Introduction to PDEs and Numerical Methods Tutorial 11. 2D elliptic equations

Similar documents
Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers

Introduction to PDEs and Numerical Methods Tutorial 1: Overview of essential linear algebra and analysis

Introduction to PDEs and Numerical Methods Tutorial 4. Finite difference methods stability, concsistency, convergence

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems

Introduction to PDEs and Numerical Methods Lecture 1: Introduction

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Finite Difference Methods Assignments

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9)

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

The Laplace equation, cylindrically or spherically symmetric case

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Finite Difference Method

Math 4263 Homework Set 1

Mathematics Qualifying Exam Study Material

Lecture 42 Determining Internal Node Values

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Notes on Multigrid Methods

Finite Differences: Consistency, Stability and Convergence

Method of Separation of Variables

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Numerical Solutions to Partial Differential Equations

Introduction to numerical schemes

Chapter 4: Numerical Methods for Common Mathematical Problems

3 Parabolic Differential Equations

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

FDM for parabolic equations

MATH745 Fall MATH745 Fall

SOLUTION OF EQUATION AND EIGENVALUE PROBLEMS PART A( 2 MARKS)

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

Tutorial 2. Introduction to numerical schemes

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

Order of Accuracy. ũ h u Ch p, (1)

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

LECTURE 14 NUMERICAL INTEGRATION. Find

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation

Computation Fluid Dynamics

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t))

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Fourth Order RK-Method

Partial Differential Equations

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach

Module 4 Linear Boundary value problems

Numerical Methods for Engineers and Scientists

Implicit-explicit variational integration of highly oscillatory problems

Preliminary Examination, Numerical Analysis, August 2016

Third part: finite difference schemes and numerical dispersion

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

ENGI Partial Differentiation Page y f x

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Introduction to PDEs and Numerical Methods Tutorial 10. Finite Element Analysis

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

2.4 Eigenvalue problems

PDEs, part 3: Hyperbolic PDEs

NUMERICAL METHODS FOR ENGINEERING APPLICATION

1. Differential Equations (ODE and PDE)

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

A Computational Approach to Study a Logistic Equation

(4.2) -Richardson Extrapolation

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation.

Crouzeix-Velte Decompositions and the Stokes Problem

Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions

Numerical Differentiation

PARTIAL DIFFERENTIAL EQUATIONS

Darcy s law in 3-D. K * xx K * yy K * zz

Introduction to Multigrid Method

Problem 1. Possible Solution. Let f be the 2π-periodic functions defined by f(x) = cos ( )

Partial Differential Equations

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Basic Aspects of Discretization

Differential Equations

UNIVERSITY OF MANITOBA

Exercise 19 - OLD EXAM, FDTD

Research Article Cubic Spline Iterative Method for Poisson s Equation in Cylindrical Polar Coordinates

Lecture 19: Heat conduction with distributed sources/sinks

Finite difference methods for the diffusion equation

Kasetsart University Workshop. Multigrid methods: An introduction

7 Hyperbolic Differential Equations

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Solutions Preliminary Examination in Numerical Analysis January, 2017

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

1 Separation of Variables

Separation of variables

Ordinary Differential Equations

Spotlight on Laplace s Equation

Dedicated to the 70th birthday of Professor Lin Qun

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

M. Croci (Oxford), M. B. Giles (Oxford), P. E. Farrell (Oxford), M. E. Rognes (Simula) MCQMC July 4, 2018

Transcription:

Platzalter für Bild, Bild auf Titelfolie inter das Logo einsetzen Introduction to PDEs and Numerical Metods Tutorial 11. 2D elliptic equations Dr. Noemi Friedman, 3. 1. 215.

Overview Introduction (classification of PDEs, examples of important PDEs) 1D Poisson equation u x = f(x) Analytical solution (existence, uniqueness of solution, stability) Finite difference approximation of te Poisson eqaution Eigenvalue problem, Fourier transform Elliptic equations ( aa x + b x u x + c x u x = f x ) Analytical solution: existence, and uniqueness of solution, and its bounds FD approximation Consistency, stability, convergence FD approximation of PDEs on non-equidistant grids Higer order FD scemes Wit Taylor expansion Wit Lagrange interpolation Compact scemes 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 2

Overview Scemes for te numerical approximation of initial value problems Explicit Euler Implicit (backward) Euler Teta-metods Runge-Kutta metods Heat eqaution wit 1d spatial dimension analytical solution (seperation of ) Spatial and time discretisation, consistency and stability analysis Transport and wave equations wit 1d spatial dimension analytical solution numerical soluion Multidimensional problems 2d elliptic equation analytical analysis numerical analysis 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 3

