomers are compounds with the same molecular formula. e.g. 4 10 or 2 6. Structural isomers have atoms arranged in different orders. They have similar bpt's. e.g. 3 2 2 3 (butane) and 3 ( 3 ) 3 (2-methylpropane) 3 2 (ethanol) and 3 3 (methoxymethane) Stereoisomerism. Stereoisomers have the same molecular formula and the same structural formula. The same atoms are arranged in the same order but with different orientations in space. Geometric, cis-trans, or E-Z isomerism - also dealt with in UNIT 2 - is one form of stereoisomerism. Another form is optical isomerism. hirality hirality leads to optical isomerism. ptical isomerism occurs when two compounds have the same molecular formula, but are not superimposable on each other. If a compound contains a carbon atom bonded to four different groups or atoms, it can exist in two forms which are mirror images of each other. Example 3 () 2 3 () 2 3 2 2 3 The two isomers affect polarised light by rotating the plane of polarisation of plane polarised monochromatic light in opposite directions; this is where the term "optical" comes from. ptical isomers differ only in the extent to which they rotate the plane of polarised monochromatic light. ptical isomers exist in two forms called enantiomers. The dextrorotatory (+) form rotates light to the right (clockwise) but the laevorotatory (-) rotates light to the left. A sample of an optically active substance may contain both optically active isomers. An equimolar mixture does not rotate light at all as equal and opposite rotations cancel. This optically inactive mixture is called the racemic mixture or racemate. The carbon atom with four different groups around it (the chiral centre) is said to be assymetric. The two mirror image molecules are said to be chiral. - 1

arbonyl ompounds Introduction arbonyl compounds contain the = group. When this group occurs at the end of a carbon chain, the compound is an aldehyde (R), the name ending in al. When group occurs within the carbon chain, the compound is a ketone (RR 1 ), the name ending in one. Pentanal 2-Methylbutanal Pentan-3-one 3-Methylbutan-2-one The carbonyl group in polar because of the electronegative oxygen atom. The geometry around the carbonyl group is planar, with bond angles of about 120 o. Physical Properties arbonyl compounds are much more volatile than the corresponding alcohol because, unlike alcohols, they do not have any hydrogen bonding. They are less volatile than an alkane of similar formula mass because of the polarity of the molecules. ompound Formula Formula mass Boiling point / o Propane 3 8 44-42 Ethanal 3 44 20 Ethanol 2 5 46 78 Although carbonyl compounds do not have a hydrogen which is directly connected to the oxygen, and therefore they have no hydrogen bonding, when placed in water the oxygen in the carbonyl is able to form a hydrogen bond with the hydrogen in the water molecules. This makes the carbonyl compounds, especially those with short carbon chains, very soluble in Water. hemical Properties Aldehydes and ketones are both attacked by nucleophiles, and can both be reduced to alcohols. owever, only aldehydes can be readily oxidised, and this is the basis for tests to distinguish between them. Aldehydes and ketones are obtained by oxidation of primary and secondary alcohols, respectively. - 2

The test for a carbonyl group. All carbonyl compounds react with 2,4-dinitrophenylhydrazine (Brady's reagent). When a solution of 2,4-dinitrophenylhydrazine is added to a carbonyl, a reaction takes place at room temperature producing orange crystals. This is used as the test for the presence of the carbonyl group. Ethanal and 2,4-dinitrophenylhydrazine N2 N2 3 2N N N2 3 N N N2 Propanone and 2,4-dinitrophenylhydrazine + 2 N2 N2 3 2N N N2 3 N N N2 3 3 + 2 Propanal and 2,4-dinitrophenylhydrazine N2 N2 25 2N N N2 25 N N N2 + 2 xidation Aldehydes are reducing compounds and can react with some oxidising agents. Since ketone cannot be oxidised, they do not take part in oxidation reactions. This is used as a test for distinguishing between aldehydes and ketones. Aldehydes will react when heated with ammoniacal silver nitrate solution (Tollen's reagent). This is a reaction in which the aldehyde is oxidised, and the silver ions are reduced to silver. When carried out in a clean test tube it forms a silver mirror. R(aq) + Ag(N 3 ) 2 + (aq) + 2 R(aq) + Ag(s) + 2N 4 + (aq) Silver mirror - 3

