The Nonlinear Real Interest Rate Growth Model : USA

Similar documents
FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

CHAOS THEORY AND EXCHANGE RATE PROBLEM

Relationships between phases of business cycles in two large open economies

A Summary of Economic Methodology

The TransPacific agreement A good thing for VietNam?

Chaos in GDP. Abstract

1 Bewley Economies with Aggregate Uncertainty

Modeling of Chaotic Behavior in the Economic Model

Economy and Application of Chaos Theory

Department of Economics, UCSB UC Santa Barbara

Keynesian Macroeconomic Theory

Financial Factors in Economic Fluctuations. Lawrence Christiano Roberto Motto Massimo Rostagno

Assignment #5. 1 Keynesian Cross. Econ 302: Intermediate Macroeconomics. December 2, 2009

Extended IS-LM model - construction and analysis of behavior

Final Exam. You may not use calculators, notes, or aids of any kind.

Macroeconomics Qualifying Examination

A suggested solution to the problem set at the re-exam in Advanced Macroeconomics. February 15, 2016

An Econometric Modeling for India s Imports and exports during

Dynamical Systems. Pierre N.V. Tu. An Introduction with Applications in Economics and Biology Second Revised and Enlarged Edition.

New Notes on the Solow Growth Model

Revista Economica 65:6 (2013)

Nonlinear dynamics in the Cournot duopoly game with heterogeneous players

Test code: ME I/ME II, 2004 Syllabus for ME I. Matrix Algebra: Matrices and Vectors, Matrix Operations, Determinants,

Source: US. Bureau of Economic Analysis Shaded areas indicate US recessions research.stlouisfed.org

Dynamic IS-LM model with Philips Curve and International Trade

ECON 5118 Macroeconomic Theory

Mathematical models in economy. Short descriptions

MACRO-PRUDENTIAL RULES AND REGULATION (2015): DISCLOSURE REQUIREMENTS ANNEXURE I: FORMAT FOR ANNUAL DISCLOSURES DRUK PNB BANK LTD.

Topic 8: Optimal Investment

s<1/4 p i = 2 3 s s [1/4, 9/16[ p i = p j + 2 s p j 1 if p j < p j p i = 2 3 s if p j p j p i = p j if p j < p j s 9/16

TABLE OF CONTENTS. Page. Statistical Bulletin, June 2011 INTRODUCTORY NOTES SUMMARISED ACCOUNTS OF THE BANKING SYSTEM

A Modern Equilibrium Model. Jesús Fernández-Villaverde University of Pennsylvania

An introduction of a simple monetary policy with savings taxation in the overlapping generations model

KIER DISCUSSION PAPER SERIES

Masanori Yokoo. 1 Introduction

A Metzlerian business cycle model with nonlinear heterogeneous expectations

Foundations of Modern Macroeconomics B. J. Heijdra & F. van der Ploeg Chapter 6: The Government Budget Deficit

Foundations of Modern Macroeconomics Second Edition

The Central Bank of Iceland forecasting record

Monetary Policy in a Macro Model

1 The Basic RBC Model

Table 01A. End of Period End of Period End of Period Period Average Period Average Period Average

The Foley Liquidity / Profit-Rate Cycle Model Reconsidered

Mankiw Chapter 11. Aggregate Demand I. Building the IS-LM Model

Dynamic Optimization: An Introduction

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x.

