Unit #3 : Differentiability, Computing Derivatives, Trig Review

Similar documents
Unit #3 : Differentiability, Computing Derivatives

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

f(g(x)) g (x) dx = f(u) du.

AP CALCULUS SUMMER WORKSHEET

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

2.2 The derivative as a Function

Welcome to AP Calculus!!!

Math 12 Final Exam Review 1

Inverse Trig Functions

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

Hello Future Calculus Level One Student,

December Exam Summary

AP CALCULUS SUMMER WORKSHEET

Math 106 Calculus 1 Topics for first exam

Chapter 7: Techniques of Integration

Calculus I Announcements

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Learning Objectives for Math 165

DuVal High School Summer Review Packet AP Calculus

Calculating the Derivative Using Derivative Rules Implicit Functions Higher-Order Derivatives

2.1 Limits, Rates of Change and Slopes of Tangent Lines

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Dear Future CALCULUS Student,

TRIGONOMETRY OUTCOMES

Chapter P: Preliminaries

function independent dependent domain range graph of the function The Vertical Line Test

Calculus & Analytic Geometry I

CALCULUS ASSESSMENT REVIEW

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

UNIT 3: DERIVATIVES STUDY GUIDE

MA1021 Calculus I B Term, Sign:

Calculus & Analytic Geometry I

Summer 2017 Review For Students Entering AP Calculus AB/BC

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts

Chapter P: Preliminaries

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

Table of Contents. Module 1

AP Calculus Summer Prep

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science

f(x) f(a) Limit definition of the at a point in slope notation.

Math 121: Calculus 1 - Fall 2012/2013 Review of Precalculus Concepts

Chapter 1. Functions 1.3. Trigonometric Functions

Dear Future CALCULUS Student,

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

CK- 12 Algebra II with Trigonometry Concepts 1

Chapter 3: Derivatives

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Week 1: need to know. November 14, / 20

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts

There are some trigonometric identities given on the last page.

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Trigonometry (Grades 9-12)

MTH 112: Elementary Functions

Unit #3 - Differentiability, Computing Derivatives, Trig Review

Math 250 Skills Assessment Test

Chapter 2 Derivatives

Core 3 (A2) Practice Examination Questions

Calculus I Exam 1 Review Fall 2016

Chapter 2: Differentiation

Chapter 2: Differentiation

Math 106 Calculus 1 Topics for first exam

AP Calculus Chapter 3 Testbank (Mr. Surowski)

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f.

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

OCR A2 Level Mathematics Core Mathematics Scheme of Work

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

Grade 11 or 12 Pre-Calculus

CW High School. Calculus/AP Calculus A

Grade Math (HL) Curriculum

June 9 Math 1113 sec 002 Summer 2014

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

Blue Pelican Calculus First Semester

Mrs. Meehan PRE-CALC Feb-May 2014 Name

x 2 = 1 Clearly, this equation is not true for all real values of x. Nevertheless, we can solve it by taking careful steps:

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

Unit 6 Trigonometric Identities

2. Theory of the Derivative

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

2. Find the midpoint of the segment that joins the points (5, 1) and (3, 5). 6. Find an equation of the line with slope 7 that passes through (4, 1).

Formulas that must be memorized:

SET 1. (1) Solve for x: (a) e 2x = 5 3x

Math Section 4.3 Unit Circle Trigonometry

Math 180, Final Exam, Fall 2012 Problem 1 Solution

This Week. Professor Christopher Hoffman Math 124

Math Section 4.3 Unit Circle Trigonometry

AP Calculus AB Summer Math Packet

MAT137 Calculus! Lecture 6

Curriculum Map for Mathematics HL (DP1)

Calculus II Lecture Notes

Transcription:

Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute derivative functions of powers, exponentials, logarithms, and trig functions. Compute derivatives using the product rule, quotient rule, and chain rule for derivatives. Review trigonometric and inverse trigonometric functions. Textbook reading for Unit #3 : Study Sections 1.5,2.3,2.4,2.6 and 3.1 3.6.

Unit 3 - Secants vs. Derivatives - 1 In the previous unit we introduced the definition of the derivative. In this unit we will use and compute the derivative more efficiently. As a lead in, though, let us review how we arrived at the derivative concept. Interpretations of Secants vs Derivatives From Section 2.4 The slope of a secant line gives the average rate of change of f(x) over some interval x. the average velocity over an interval, if f(t) represents position. the average acceleration over an interval, if f(t) represents velocity. Give the units of the slope of a secant line.

