Classical Selection, Balancing Selection, and Neutral Mutations

Similar documents
Neutral Theory of Molecular Evolution

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

7. Tests for selection

Processes of Evolution

Genetical theory of natural selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

Lecture Notes: BIOL2007 Molecular Evolution

(Write your name on every page. One point will be deducted for every page without your name!)

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Study of similarities and differences in body plans of major groups Puzzling patterns:

Big Idea #1: The process of evolution drives the diversity and unity of life

Genetic diversity and population structure in rice. S. Kresovich 1,2 and T. Tai 3,5. Plant Breeding Dept, Cornell University, Ithaca, NY

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin

Lecture 1 Hardy-Weinberg equilibrium and key forces affecting gene frequency

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Lecture #4-1/25/02 Dr. Kopeny

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

Lecture 18 - Selection and Tests of Neutrality. Gibson and Muse, chapter 5 Nei and Kumar, chapter 12.6 p Hartl, chapter 3, p.

List the five conditions that can disturb genetic equilibrium in a population.(10)

D. Incorrect! That is what a phylogenetic tree intends to depict.

AGREE or DISAGREE? What s your understanding of EVOLUTION?

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Chapter 2: Extensions to Mendel: Complexities in Relating Genotype to Phenotype.

Processes of Evolution

Expression QTLs and Mapping of Complex Trait Loci. Paul Schliekelman Statistics Department University of Georgia

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection

The neutral theory of molecular evolution

Evolution of Populations. Chapter 17

Exam 1 PBG430/

Population Genetics I. Bio

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Population Genetics & Evolution

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

Problems for 3505 (2011)

NOTES CH 17 Evolution of. Populations

Segregation versus mitotic recombination APPENDIX

AP Biology Evolution Review Slides

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009

Application Evolution: Part 1.1 Basics of Coevolution Dynamics

URN MODELS: the Ewens Sampling Lemma

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects.

Genes Within Populations

Evolu&on, Popula&on Gene&cs, and Natural Selec&on Computa.onal Genomics Seyoung Kim

1.A- Natural Selection

Introduction to Advanced Population Genetics

1. What is the definition of Evolution? a. Descent with modification b. Changes in the heritable traits present in a population over time c.

Observation: we continue to observe large amounts of genetic variation in natural populations

Is there any difference between adaptation fueled by standing genetic variation and adaptation fueled by new (de novo) mutations?

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

Introduction to population genetics & evolution

Evolutionary Genetics Midterm 2008

How to Use This Presentation

Linear Regression (1/1/17)

How robust are the predictions of the W-F Model?

1.5.1 ESTIMATION OF HAPLOTYPE FREQUENCIES:

F SR = (H R H S)/H R. Frequency of A Frequency of a Population Population

ACGTTTGACTGAGGAGTTTACGGGAGCAAAGCGGCGTCATTGCTATTCGTATCTGTTTAG Human Population Genomics

Chapter 6 Linkage Disequilibrium & Gene Mapping (Recombination)

BIG IDEA 4: BIOLOGICAL SYSTEMS INTERACT, AND THESE SYSTEMS AND THEIR INTERACTIONS POSSESS COMPLEX PROPERTIES.

The Mechanisms of Evolution

Full file at CHAPTER 2 Genetics

4/26/18. Domesticated plants vs. their wild relatives. Lettuce leaf size/shape, fewer secondary compounds

You are encouraged to answer/comment on other people s questions. Domestication conversion of plants or animals to domestic uses

Lecture 22: Signatures of Selection and Introduction to Linkage Disequilibrium. November 12, 2012

I. Multiple choice. Select the best answer from the choices given and circle the appropriate letter of that answer.

AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity,

Molecular Evolution & the Origin of Variation

Molecular Evolution & the Origin of Variation

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Mathematical modelling of Population Genetics: Daniel Bichener

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

Chapter 22: Descent with Modification: A Darwinian View of Life

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

The theory of evolution continues to be refined as scientists learn new information.