Aldehydes will also react with other oxidizing agents. These tests are summarized below; xidising agent onditions Result for aldehyde Tollen s reagent eat aldehyde with ammoniacal Silver mirror forms silver nitrate Fehling s solution eat aldehyde with Fehling s solution Turns from a blue solution to form a red precipitate Dichromate solution eat aldehyde with a mixture of potassium dichromate solution and Turns from an orange solution to a green solution sulphuric acid Aldehydes with Fehling s solution (oxidation) Aldehydes (but not ketones) reduce u 2+ to u + giving a red brown precipitate of copper (I) oxide in this test. Drops of the carbonyl compound are added to equal volumes of Fehling's solutions A and B. The mixture is warmed in a water bath. (oxidation) R(aq) + 2u 2+ (aq) + 2 2 (l) R(aq) + 4 + (aq) +u 2 (s) Reduction arbonyl compounds are formed by oxidation of alcohols. The reverse of this process, reduction, converts carbonyls back into alcohols[*]. This reduction can be carried out by reducing agents such as lithium tetrahydridoaluminate(iii) (lithium aluminium hydride} with dry ether as a solvent or sodium tetrahydridoborate(iii) (sodium borohydride} in water. Note - In equations showing reduction the reducing agent is written as []. e.g. The reduction of propanal to propan-1-ol. 3 2 + 2[] 3 2 2 The reduction of propanone to propan-2-ol. 3 3 + 2[] 3 () 3 Nucleophilic addition arbonyl compounds with the = group, can undergo addition reactions. In this case the attack is by a nucleophile being drawn to the molecule by the partial positive charge on the carbon. ydrogen cyanide will add on across the = bond. To carry out this reaction, a mixture of potassium cyanide and ethanoic acid is used to avoid use of the very poisonous hydrogen cyanide. These reactions take place at room temperature with the mixture buffered at p 8. Ethanal and N 3 + KN, p 8 (N) 3 N - 4

Propanone and N + KN, p 8 3 (N) 3 3 N 3 Reaction mechanism In this reaction the initial attack is by the cyanide ion. The cyanide ion is a nucleophile which is attracted to the partial positive charge on the carbonyl carbon created by the electronegative oxygen. The reaction has to be carried out in slightly basic conditions, so the mixture is buffered at p8. This is to allow the formation of the cyanide ion from the hydrogen cyanide. N + + N - If the p is lower than 8, the dissociation of the N lies too far to the left and so the concentration of N - is too low for the first step to take place. + - N. 3 δ+ δ- N 3 3 Ō. N If the p is higher than 8, the concentration of + ions is too low for the second stage of the mechanism to take place. Reaction of iodine in alkali Iodine in alkali reacts with a specific group, 3 R to produce a yellow precipitate of I 3. R 2 is also formed in this reaction. This is used as a test for the presence of the 3 R group. (Ethanal, ethanol or any methyl ketone can react in this reaction). The iodine present in the testing reagent can oxidise alcohols, and so 3 R will initially form 3 R this will then react to give the yellow crystals. The old name for these crystals of triiodomethane is iodoform, and this reaction is often referred to as the iodoform reaction. The test is carried out by adding aqueous sodium hydroxide to iodine solution until the mixture just turns colourless. The organic material is then added, and the mixture is warmed. 3 R and 3 R give a positive iodoform reaction (where R can be a carbon chain or hydrogen). Which of the following will give a positive iodoform reaction? 3 2 No 3 2 3 Yes 3 3 Yes No - 5