Unit 3 - Secants vs. Derivatives - 2 The derivative gives the limit of the average slope as the interval x approaches zero. a formula for slopes for the tangent lines to f(x). the instantaneous rate of change of f(x). the velocity, if f(t) represents position. the acceleration, if f(t) represents velocity. Give the units of the derivative.

Unit 3 - Differentiability - 1 Differentiability From Section 2.6 Recall the definition of the derivative. f (x) = df dx = lim f x 0 x = lim f(x+h) f(x) h 0 h A function f is differentiable at a given point a if it has a derivative at a, or the limit above exists. There is also a graphical interpretation differentiability: if the graph has a unique and finite slope at a point. Since the slope in question is automatically the slope of the tangent line, we could also say that f is differentiable at a if its graph has a (non-vertical) tangent at (a,f(a)). Forfunctions oftheform y = f(x), wedo notconsiderpoints withvertical tangent lines to have a real-valued derivative, because a vertical line does not have a finite slope.

Unit 3 - Differentiability - 2 Here are the ways in which a function can fail to be differentiable at a point a: 1. The function is not continuous at a. 2. The function has a corner (or a cusp) at a. 3. The function has a vertical tangent at (a,f(a)). Sketch an example graph of each possible case.

Unit 3 - Differentiability - 3 Investigate the limits, continuity and differentiability of f(x) = x at x = 0 graphically.

Unit 3 - Differentiability - 4 Use the definition of the derivative to confirm your graphical analysis.

Unit 3 - Differentiability - 5 We have seen at a point that a function can have, or fail to have, the following descriptors: continuous; limit exists; is differentiable. Put these properties in decreasing order of stringency, and sketch relevant illustrations.

Unit 3 - Differentiability - 6 Reminder: Differentiability is Common You will notice that, despite our concern about some functions not being differentiable, most of our standard functions (polynomials, rationals, exponentials, logarithms, roots) are differentiable at most points. Therefore we should investigate what all these possible derivative/slope values could tell us.

Unit 3 - Interpreting the Derivative - 1 Interpreting the Derivative From Section 2.4 Where f (x) > 0, or the derivative is positive, f(x) is increasing. Where f (x) < 0, or the derivative is negative, f(x) is decreasing. Where f (x) = 0, or the tangent line to the graph is horizontal, f(x) has a critical point.

Unit 3 - Interpreting the Derivative - 2 Example: Consider the graph of f(x) shown below. A B C On what intervals is f (x) > 0? D E F G

Unit 3 - Interpreting the Derivative - 3 A B C Where does f (x) takes on its largest negative value? D E F G

Unit 3 - Graphs of the Derivative - 1 Graphs, and Graphs of their Derivatives Example: Consider the same graph again, and the graph of its derivative. Identify important features that associate the two. A B C D E F G A B C D E F G

Unit 3 - Graphs of the Derivative - 2 Question: Consider the graph of f(x) shown: 2 1 1 0 1 2 1 Which of the following graphs is the graph of the derivative of f(x)?

Unit 3 - Graphs of the Derivative - 3 2 2 1 1 1 0 1 2 1 0 1 2 2 1 1 1 1 0 1 2 1 2 1 A 2 1 B 1 0 1 2 1 0 1 2 1 1 C D

Unit 3 - Computing Derivatives - Basic Formulas - 1 Computing Derivatives Note: The standard formulas for derivatives are covered in the Grade 12 Ontario curriculum. While they will be reviewed here, students who are not familiar with them should begin both textbook reading and the assignment problems for this unit as soon as possible. From Sections 3.1-3.6 Beyond the graphical interpretation of derivatives, there are all the algebraic rules. All of these rules are based on the definition of the derivative, f (x) = d dx f = df dx = lim f x 0 x = lim f(x+h) f(x) h 0 h However, by finding common patterns in the derivatives of certain families of functions, we can compute derivatives much more quickly than by using the definition.