2. Der Dissertation zugrunde liegende Publikationen und Manuskripte. 2.1 Fine scale mapping in the sex locus region of the honey bee (Apis mellifera)

Ecology and Evolutionary Biology 2245/2245W Exam 3 April 5, 2012

Population Structure

Review of molecular biology

CONSERVATION AND THE GENETICS OF POPULATIONS

Jeopardy. Evolution Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300

Evolution by Natural Selection

5/31/2012. Speciation and macroevolution - Chapter

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

Concepts of Evolution

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

Chapter 02 Population Genetics

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes.

122 9 NEUTRALITY TESTS

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions.

Selection and Population Genetics

Darwin s Observations & Conclusions The Struggle for Existence

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B

Genetics and Natural Selection

Evidence of Evolution

Transcription:

Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection Perspective of the Fate of Mutations All mutations are EITHER beneficial or deleterious o Beneficial mutations are selected for and maintained in the population Positive selection o Mutation rapidly increases to a high frequency in the population Generate a new adaptive phenotype Deleterious mutations are selected against and eliminated from the population Negative selection Balancing Selection Perspective of the Fate of Mutations In general, agrees with Selection Perspective o But it was noted that some deleterious variation is maintained in the population o How is the deleterious variation maintained? Selection for heterozygotes, one method Heterozygous have a fitness advantage and undergo natural selection o Classic example: human sickle cell anemia Homozyous normal ß-globin allele Proper oxygen carrying capacity, but susceptible to malaria Homozygous mutant ß-globin allele Resistant to malaria but die young because of poor oxygen carrying capacity Heterozgous ß-globin allele individuals Proper oxygen carrying capacity, and resistant to malaria

Surprise of 960s and Onward Divesity in populations much greater than predicted by either the classical or balancing selection theories o Based on protein electrophoresis and eventually sequence data Neutral Mutations Recognized as a New Class of Mutations Allelic variation neither beneficial or deleterious o These alleles not provide any fitness difference among individuals in a population o Fate of an allele in a population is entirely random process Allele can be maintained or eliminated Controversial concept Neutral Theory of Molecular Evolution Kimura Nature (968) 7:64-66 King and Jukes Science (969) 64:788-798 (Non-Darwinian Evolution) Neutral Theory of Molecular Evolution Describes the source of variation in natural populations The majority of genetic differences between two populations are neutral o They have not effect on survival Predicts two factors are working o Mutation Generates new variation o Random genetic drift Fixes variation Stochastic processes that lead to changes in gene frequency Allele can be lost or maintained Also called the Mutation-Drift Model

Definition of the Neutral or Mutation-Drift Model Population genetic variation results from the appearance of neutral mutations that are fixed (but usually lost) by genetic drift Why genetic drift? o A process in smaller populations o Random process will drive new alleles to fixation quicker Relationship to Selection Theory Most variation is the neutral, therefore most population differences are not the result of adaptive selection

Graphical Representation of the Alleles in a Population The Controversy and Debate Was there no role for selection? o What is the role (if any) of Darwinian selection for adaptation o Although argued, not really a debatable issue Some genes do under go selection What is the relative distribution of neutral and selected genes

Why is the Neutral Theory so important? Ideal for mapping population structure and tracing ancestry Provide a null hypothesis for testing for selection Life Span of an Allele Drift will eventually lead to the fixation of one allele in a population How long before one allele is fixed (and the other lost) 4N e generations N e is effective population size o The number of individuals, in an idealized ancient population that adheres to the assumptions of Hardy- Weinberg equilibrium, that would evolve to have the same level of diversity as the population that is being observed. Usually less than the census size of population under study

What can affect the life span of an allele? Balancing Selection The maintenance of multiple alleles within a population A mechanism Heterozygote advantage Heterozygote has a greater fitness Sickle cell anemia At least two alleles are maintained Selective Sweep A specific gene is the target of selection It becomes fixed in the population Linked genes become monomorphic (lose variation) during the selection process o A direct effect of effect of recombination o Hitchhiking Neighboring genes are said to have hitchhiked Background Selection Result of eliminating a deleterious allele o Entire chromosome carrying deleterious allele is lost o Reduces diversity of all genes on that chromosome