arboxylic acids Introduction arboxylic acids are compounds containing the carboxyl group, 2, which consists of the = group and the group on the same carbon. The name carboxyl comes from a combination of the names of these functional groups; arbonyl + hydroxyl = arboxyl Propanoic acid Butanoic acid 2-Methylbutanoic acid 3-Methylbutanoic acid Physical Properties The arboxyl carbon contains two oxygen atoms both of which are electronegative leaving the carbon with a partial positive charge. This allows carboxylic acids to form stronger hydrogen than alcohols, and they therefore have higher boiling pints than alcohols of similar formula mass. ompound Formula RFM Boiling point / o Propanol 3 2 2 60 97 Ethanoic acid 3 2 60 118 The structure of the carboxyl group allows carboxylic acid to form dimers R R Ethanoic acid has a melting temperature of 17 o, so if the temperature falls below this it freezes, and the similarity of frozen ethanoic acid to ice has given the pure acid the common name of glacial ethanoic acid. The ability of carboxylic acids to form hydrogen bonds means that the lower members of the homologous series (those with up to 4 carbon atoms) are miscible in all proportions with water. The longer the carbon chain, the less soluble in water the carboxylic acid becomes. - 6

Preparation of carboxylic acids arboxylic acids can be prepared by xidation of primary alcohols xidation of aldehydes ydrolysis of nitriles Preparation from primary alcohols When a primary alcohol is heated under reflux with potassium dichromate and sulphuric acid a carboxylic acid is produced. R 2 + 2[] R 2 + 2 Preparation from aldehydes When an aldehyde is heated under reflux with potassium dichromate and sulphuric acid a carboxylic acid is produced. R + [] R 2 Preparation from nitriles arboxylic acids can be formed by hydrolysis of nitrile (RN) compounds. The hydrolysis can be carried out by heating the nitrile with acid or alkali. ydrolysis using dilute hydrochloric acid. RN + 2 2 + l R 2 + N 4 l ydrolysis using aqueous sodium hydroxide produces the salt of the carboxylic acid. RN + 2 + Na R 2 Na + N 3 The acid can be obtained from the salt by adding a strong acid. R 2 Na + l R 2 + Nal hemical Properties Reduction arboxylic acids are formed by the oxidation of primary alcohols, and can be converted back to these compounds using lithium tetrahydridoaluminate(iii) (lithium aluminium hydride} as a reducing agent. The acid is treated with lithium aluminium hydride in ether, followed by the addition of water. e.g. Reduction of propanoic acid. 3 2 2 + 4[] 3 2 2 + 2 Reduction of methanoic acid. 2 + 4[] 3 + 2 Reaction with alcohols arboxylic acids react with alcohols in the presence of concentrated sulphuric acid to form water and an ester. The carboxylic acid is mixed with alcohol and concentrated sulphuric acid is added. The mixture is then warmed. R + R* RR* + 2 e.g. Propanoic acid + ethanol 3 2 2 + 3 2 3 2 2 3 + 2 Ethyl propanoate Esters are named from the alkyl group of the alcohol and the oate from the carboxylic acid. - 7

The esters formed contain the ester functional group or ester link. This has the structure shown below. R + R* RR* + 2 R R* Ester group Esters have characteristic odours, which makes them useful for flavouring. Pear drops and pineapple flavourings are derived from the appropriate ester. Esters are also useful as solvents. Reaction with phosphorus pentachloride The - group in the acid will react with halogenating reagents, such as phosphorus pentachloride in the same way as the group in alcohols. These reactions occur at room temperature. The organic product of these reactions are acyl chlorides (or acid chlorides). This functional group has the structure shown below. R l Acyl chloride group Ethanoic acid reacts with phosphorus pentachloride to produce ethanoyl chloride. 3 2 + Pl 5 3 l + l + Pl 3 Ethanoyl chloride Propanoic acid reacts with phosphorus pentachloride to produce propanoyl chloride. 3 2 2 + Pl 5 3 2 l + l + Pl 3 Propanoyl chloride Neutralisation reactions arboxylic acids react with alkalis, carbonates and hydrogencarbonates to form salts. Reaction with sodium hydroxide R 2 + Na R 2- Na + + 2 Reaction with sodium carbonate. 2R 2 + Na 2 3 2R 2- Na + + 2 + 2 Reaction with sodium hydrogencarbonate R 2 + Na 3 R 2- Na + + 2 + 2 Such reactions, using titration with a known concentration of alkali and appropriate indicator, can be used to determine the quantity of acid present. For example this technique can be used to find the quantity of citric acid in fruit. - 8