Unit 3 - Computing Derivatives - Basic Formulas - 2 Sums, Powers, and Differences d Constant Functions: dx k = 0 d Power rule: dx xp = px p 1 ( ) ( ) d d d Sums : dx f(x)+g(x) = dx f(x) + ( ) ( dx g(x) ) d d d Differences: dx f(x) g(x) = dx f(x) ( ) dx g(x) d d Constant Multiplier: dx [kf(x)] = k dx f(x), so long as k is a constant

Unit 3 - Computing Derivatives - Basic Formulas - 3 Example: Evaluate the following derivatives: d ( x 4 +3x 2) dx d dx ( 2.6 x πx 3 +4 )

Unit 3 - Computing Derivatives - Basic Formulas - 4 Question: The derivative of 3x 2 1 x 2 is 1. 6x 3 +2 1 x 3 2. 6x+2 1 x 3 3. 6x 2 1 x 3 4. x 3 +2 1 x

Unit 3 - Computing Derivatives - Basic Formulas - 5 Exponentials and Logs e as a base: Other bases: Natural Log: Other Logs: d dx ex = e x d dx ax = a x (ln(a)) d dx ln(x) = 1 x d dx log a(x) = 1 1 xln(a)

Unit 3 - Computing Derivatives - Basic Formulas - 6 Example: Evaluate the following derivatives: d ( 4 10 x +10 x 4) dx d dx (ex +log 10 (x)) (Exponential and log derivatives are relatively straightforward, until we mix in the product, quotient, and chain rules.)

Unit 3 - Computing Derivatives - Product and Quotient Rules - 1 Product and Quotient Rules Products: d dx f(x) g(x) = f (x)g(x)+f(x)g (x) Quotients: d dx f(x) g(x) = f (x)g(x) f(x)g (x) (g(x)) 2 Example: Evaluate the following derivatives: d ( 4x 2 e x) dx

Unit 3 - Computing Derivatives - Product and Quotient Rules - 2 d dx (xln(x)) d dx (5 x2 ln(x) )

Unit 3 - Computing Derivatives - Product and Quotient Rules - 3 Question: The derivative of 10x x is 3 10 x 1. ln(10) x 3 +10 x ( 3x 4 ) 2. 10x ln(10)x 3 10 x (3x 2 ) x 6 3. 10x 1 ln(10) x3 10 x (3x 2 ) x 6 4. ln(10)10 x x 3 +10 x ( 3x 4 )

Unit 3 - Computing Derivatives - Chain Rule - 1 Chain Rule Nested Functions: d dx [f(g(x))] = f (g(x)) g (x) Liebnitz form d dx df dg f(g(x)) = dgdx

Example: Evaluate the following derivatives: d dx ex2 Unit 3 - Computing Derivatives - Chain Rule - 2

d dx ln(x4 ) Unit 3 - Computing Derivatives - Chain Rule - 3

d dx ( ) 1 1+x 3 Unit 3 - Computing Derivatives - Chain Rule - 4

Unit 3 - Computing Derivatives - Chain Rule - 5 d dx ( x 4 +10 3x)

Unit 3 - Computing Derivatives - Chain Rule - 6 Question: The derivative of e x is 1. 1 2 e 1 x 2. e ( x x ) 3. 1 ( ) 2 e x 1 x 4. 1 2 e x ( x )

Unit 3 - Trigonometry Review - 1 Trigonometry Review From Section 1.5 In our earlier discussion of functions, we skipped over the trigonometric functions. We return to them now to discuss both their properties and their derivative rules. The trigonometric functions are usually defined for students first using triangles (recall the mnemonic device, SOHCAHTOA ).

Unit 3 - Trigonometry Review - 2 Use the 45/45 and 60/30 triangles to compute the sine and cosine of these common angles.

Unit 3 - Trigonometry Review - 3 Extending Trigonometric Domains One difficulty with limiting ourselves to the triangle ratio definition of the trig functions is that the possible angles are limited to the range θ [0, π 2 ] radians or θ [0,90] degrees. To remove this limitation, mathematicians extended the definition of the trigonometric functions to a wider domain via the unit circle. θ

Unit 3 - Trigonometry Review - 4 How does the circle definition lead to the trigonometric identity sin 2 (θ) + cos 2 (θ) = 1?

Unit 3 - Trigonometry Review - 5 Show how the circle and triangle definitions define the same values in the first quadrant of the unit circle. It is useful to understand both definitions of trig functions (circle and triangle) as sometimes one is more helpful than the other for a particular task.

Unit 3 - Sine and Cosine as Functions - 1 Sine and Cosine as Oscillating Functions Despite the geometric source of the trigonometric functions, they are used more commonly in biology and many other sciences as because their periodicity and oscillatory shapes. For many cyclic behaviours in nature, trigonometric functions are a natural first choice for modeling.