Nucleotide Diversity Estimates for a Population of DNA Sequences Problem.4. Principles of Population Genetics; Hartl and Clark; 997; 3 rd Edition Gene=Rh3; Species=Drosophila simulans; gene size=500 nucleotides; sample size=5 lines Polymorphic nucleotides 3 3 3 3 4 6 9 9 0 0 4 4 5 5 7 7 0 8 Sample 8 7 0 6 4 5 5 7 3 f g h i j T C T A C C T C C T C G G T T A T C C T A C C T C C T G G T T T C T T C C C C T C T T T G C T A C T T C C C C T T C T G A C T T C T T C C T C T T T T G G C C A Pairwise differences X3 X X X X X X X4 X X X X X X X X X (X4)+(X3) X Population Genetic Parameters S = frequency of polymorphic loci S = # polymorphic nucleotides/total # of nucleotides Example: S = 6 polymorphic nucleotides/500 nucleotides = 0.03

π = observed average pairwise nucleotide differences in a sample (nucleotide diversity) sum pairwise differences p = (# pairs)(sequence size) # pairs = n(n -) Example: n=5 # pairs 5(5 -) = = 0 π = (6x6) + (9x4) + (x7) (0)(500) = 0.06

Variance of π π V ( π ) = b + bπ k where n + b = 3( n ) and b = ( n + n + 3) 9n( n ) Example: 5 + b = = 0.5 3(5 ) (5 + 5 + 3) b = = 0.367 (9)(5)(5 ) (0.5)(0.06) V ( π ) = + (0.367 )(0.06 ) = 0.00009 500 Standard Error of Variance of π SE ( π ) = V ( π ) Example: V(π) = 0.00009 SE ( π ) = 0.00009 = 0.004

θ = expectation of nucleotide polymorphism in a population when only mutation-drift are occurring (no selection) S θ = where a a and i n = i= n= sample size Example: S = 0.03 a + + + 3 4 = = 0.03 θ =.083 = 0.05.083

Variance of θ θ a ( θ ) ( θ ) = + where ka a V k = nucleotides in sequence and n = a and i= i n= sample size Example: k = 500 a V = + + + 4 9 6 =.4 0.05 (.4)(0.05) θ ) = + (500)(.083) (.083) ( = 8.804 x 0-5 Standard Error of Variance of θ SE ( θ ) = V ( θ ) Example: V(θ) = 8.804 x 0-5 -5 SE ( θ ) = 8.804 x 0 = 0.00

Tajima s D a test for neutrality a comparison of π and θ under neutrality, the mean of this value is 0 significant deviation from 0 suggests the gene is undergoing selection Formula D = c S π θ + c S( S ) k where b = and a a c c n + = )( a b a + a an + a ( )

Example: c 0.5.083 = (.083) c = 0.0096 = 5 + )(0.367 (.083) +.4 (.083)(5).4 ( + = 0.0038 (.083) ) D = 0.06 0.05 (0.0096)(0.03) + (0.0038)(0.03)(0.03 ) 500 = 0.0567 D not significant different than 0 o Physical region or gene evolving via the neutral theory

What does a significantly positive or negative Tajima s D value indicate? The following quotes are directly from A Primer of Population Genetics (Hartl; 3 rd edition): Significantly positive D value The frequencies of polymorphic variants are too nearly equal. This pattern increases the proportion of pairwise differences over its neutral expectation, hence π S/a i (= θ) is positive. The finding typically suggests either some type of balancing selection, in which heterozygous genotypes are favored, or some type of diversifying selection, in which genotypes carrying the less common allele are favored. Multiple low frequencies alleles are maintained in population o Balancing selection at work in the population Significantly negative D value The frequencies of the polymorphic variants are too unequal, with an excess of the most common type and a deficiency of the less common types. This pattern results in a decrease in the proportion of pairwise differences, so π S/a i (= θ) is negative. Typical reasons for excessively unequal frequencies are: Selection against genotypes carrying the less frequent alleles o Result of a recent bottleneck o A few distinct subpopulations appear o The bottleneck eliminates less frequent alleles, and insufficient time since the bottleneck to restore the equilibrium between mutation and random drift o Selective sweep regions can be observed

The Effects of Domestication on Diversity Application of population genetics statistics to identify important genetic factors Maize tb gene studied Domestication gene of maize o Repressor element expressed higher in maize than teosinte o Suppresses branching in maize Polymorphism among 3 maize and 9 teosinte compared o Coding region Nucleotide diversity (π) was low for both maize and teosinte o 5 non-transcribed region Nucleotide diversity (π) was much lower for maize than teosinte o Selection acted on the maize 5 non-transcribed region Wang et al. (999) The limits of selection during maize domestication. Nature 398:36 Wang et al. (00) The limits of selection during maize domestication. Nature 40:78.