Lecture 3, November 30: The Basic New Keynesian Model (Galí, Chapter 3)

Economic Growth: Lecture 8, Overlapping Generations

Suggested Solutions to Problem Set 8

On Returns to Scale Assumption in Endogenous Growth

Detecting Macroeconomic Chaos Juan D. Montoro & Jose V. Paz Department of Applied Economics, Umversidad de Valencia,

THEORY OF OLIGOPOLIES: DYNAMICS AND STABILITY OF EQUILIBRIA

Chaotic Interest-Rate Rules

1. Money in the utility function (start)

The Real Business Cycle Model

Topic 4 Forecasting Exchange Rate

V. The Speed of adjustment of Endogenous Variables and Overshooting

Graduate Macroeconomics - Econ 551

Lecture Notes. Applied Mathematics for Business, Economics, and the Social Sciences (4th Edition); by Frank S. Budnick

14.05 Lecture Notes Crises and Multiple Equilibria

Monetary Economics: Solutions Problem Set 1

Deviant Behavior in Monetary Economics

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics CONSISTENT FIRM CHOICE AND THE THEORY OF SUPPLY

Equilibrium in a Production Economy

A model for competitive markets

Dynamic Macroeconomic Theory Notes. David L. Kelly. Department of Economics University of Miami Box Coral Gables, FL

A modification of Kaldor-Kalecki model and its analysis

Production, Capital Stock and Price Dynamics in A Simple Model of Closed Economy *

Introduction to Macroeconomics

Project Name: Income Generation Project 4 Pouk District, Siem Reap Province Implementing Partner: Farmer Livelihood Development (FLD)

Based on the specification in Mansoorian and Mohsin(2006), the model in this

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014

Long-run Analysis of Production. Theory of Production

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Discussion Paper Series No.51. Complexity yields benefits: An example of a heterogeneous duopoly market. Yasuo Nonaka.

Introduction to Forecasting

ANALYSIS OF THE NONLINEAR STATISTICAL ANALYSIS METHODOLOGY APPLICABILITY ON MODELING THE CORRELATION AMONG GLOBAL MACROECONOMIC PARAMETERS

Analysis of nonlinear duopoly game with heterogeneous players

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM

General Examination in Macroeconomic Theory SPRING 2013

Lecture 6: Competitive Equilibrium in the Growth Model (II)

APPENDIX Should the Private Sector Provide Public Capital?

Dynamics and Chaos. Copyright by Melanie Mitchell

Macroeconomics II. Dynamic AD-AS model

Dynamic AD-AS model vs. AD-AS model Notes. Dynamic AD-AS model in a few words Notes. Notation to incorporate time-dimension Notes

Foundations of Modern Macroeconomics B. J. Heijdra & F. van der Ploeg Chapter 2: Dynamics in Aggregate Demand and Supply

The General Neoclassical Trade Model

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Economics 232c Spring 2003 International Macroeconomics. Problem Set 3. May 15, 2003

EURASIAN JOURNAL OF ECONOMICS AND FINANCE

1 Numbers, Sets, Algebraic Expressions

The Neo Fisher Effect and Exiting a Liquidity Trap

Multifractal Analysis and Local Hoelder Exponents Approach to Detecting Stock Markets Crashes

Chapter 4 AD AS. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

[Gahan*, 4(6): June, 2017] ISSN Impact Factor: 2.805

Lecture 2 The Centralized Economy

A Two-dimensional Mapping with a Strange Attractor

Co-existence of Regular and Chaotic Motions in the Gaussian Map

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Transcription:

Advances in Management & Applied Economics, vol. 4, no.5, 014, 53-6 ISSN: 179-7544 (print version), 179-755(online) Scienpress Ltd, 014 The Nonlinear Real Interest Rate Growth Model : USA Vesna D. Jablanovic 1 Abstract The article focuses on the chaotic real interest rate growth model. According to the classical theory, the interest rate is determined by the intersection of the investment demand-schedule and the saving-schedule. However, this model supposed that the real interest rate is determined by the intersection of the investment demand-schedule and net capital outflow schedule and the saving-schedule. The basic aim of this analysis is to set up a relatively simple chaotic real interest rate growth model that is capable of generating stable equilibria, cycles, or chaos. It is important to analyze the stability of the real interest growth in USA in the following periods: 1989-1993, 1998-004, and 007-011. A key hypothesis of this work is based on the idea that the coefficient π = b / g+e plays a crucial role in explaining local growth stability of the real interest rate, where, b - the coefficient of the investment function, g the coefficient of the net capital outflow function, e the coefficient of the saving function. The estimated values of the coefficient π are smaller than 1 in the observed periods. This result confirms decreasing real interest movement in USA in the observed periods. JEL classification numbers: E43, E1, E, F1. Keywords: Interest Rate, Saving, Investment, Net capital outflow. 1 Introduction Loanable funds is the sum total of all the money people in an economy has decided to save and lend out to borrowers as domestic investment and net capital outflow.the supply of loanable funds comes from national saving, including both private saving and public saving. The supply of loanable funds comes from those people who have decided not to spend some of their money but instead save it for investment purposes. One way to make an investment is to lend money to borrowers at a rate of interest. This national saving, including both private saving and public saving, makes up the supply of loanable funds. The demand for loanable funds comes from firms and households that want to borrow for 1 University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11081 Belgrade, Serbia. Article Info: Received : August 10, 014. Revised : September 6, 014. Published online : October 1, 014

54 Vesna D. Jablanovic purposes of (domestic or foreign) investment. To keep things simple, we use a version classical market analysis to describe the supply, demand and interest rates for loans in the market for loanable funds. Namely, the law of supply and demand is applicable in the market for loanable funds. The real interest rate in the economy adjusts to balance the supply and demand for loanable funds. According to the classical theory, the interest rate is determined by the intersection of the investment demand-schedule and the saving-schedule. However, this model supposed that the real interest rate is determined by the intersection of the investment demand-schedule and net capital outflow schedule and the saving-schedule. As the interest rate on loanable funds increases, the quantity of funds demanded will decrease. On the other hand, as the interest rate for loanable funds increase, the supply of loanable funds also increases. In this sense, the adjustment of the interest rate coordinates the the behavior of the suppliers of loanable funds and the behavior of the demanders of loanable funds. The real interest rate for loanable funds will reach equilibrium where demand for loanable funds equal the supply of loanable funds offered for investment. The following figure depicts the loanable fund market at equilibrium where S, national saving, equals supply, I equals investment, NCO equals net capital outflow, and r is the rate of real interest. Put the rate of real interest on the vertical axis. Put the flows of saving, investment and net capital outflow on the horizontal axis. Draw a downward-sloping desired investment curve I.. Draw a downward-sloping desired net capital outflow curve, NCO. Draw an upward-sloping desired saving curve S. Mark the point where the curves cross. Draw a horizontal line to the vertical axis, to find the equilibrium rate of real interest. The rate of interest is determined by the intersection of the desired saving and desired investment plus net capital outflow curves. Real S interest rate I I+NCO Loanable funds Figure 1: The Market for Loanable Funds In an open economy, government budget deficit, as a negative public saving, raises real interest rates, crowds out domestic investment, decreases net capital outflow, decreases the level of asset prices, causes the domestic currency to appreciate. A decrease in aggregate demand causes output and prices to fall. The recession may further increase budget deficit and public debt. National saving is the source of the supply of loanable funds. Domestic investiment and net capital outflow are the sources of the demand for loanable funds. At the equilibrium real interest rate, the amount that people wand to save exactly balances the amount that people