Unit 3 - Sine and Cosine as Functions - 2 Question The graph of y = 10 + 4cos(x) is shown in which of the following diagrams? 14 12 10 8 6 4 2 2 4 14 12 10 8 6 4 2 6 A B 12 12 10 8 6 4 2 10 8 6 4 2 C D Show the amplitude and the average on the correct graph.

Unit 3 - Sine and Cosine as Functions - 3 Period and Phase How can you find the period of the function cos(ax)?

Unit 3 - Sine and Cosine as Functions - 4 How can you reliably determine where the function cos(ax + B) starts on the graph? (For a cosine graph, where the start represents a maximum, the starting time or x value is sometimes called the phase of the function.)

Unit 3 - Sine and Cosine as Functions - 5 Consider the graph of the function y = 5 + 8cos(π(x 1)). following properties of the function: amplitude What are the period average phase

Unit 3 - Sine and Cosine as Functions - 6 Sketch the graph on the axes below. Include at least one full period of the function.

Unit 3 - Non-Constant Amplitudes - 1 More complicated amplitudes In the form y = A + Bcos(Cx + D), the B factor sets the amplitude. In many interesting cases, however, that amplitude need not be constant. Sketch the graph of y = 5, and the graph of y = 5cos(x) on the axes below.

Unit 3 - Non-Constant Amplitudes - 2 Sketch the graph of y = x, and the graph of y = xcos(πx) on the axes below. Use only x 0

Unit 3 - Non-Constant Amplitudes - 3 Use your intuition to sketch the graph of y = e x cos(πx) on the axes below.

Unit 3 - Derivatives of Trigonometric Functions - 1 Derivatives of Trigonometric Functions From Section 3.5 Having covered the graphs and properties of trigonometric functions, we can now review the derivative formulae for those same functions. The derivation of the formulas for the derivatives of sin and cos are an interesting study in both limits and trigonometric identities. For those who are interested, manysuch derivations can be found on the web 1. However, it is in some ways more useful to derive the formula in a graphical manner. 1 For example, http://www.math.com/tables/derivatives/more/trig.htm#sin

Unit 3 - Derivatives of Trigonometric Functions - 2 Below is a graph of sin(x). Use the graph to sketch the graph of its derivative. 1 3 π /2 π π/2 0 π/2 π 3 π/2 1 1 3 π /2 π π/2 0 π/2 π 3 π/2 1

Unit 3 - Derivatives of Trigonometric Functions - 3 From this sketch, we have evidence (though not a proof) that Theorem d dx sinx =

Unit 3 - Derivatives of Trigonometric Functions - 4 Most students will also be familiar with the other derivative rules for trig functions: d cos(x) = sin(x) dx d dx tan(x) = sec2 (x) d sec(x) = sec(x)tan(x) dx d dx csc(x) = csc(x)cot(x) d dx cot(x) = csc2 (x)

Unit 3 - Derivatives of Trigonometric Functions - 5 Prove the secant derivative rule, using the definition sec(x) = 1 cos(x) other derivative rules. and the

Unit 3 - Derivatives of Trigonometric Functions - 6 Question: Find the derivative of 4+6cos(πx 2 +1) 1. 4 6sin(πx 2 +1) (2πx) 2. 6cos(πx 2 +1) (2πx) 3. 6sin(πx 2 +1) (2πx) 4. 6sin(πx 2 +1) (πx 2 +1) 5. 6 sin(2πx)

Unit 3 - Inverse Trig Functions - 1 Inverse Trig Functions From Section 1.5, 3.6 In addition to the 6 trig functions just seen, there are 6 inverse functions as well, though the inverses of sine, cosine, and tangent are the most commonly used. Sketch the graph of sin(x) on the axes below On the same axes, sketch the graph of arcsin(x), or sin 1 x, or the inverse of sin(x).

Unit 3 - Inverse Trig Functions - 2 What is the domain of arcsin(x)? What is the range of arcsin(x)?

Unit 3 - Derivative of arcsin - 1 Derivative of arcsin Simplify sin(arcsin x) Differentiate both sides of this equation, using the chain rule on the left. You should end up with an equation involving d dx arcsinx.

Unit 3 - Derivative of arcsin - 2 Solve for d dx formula arcsinx, and simplify the resulting expression by means of the which is valid if θ [ π 2, π 2 ]. cosθ = 1 sin 2 θ, d dx arcsinx =