Follow up research on tb 5 region Low diversity extends to 58.6 kb upstream of gene A selection sweep is observed in the upstream region of tb of maize but not teosinte Maize Teosinte Locus Length, bp n θ x 0 3 π x 0 3 n θ x 0 3 π x 0 3 6.9-kb 467 8 0.7.3 5..9 93.4-kb 485 4 7. 0.8 8 38.6 37.5 58.6-kb 50 3 0.5 0. 45.8-kb,003 4. 0.3 9 3. 3.9 35.6-kb,04 4 3..7 7.-kb 84 4 6.7 4 8 7.6.7.5-kb 534 4 3.5.8.7-kb 935 4 0.6 0.3 8 34. 34.9 0.4-kb 76 3 3.4.4 7 4.6 3.6 5' cdna 839 3.8 7 6.8 5. Clark et al. (004) Proceedings of the National Academy of Science 0: 700

Diversity extends to 65 Kb upstream of tb Two transposable element are at the border of the low diversity Tourist element is older Hopscotch element is new and nearly completely fixed in all maize lines o Is the transposable element the controlling element controlling the increased expression of the tb gene product in maize? (a) Nucleotide diversity across the tb upstream control region. Base-pair positions are relative to AGPv position 65,745,977 of the maize reference genome sequence. P values correspond to HKA neutrality tests for regions A D, as defined by the dotted lines. Green shading signifies evidence of neutrality, and pink shading signifies regions of non-neutral evolution. Nucleotide diversity (π) for maize (yellow line) and teosinte (green line) were calculated using a 500-bp sliding window with a 5-bp step. The distal and proximal components of the control region with four fixed sequence differences between the most common maize haplotype and teosinte haplotype are shown below. (b) A minimum spanning tree for the control region with 6 diverse maize and 7 diverse teosinte sequences. Size of the circles for each haplotype group (yellow, maize; green, teosinte) is proportional to the number of individuals within that haplotype. Studer et al. (0) Nature Genetics 43:60

Whole Genome Application of Population Genetics Statistics The π statistics was estimated across the entire genome of rice o Statistic calculated for non-overlapping 00kb regions across all chromosomes Diversity (π) between wild (Oryza rufipogon) and cultivated (Oryza sativa) were compared o The following π ratio was used π wild /π cultivated = π O. rufipogon /π O. sativa Regions with high ratios are considered region that under went selection during domestication o Why??? For domesticated lines, diversity was reduced in region with domestication genes whereas diversity was maintained in wild lines a, Whole-genome screening of domestication sweeps in the full population of O. rufipogon and O. sativa. The values of π w /π c are plotted against the position on each chromosome. The horizontal dashed line indicates the genome-wide threshold of selection signals (π w /π c > 3). b d, A large-scale high-resolution mapping for fifteen domestication-related traits was performed in an O. rufipogon O. sativa population. The domestication sweeps overlapped with characterized domestication-related QTLs are shown in dark red, and the loci with known causal genes are shown in red. Among them, three strong selective sweeps were found to be associated with grain width (b), grain weight (c) and exserted stigma (d), respectively. In b d, the likelihood of odds (LOD) values from the composite interval mapping method are plotted against position on the rice chromosomes. Grey horizontal dashed line indicates the threshold (LOD > 3.5).

How many windows were under selection? Cutoff set by permutation test o Indica and japonica rice combined 55 windows o Indica rice alone 60 windows o Japonica rice along 6 windows Were domestication genes in the selection windows? Yes!!! Bh4: hull color sh4: seed shattering qsw5: grain width OsC: leaf sheath colour and apiculus colour PROG: tiller angle o Located in windows with high π wild /π cultivated ratio