Seperation of Seperation of - basic steps: 1. Suppose: u x, y = f x g y (ansatz function) 2. Plug-in ansatz function to te original PDE and rearrange in a way tat one side is a function of only x and te oter side is a function of only y: φ x = ψ y Te equality only stands if bot sides is only a scalar (separation constant - σ) φ x = ψ y = σ 3. Solve te two separated ODEs: φ x = σ ψ y = σ 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 4

Analytical solution of Laplace equation wit separation of Let s solve analyticaly te following problem Laplace equation u(x, y) y u xx + u yy = (LE) Boundary conditions (BC4) u x, = (BC1) u x, = (BC2) u, y = y(y ) (BC3) u x, y = lim x x u(x, y):? 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 5

Analytical solution of Laplace equation wit separation of 1. Ansatz function u x, y = f x g y 2. Plug-in ansatz function to te original PDE (LE) u xx + u yy = (LE) f x g y + f x g y = (PDE1) Rearrange: f x f x = g y g y (PDE2) = σ f x σσ x = g y + σg y = (ODE1) (ODE2) φ x ψ y seeeeeeeee cccccccc 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 6

Analytical solution of Laplace equation wit separation of 3. SOLVE (ODE1) and (ODE2) 3a) Let s assume g y + σg y = g y = g y = C 1 y + C 2 (1) (ODE2) were C 1, C 2 : constants Define C 1, C 2 from boundary conditions: u x, = f x g = (BC1) (BC1) is satisfied if f x or if g = (BC 1) would give trivial solution (rearrangement of (PDE1) to (PDE2) would not be possible if f x (BC 1) (1): g = C 1 + C 2 = C 2 = 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 7

Analytical solution of Laplace equation wit separation of Define C 1 from boundary conditions u x, = f x g = (BC2) (BC2) is satisfied if f x would give trivial solution or if g = (BC 2) (BC 2) (1): g = C 1 = C 1 = doesn t lead to any nontrivial solution 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 8

Analytical solution of Laplace equation wit separation of 3b) Let s assume g y + σg y = (ODE2) Assuming g y = e λy (2) plug-in (2) to (ODE2) λ 2 e λλ + σe λλ = λ 2 = σ λ = ± σ Te solution is te linear combination of te two possible solutions g y = C 3 e σ y + C 4 e σ y (3) were C 3, C 4 are arbitrary constants 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 9

Analytical solution of Laplace equation wit separation of Let s assume Define C 3, C 4 from boundary conditions: g = (BC 1) g = (BC 2) see equations (BC 1) and (BC 2) in 3a from (3) using (BC 1) g = C 3 e σ + C 4 e σ = C 3 + C 4 = C 4 = C 3 (4) from (3) using (BC 2) g = C 3 e σ + C 4 e σ = using (4) g = C 3 e σ 1 e σ = C 3 = C 4 = eiter leads to any nontrivial solution 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 1

Analytical solution of Laplace equation wit separation of Let s assume λ = ±i σ complex roots Te solution: g y = C 5 e i σ y + C 6 e i σ y (5) 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 11

Analytical solution of Laplace equation wit separation of g y = C 5 e i σ y + C 6 e i σ y = C 5 cos ( σ y) + i sin ( σ y) + C 6 cos σ y i sin ( σ y) = C 5 + C 6 cos σ y + C 5 C 6 i sin( σ y) = A = B were A, B are new constants wit C 5 + C 6 = A C 5 C 6 i = B g y = Acos σ y + B sin( σ y) (6) Let s define A and B from boundary conditions: g = (BC 1) g = (BC 2) see equations (BC 1) and (BC 2) in 3a from (6) using (BC 1) g = Acos σ + B sin( σ ) = Acos σ = A = (7) 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 12

Analytical solution of Laplace equation wit separation of from equations (6) (BC 2) and (7) g = B sin( σ ) = (8) equations (8) can be satisfied if B = would leave to trivial solution or if sin( σ ) = σ k = kπ were k = 1,2,3 (9) A sequance of solution: g k y = B k sin kπ y 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 13

Analytical solution of Laplace equation wit separation of SOLVE (ODE1) wit f x σf x = (ODE1) Assuming f x = e κx κ 2 e κκ σe κκ = Caracteristic equation: κ 2 σ = κ = ± σ real roots Te solution: f x = C 7 e σ x + C 8 e σ x (1) were C 7, C 8 are constants 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 14