Derivatives of arboxylic acids rganic compounds made from carboxylic acids are called derivatives of carboxylic acids. This includes acyl chlorides and esters. Esters The ester functional group is R R* Esters can be hydrolysed by boiling with acid or alkali. When hydrolysed by acid, the alcohol and the carboxylic acid are reformed. This is a reversible reaction, so does not go to completion. R 1 R 2 + 2 R 1 2 + R 2 When hydrolysed by an alkali, the alcohol and the salt of the carboxylic acid are formed. Since the carboxylic acid is not formed, this reaction can go to completion. Such a reaction is called saponification. R 1 R 2 + Na R 1 2- Na + + R 2 e.g. Acid hydrolysis of 3 2 2 2 3 3 2 2 2 3 + 2 3 2 2 + 3 2 ydrolysis of 3 2 2 2 3 by sodium hydroxide solution 3 2 2 2 3 + Na 3 2 2- Na + + 3 2 Acid hydrolysis of ( 3 ) 3 3 ( 3 ) 3 3 + 2 3 2 + ( 3 ) 3 ydrolysis of ( 3 ) 3 3 by sodium hydroxide solution ( 3 ) 3 3 + Na 3 2- Na + + ( 3 ) 3 The reaction of natural esters with sodium hydroxide solution is used to make soap. An animal fat is an ester formed from propan-1,2,3-triol and carboxylic acids with long chains. 2 17 35 2 17 35 + 3K + 3 17 35 - K + 2 17 35 2 Animal fat glycerol stearate salt = SAP The products on saponification are propan-1,2,3-triol and the salt of the carboxylic acid. - 9

The structure of the salt of the carboxylic acid is shown below. + - Na The charges on the molecule give the useful properties of soap. The charged section is attracted to the polar water molecules is hydrophilic. The hydrocarbon section is repelled by the water molecules is hydrophobic. The soap molecule can be pictured as like a tadpole with hydrophilic head and hydrophobic tail. Water The hydrophilic head is attracted into the water and the hydrophobic tail is repelled by water so the molecules arrange themselves as shown here. This breaks down the surface tension of the water and allows it to wet a surface. Polyesters The reaction of an alcohol and a carboxylic acid to form an ester can be used to form polymers in which the monomers are joined by an ester link. Such a polymer is called a polyester. This is an example of a condensation polymer in which monomers join by ejecting a small molecule (water in the case of a polyester). n 2 2 + n 2-6 4-2 -(- 2 2 --- 6 4 ---)- n + n 2 ethane-1,2-diol benzene-1,4- Terylene dicarboxylic acid Transesterification The burning of diesel oil from petroleum is not an environmentally sustainable method of providing energy. An alternative is to use natural oils from plants that are renewable. Such oils will only partially combust in a normal diesel engine, and will therefore cause clogging of the engine. Engines can be modified to burn this type of fuel. An alternative is to convert the triglyceride in the fat or oil to a methyl ester. The methyl ester is more volatile and can be used in a normal diesel engine. The methyl ester can be formed in a process called transesterification. Most biodiesel is produced by base-catalysed transesterification 2 2 + 3 3 2 2 3 3 Bio Diesel - 10

Acyl chlorides The acyl chloride functional group is R l Acid chlorides are highly reactive compounds. They are readily hydrolysed at room temperature, and will fume in moist air due to this reaction. Important reactions of acyl chlorides are; ydrolysis (reaction with water) Reaction with alcohols Reaction with concentrated ammonia Reaction with amines ydrolysis In hydrolysis the acid chloride is converted to the carboxylic acid and l is produced. Reaction with water Rl + 2 R 2 + l Reaction with alcohols They react with alcohols at room temperature to produce the ester. Rl + R # RR # + l Reaction with concentrated ammonia They react with concentrated ammonia at room temperature to produce acid amides. Rl + N 3 RN 2 + l Reaction with amines They react with amines at room temperature to produce secondary substituted amides. An amine is a a carbon chain attached to the N 2 functional group. Rl + R # N 2 R-N-R # - 11