The Nonlinear Real Interest Rate Growth Model : USA 55 want to borrow for the purpose of buying domestic capital and foreign capital. At the equilibrium interest rate, the amount that people want to save exactly balances the desired quantities of domestic investment and net capital outflow. The supply and demand for loanable funds determine the real interest rate. The interest rate determine net capital outflow, which provides the supply of dollars in the market for foreign currency exchange. The supply and demand for dollars in the market for foreign-currency exchange determine the real exchange rate. In an open economy, government budget deficit raises real interest rates, crowds out domestic investment, decreases net capital outflow, decreases the productivity growth, decreases the level of asset prices, causes the domestic currency to appreciate. However this appreciation makes domestic goods and services more expensive compared to foreign goods and services. In this case, exports fall, and imports rise. Namely, net exports fall. Further, the real gross domestic product falls as a consequence of the negative open economy multiplier effects The basic aim of this analysis is to set up a relatively simple chaotic real interest rate growth model that is capable of generating stable equilibria, cycles, or chaos. It is important to analyze the stability of the real interest growth in USA in the following periods: 1989-1993, 1998-004, and 007-011. (http://data.worldbank.org/indicator/fr.inr.rinr In this sense it is important to estimate the saving function and the investment function. The estimated saving function (USA, 1989-013) is presented in Table 1. The estimated investment function (USA, 1989-013) is presented in Table. Table 1: The estimated saving function (S t = d+ e r t ) : USA, 1989-013 R=.818 Variance explained: 67.451% d Estimate 0.14876 0.750899 Std.Err. 0.00509 0.108766 t(3) 9.189 6.903777 p-level 0.00000 0.00000 Source: (www.imf.org) and (http://data.worldbank.org/indicator/fr.inr.rinr) Table : The estimated investment function ( I t = a+ b r t-1 c r t-1 ) : USA, 1989-013. R=.65933 Variance explained: 43.471% a b c Estimate 0.1681 1.946378 17.13817 Std.Err. 0.01480 0.815654 9.56899 t(1) 11.35633.38678 1.7910 p-level 0.00000 0.06511 0.0877 Source: (www.imf.org) and (http://data.worldbank.org/indicator/fr.inr.rinr) e

56 Vesna D. Jablanovic Chaos theory is used to prove that erratic and chaotic fluctuations can indeed arise in completely deterministic models. Chaos theory reveals structure in aperiodic, dynamic systems. Chaotic systems exhibit a sensitive dependence on initial conditions: seemingly insignificant changes in the initial conditions produce large differences in outcomes. This is very different from stable dynamic systems in which a small change in one variable produces a small and easily quantifiable systematic change. Chaos theory started with Lorenz's [1963] discovery of complex dynamics arising from three nonlinear differential equations leading to turbulence in the weather system. Li and Yorke [1975] discovered that the simple logistic curve can exibit very complex behaviour. Further, May [1976] described chaos in population biology. Chaos theory has been applied in economics by Benhabib and Day [1981, 198], Day [198, 1983], Grandmont [1985], Goodwin [1990], Medio [1993], Lorenz [1993], Jablanovic [ 01 014a, 014b], Puu, T. [003], Zhang W.B. [006], among many others. The Model Financial markets are like other markets. The price of loanable funds, the real interest rate, is goverened by the forces of supply (S t ) and demand (I t + NCO t ). In this sense, the chaotic real interest rate growth model can be described by the following equations : S t = I t + NCO t (1) I t = a + b r t-1 c r t-1 () S t = d + e r t (3) NCO t = f g r t (4) Where : S national saving; Y- the real gross domestic product; NCO net capital outflow (net foreign investment); I- investment; r the real interest rate; a,b, c the coefficients of the investment function; d, e the coefficients of the saving function, f, g - the coefficients of the net capital outflow function. It is supposed that a,d, and f are zero. By substitution one derives: b c r t = rt 1 rt 1 (5) g + e g + e Further, it is assumed that the current value of the real interest rate is restricted by its maximal value in its time series. This premise requires a modification of the growth law. Now, the real interest rate growth rate depends on the current size of the real interest rate, r, relative to its maximal size in its time series r m. We introduce y as i = r / r m. Thus i range between 0 and 1. Again we index i by t, i.e., write i t to refer to the size at time steps t = 0,1,,3,... Now growth rate of the real interest rate is measured as:

The Nonlinear Real Interest Rate Growth Model : USA 57 b c i t = it 1 it 1 (6) g + e g + e This model given by equation (6) is called the logistic model. For most choices of b, c, g, and e there is no explicit solution for (6). This is at the heart of the presence of chaos in deterministic feedback processess. Lorenz (1963) discovered this effect - the lack of predictability in deterministic systems. Sensitive dependence on initial conditions is one of the central ingredients of what is called deterministic chaos. This kind of difference equation (6) can lead to very interesting dynamic behavior, such as cycles that repeat themselves every two or more periods, and even chaos, in which there is no apparent regularity in the behavior of i t. This difference equation (6) will posses a chaotic region. Two properties of the chaotic solution are important: firstly, given a starting point i 0 the solution is highly sensitive to variations of the parameters b, c, g, and e; secondly, given the parameters b, c, g, and e, the solution is highly sensitive to variations of the initial point i 0. In both cases the two solutions are for the first few periods rather close to each other, but later on they behave in a chaotic manner. 3 The Logistic Model The logistic map is often cited as an example of how complex, chaotic behavior can arise from very simple non-linear dynamical equations. The logistic model was originally introduced as a demographic model by Pierre François Verhulst, who applied his logistic equation for population growth to demographic studies. This model is called the "logistic model" or the Verhulst model. It is possible to show that iteration process for the logistic equation (see Fig..) z t = π z t-1 ( 1 - z t-1 ), π [ 0,4 ], z t [ 0,1 ] (7) is equivalent to the iteration of growth model (6) when we use the identification c z t = i t (8) b and b π = (9) g + e Using (6) and (8) we obtain c z t = it = b c b it b g + e c i g + e = 1 t 1 =

58 Vesna D. Jablanovic c it g + e b c i 1 ( g + e) = 1 t On the other hand, using (7), (8) and (9) we obtain z t = π z t-1 ( 1 - z t-1 ) = b c it g + e b c i b = 1 1 t 1 c it g + e b c i 1 ( g + e) = 1 t Thus we have that iterating (6) is really the same as iterating (7) using (8) and (9). It is important because the dynamic properties of the logistic equation (7) have been widely analyzed (Li and Yorke [1975], May [1976]). It is obtained that : For parameter values 0 < π < 1 all solutions will converge to z = 0; For 1 < π < 3,57 there exist fixed points the number of which depends on π; For 1 < π < all solutions monotnically increase to z = (π-1 ) /π; For < π < 3 fluctuations will converge to z = (π - 1 ) / π; For 3 < π < 4 all solutions will continuously fluctuate; For 3,57 < π < 4 the solution become "chaotic" which means that there exist totally aperiodic solution or periodic solutions with a very large, complicated period. This means that the path of z t fluctuates in an apparently random fashion over time, not settling down into any regular pattern whatsoever.

The Nonlinear Real Interest Rate Growth Model : USA 59 b, c, g, e i t-1 The model (6) i t z t (8) π (9) z t z t = π z t-1 ( 1 z t-1 ) z t Figure : Two quadratic iteratiors running in phase are tightly coupled by the transformations indicated 4 Empirical Evidence The main aim of this paper is to analyze the real interest growth rate stability ( see Fig. 3) in the following periods: 1989-1993, 1998-004, and 007-011., in USA by using the presented non-linear real interest rate growth model (10) : i t = π i t-1 β i t-1 (10) where: i the real interest rate, π = b/g+e, β = c/g+e.

60 Vesna D. Jablanovic Figure 3: The real interest rate in USA,1989-013. Source: (http://data.worldbank.org/indicator/fr.inr.rinr) Firstly, data on the real interest rate are transformed from 0 to 1, according to our supposition that actual value of the real interest rate, r, is restricted by its highest value in the time-series, r m. Further, we obtain time-series of i =r /r m. (http://data.worldbank.org/indicator/fr.inr.rinr)