Analytical solution of Laplace equation wit separation of Using equation (9) and (1) f k x = D k e kπ x + E k e kπ x (11) And te ansatz: u k x, y = f k x g k y = D k e kπ x + E k e kπ x B k sin kπ y (12) Let s define B k, D k and E k from boundary conditions (BC3) and (BC4). First from (BC4): lim u x, y = lim x x D ke kπ x + E k e kπ x B k sin kπ y = lim e kπ x = x lim x D k e kπ x B k sin kπ y = only if D k = 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 15

Analytical solution of Laplace equation wit separation of u k x, y = B k E k e kπ x sin kπ y = A ke kπ x sin kπ y A k Te general solution will be te sum of te sequances: u x, y = k=1 u k x, y = A k e kπ x sin kπ k=1 y Let s define A k from boundary conditions (BC3): u, y = u (y) = (y 2 2 /4) (BC3) u, y = A k e kπ sin k=1 kπ y = A k sin kπ y = u (y) k=1 Accordingly te A k coefficients are te coefficients of te Fourier serious of te function u (y) 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 16

Analytical solution of Laplace equation wit separation of Let s define A k from boundary conditions (BC3): u, y = u y = y(y ) (BC3) u, y = A k e kπ sin k=1 kπ y = A k sin kπ y = u (y) k=1 Accordingly te A k coefficients are te coefficients of te Fourier serious of te function u (y) A k = 2 u (y) sin kπ y dy = 2 ( y(y )) sin kπ y dy u x, y = 2 u (y) sin k=1 kπ y dy e kπ x sin kπ y Excercise: Calculate analyticaly te A k coefficients 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 17

Analytical solution of Laplace equation wit separation of A k = 2 (y(y )) sin kπ y dy = 2 (y2 y) sin kπ y dy = 2 2 kπ (y2 y) cos kπ y + (2y ) cos kπ y dy = kπ (y2 y) cos kπ y + kπ (2y ) sin kπ y kπ 2 sin kπ y dy 2 kπ (y2 y) cos kπ y + kπ (2y ) sin kπ y + kπ 2 2 cos kπ y = = = 2 1 k 2 A k = 8 2 kπ 3 ii k ii ooo ii k ii eeee 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 18

Analytical solution of Laplace equation wit separation of u x, y = 8 2 2n 1 3 π 3 e n=1 2n 1 π x sin 2n 1 π y 1.8.6.4 2.2 1.5.5 1 1.5 2 2.5 3.5 1 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 19

2D Laplace equation - finite difference metod Let s consider te Laplace equation in 2 dimensions: If dx=dy: 29. 11. 213. Dr. Noemi Friedman PDE tutorial Seite 2

n = 2D Laplace equation - finite difference metod u n 1,1 u n 2,1 u n 3,1 u n M 1,1 u n 1,2 u n 2,2 u n M 1,2 u n 1,N 1 u n M 1,N 1 u n = u 1,1 u 2,1 u 3,1 u 4,1 u 1,2 u 2,2 u 3,2 u 4,2 u 1,3 u 2,3 u 3,3 u 4,3 l = 1.. N y = lδy (, N) (,1) (1,1) (2,1) (3,1) (M, 1) (,) (1,) (2,) (3,) x = jδx (2,3) (1,2) (2,2) (3,2) j = 1.. M (M, N) (M, 1) wit omogenous Diriclet BC. r 4u j,l + u j 1,l + u j+1,l + u j,l 1 + u j,l+1 = f j,l 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 21

2D Laplace equation - finite difference metod r 4u j,l + u j 1,l + u j+1,l + u j,l 1 + u j,l+1 = f j,l wit omogenous Diriclet BC. 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 4 1 1 +r 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 u 1,1 u 2,1 u 3,1 u 4,1 u 1,2 u 2,2 u 3,2 u 4,2 u 1,3 u 2,3 u 3,3 u 4,3 Sparse matrix wit bandwidt: 2M-1 (ere 9) BUT te band itself is sparse, only five diagonals are nonzero 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 22

2D Laplace equation - finite difference metod r 4u j,l + u j 1,l + u j+1,l + u j,l 1 + u j,l+1 = f j,l B 1 u = f were B 1 = B C C B C C B B = 1 + 4r r r 1 + 4r r r 1 + 4r C = r r r 3. 1. 215. Dr. Noemi Friedman PDE tutorial Seite 23