The Nonlinear Real Interest Rate Growth Model : USA 61 Table 3: The estimated model (10) 1989-1993 1998-004 R=.96130 Variance explained: 9.410% π β Estimate 0.74883-1.91808 Std.Err. 0.15 3.75494 t(3) 3.35387-0.5108 p-level 0.078567 0.6608 R=.9169 Variance explained: 84.95 % π β Estimate 0.57034-4.19608 Std.Err. 0.35598 5.56885 t(5) 1.60358-0.75349 p-level 0.184336 0.49308 R=.9093 Variance explained: 84.81% π β Estimate 0.997568 0.674571 Std.Err. 0.149408 0.98465 t(3) 0.67685.60134 p-level 0.006851 0.10891 Source: (http://data.worldbank.org/indicator/fr.inr.rinr 007-011 5 Conclusion This paper creates the simple chaotic real interest rate growth model. The model (6) has to rely on specified parameters b, c, g, and e, and initial value of the real interest rate, i 0. This difference equation (6) will posses a chaotic region. Two properties of the chaotic solution are important: firstly, given a starting point i 0 the solution is highly sensitive to variations of the parameters b, c, g, and e; secondly, given the parameters b,c, g, and e the solution is highly sensitive to variations of the initial point i 0. In both cases the two solutions are for the first few periods rather close to each other, but later on they behave in a chaotic manner. A key hypothesis of this work is based on the idea that the coefficient π = b / g+e plays a crucial role in explaining local growth stability of the real interest rate, where, b - the coefficient of the investment function, g the coefficient of the net capital outflow function, e the coefficient of the saving function. The estimated values of the coefficient π are smaller than 1 in the observed periods (0.74883; 0.57034; 0.997568). This model confirms decreasing real interest rate movement in USA in the observed periods.

6 Vesna D. Jablanovic References [1] Benhabib, J., and Day, R. H.» Rational choice and erratic behaviour.«review of Economic Studies, 48. 1981, pp. 459-471. [] Benhabib, J.,and Day, R. H.»Characterization of erratic dynamics in the overlapping generation model«journal of Economic Dynamics and Control, 4, 198, pp. 37-55. [3] Day, R. H.»Irregular growth cycles. American Economic Review«, 7, 198, pp. 406-414. [4] Day, R. H.»The emergence of chaos from classica economic growth«, Quarterly Journal of Economics, 98, 1983, pp. 00-13. [5] Goodwin, R. M.»Chaotic economic dynamics«, Oxford: Clarendon Press, 1990. [6] Grandmont, J. M. «On enodgenous competitive business cycles«, Econometrica, 53,1985, pp. 994-1045 [7] Jablanović, V.»Budget Deficit and Chaotic Economic Growth Models Aracne editrice S.r.l, Roma, 01. [8] Jablanović V. "The Chaotic Inflation Growth Model: The Euro Area Advances in Management and Applied Economics Volume 4, issue, 014a. pg. 91-98 [9] Jablanović V. The Simple Chaotic Monopoly Price Growth Model and Third- Degree Price Discrimination Advances in Management and Applied Economics Volume 4, issue 4, 014b. pg. 1-9 [10] Li, T., and Yorke, J.»Period three implies chaos«, American Mathematical Monthly, 8, 1975, pp. 985-99. [11] Lorenz, E. N.» Deterministic nonperiodic flow«, Journal of Atmospheric Sciences, 0, 1963, pp. 130-141. [1] Lorenz, H. W.»Nonlinear dynamical economics and chaotic motion«(nd ed.). Heidelberg: Springer-Verlag, 1993. [13] May, R. M.» Mathematical models with very complicated dynamics«, Nature, 61, 1976, pp 459-467. [14] Medio, A.»Chaotic dynamics: Theory and applications to economics«, Cambridge: Cambridge University Press,1993. [15] Puu, T. Attractors, Bifurcations, and Chaos - Nonlinear Phenomena in Economics, Springer, 003. [16] Zhang W.B. Discrete Dynamical Systems, Bifurcations and Chaos in Economics, Elsevier B.V, 01. [17] www.imf.org [18] http://data.worldbank.org/indicator/fr.inr.rinr