Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Similar documents
. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since f(z) = w 0 + 1

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

Math Final Exam.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MA3111S COMPLEX ANALYSIS I

Complex Analysis Important Concepts

Part IB Complex Analysis

Math Homework 2

Part IB. Further Analysis. Year

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities

13 Maximum Modulus Principle

Solutions to Complex Analysis Prelims Ben Strasser

Exercises for Part 1

MATH FINAL SOLUTION

COMPLEX ANALYSIS Spring 2014

5.3 The Upper Half Plane

Complex Analysis Topic: Singularities

III. Consequences of Cauchy s Theorem

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

z b k P k p k (z), (z a) f (n 1) (a) 2 (n 1)! (z a)n 1 +f n (z)(z a) n, where f n (z) = 1 C

Part IB. Complex Analysis. Year

LAURENT SERIES AND SINGULARITIES

f(w) w z =R z a 0 a n a nz n Liouville s theorem, we see that Q is constant, which implies that P is constant, which is a contradiction.

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Solutions to practice problems for the final

= 2 x y 2. (1)

Synopsis of Complex Analysis. Ryan D. Reece

Math 185 Fall 2015, Sample Final Exam Solutions

f(w) f(a) = 1 2πi w a Proof. There exists a number r such that the disc D(a,r) is contained in I(γ). For any ǫ < r, w a dw

18.04 Practice problems exam 2, Spring 2018 Solutions

III.2. Analytic Functions

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours.

Complex Analysis Qualifying Exam Solutions

Chapter 4: Open mapping theorem, removable singularities

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

MORE CONSEQUENCES OF CAUCHY S THEOREM

CONSEQUENCES OF POWER SERIES REPRESENTATION

Complex Analysis. Travis Dirle. December 4, 2016

Assignment 2 - Complex Analysis

Math 220A - Fall Final Exam Solutions

MATH8811: COMPLEX ANALYSIS

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Exercises for Part 1

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Functions of a Complex Variable and Integral Transforms

R- and C-Differentiability

Complex Analysis Homework 9: Solutions

Theorem Let J and f be as in the previous theorem. Then for any w 0 Int(J), f(z) (z w 0 ) n+1

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

Course 214 Basic Properties of Holomorphic Functions Second Semester 2008

Complex Analysis Qual Sheet

Conformal Mappings. Chapter Schwarz Lemma

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Properties of Analytic Functions

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Solutions for Math 411 Assignment #10 1

4.5 The Open and Inverse Mapping Theorem

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

Complex Series (3A) Young Won Lim 8/17/13

2 Complex Functions and the Cauchy-Riemann Equations

MATH SPRING UC BERKELEY

Qualifying Exam Complex Analysis (Math 530) January 2019

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain

Part IB Complex Analysis

Taylor and Laurent Series

Solutions for Problem Set #5 due October 17, 2003 Dustin Cartwright and Dylan Thurston

Complex Analysis Slide 9: Power Series

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

Complex Variables. Cathal Ormond

Chapter 13: Complex Numbers

A RAPID INTRODUCTION TO COMPLEX ANALYSIS

Complex Analysis Problems

POWER SERIES AND ANALYTIC CONTINUATION

Introductory Complex Analysis

Selected Solutions To Problems in Complex Analysis

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Complex Analysis. Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems. August 8, () Complex Analysis August 8, / 7

11 COMPLEX ANALYSIS IN C. 1.1 Holomorphic Functions

Solution for Final Review Problems 1

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015

Suggested Homework Solutions

LECTURE-20 : ISOLATED SINGULARITIES. A punctured domain is an open set with a point removed. For p Ω, we use the notation

Complex Analysis I Miniquiz Collection July 17, 2017

Math 185 Homework Problems IV Solutions

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials.

Quasi-conformal maps and Beltrami equation

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Chapter 30 MSMYP1 Further Complex Variable Theory

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

Complex Analysis Study Guide

Math 220A Fall 2007 Homework #7. Will Garner A

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1

MA 412 Complex Analysis Final Exam

Transcription:

2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such f is infinitely many times complex differentiable, we see that u is infinitely many times real differentiable in D(z 0, r). Since D(z 0, r) U can be chosen arbitrarily, we see that every harmonic function is infinitely many times real differentiable. 3. If U is simply connected, we may use the following method to find a harmonic conjugate of u. Here is an example. Let u(x, y) x 2 + 2xy y 2. Then u xx + u yy 2 2 0. So u is harmonic in R 2. We now find a harmonic conjugate of u. If v is a harmonic conjugate, then v y u x 2x+2y. Thus, v 2xy +y 2 +h(x), where h(x) is a differentiable function in x. From u y v x, we get 2y 2x 2y + h (x). So we may choose h(x) x 2. So one harmonic conjugate of u is 2xy + y 2 x 2. Theorem 3.8.3. [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) 2π u(z 0 + re iθ )dθ; 2π 0 u(z 0 ) πr 2 u(z)dxdy. z z 0 r Proof. Since D(z 0, R) is simply connected, there is f holomorphic on D(z 0, R) such that u Re f. From the Mean Value Theorem for holomorphic functions, the two formulas hold with f in place of u. Then we can obtain the formulas for u by taking the real parts. Corollary 3.8.. With the above setup, if u attains its maximum at z 0, then u is constant in D(z 0, R). Proof. We have seen a similar proposition, which says that if f is holomorphic in D(z 0, R), and f attains its maximum at z 0, then f is constant in D(z 0, R). A similar proof can be used here. Here is another proof. Let f be analytic such that u Re f. Then e f is also analytic, and e f e u. Since u attains its maximum at z 0, e f also attains its maximum at z 0. An earlier proposition shows that e f is constant, which implies that u log e f is constant. Theorem 3.8.4. [Maximum Principle for Harmonic Functions] Let u be harmonic in a domain U. (i) Suppose that u has a local maximum at z 0 U. Then u is constant. (ii) If U is bounded, and u is continuous on U, then there is z 0 U such that u(z 0 ) max{u(z) : z U}. (iii) The above statements also hold if maximum is replaced by minimum. 52

Proof. (i) From the above corollary, there is r 0 > 0 such that u is constant in D(z 0, r 0 ). We can not apply the uniqueness theorem to u because u is not harmonic. However, f : u x iu y is holomorphid on U and vanishes on D(z 0, r 0 ). Applying the uniqueness theorem to f and using that U is connected, we conclude that f is constant 0 on U. Thus, u x u y 0 on U. Using the connectedness of U, we can then conclude that u is constant on U. (ii) Since U is bounded, U is compact. Since u is continuous on U, it attains its maximum at some w 0 U. If w 0 U, we may let z 0 w 0. If w 0 U, then (i) implies that u is constant in U. The continuity then implies that u is constant in U. We may take z 0 to by any point on U. (iii) Note that u is also harmonic, and when u attains its maximum, u attains its minimum. Corollary 3.8.2. Suppose u and v are both harmonic in a bounded domain U and continuous on U. Suppose that u v on U. Then u v on U. Proof. Let h u v. Then h is harmonic in U, continuous on U, and h 0 on U. From the above theorem, h attains its maximum and minimum at U. So h has to be 0 everywhere, i.e., u v in U. The above corollary says that, if u is harmonic in a bounded domain U and continuous on U, then the values of u on U are determined by the values of u on U. Remark. The smoothness, mean value theorem and the maximum principle also hold for harmonic functions in R n for n 3. But the technique of complex analysis can not be used. Homework. Chapter VIII, : 7 (a,b,c,e).. Find all real-valued C 2 differentiable functions h defined on (0, ) such that u(x, y) h(x 2 + y 2 ) is harmonic on C \ {0}. 53

Chapter 4 Calculus of Residues 4. Laurent Series The Laurent series (centered at 0) is of the form a n z n, where a n, n Z, are complex numbers. It converges iff the following two series both converges: a n z n, a n z n. The first is a power series. The second can also be transformed into a power series: a n z n a n (/z) n. n Suppose the radius of a n z n is R +, and the radius of a n w n is R. Then a nz n converges when z < R + and /z < R, i.e., /R < z < R +. Suppose that /R < R +. Let R R +, r /R, and let A be the annulus {r < z < R}. Let f + (z) a nz n, g (w) n a nw n, and f (z) g (/z). Then f + is holomorphic in D(0, R + ) D(0, R) and g is holomorphic in D(0, R ). So f is holomorphic in { z > /R } { z > r}, and f f + + f is holomorphic in A. Moreover, we have f +(z) na nz n and g (w) n na nw n. Using chain rule, we get f (z) g ( z ) z 2 na n z n n k ka k z k. 54

Thus, the derivative of f f + + f is f (z) na n z n. Theorem 4... Let r < R [0, ]. Suppose that f is holomorphic on A {z : r < z < R}. Then f has a Laurent expansion: a n z n, z A, where a n dz, n Z, r < t < R. (4.) 2πi z t zn+ In the proof we will use the Laurent series expansion of a particular function z z 0, where z 0 C \ {0} is fixed. Let r z 0. Note that f is holomorphic in the disc { z < r} and the annulus {r < z < }. In the disc, we have z/z 0 <, so z ( 0 z ) n z n z 0. z/z 0 z 0 This means that a n 0 if n < 0; a n /z0 n+ if n 0. In the annulus, we have z 0 /z >, so /z z 0 /z z ( z0 ) n z z n 0 z n+ z n+ 0 m z m z0 m+ That is, a n 0 if n 0, a n /z0 n+ if n < 0. The above method can be used to derive the Laurent series of more complicated functions. Here is an example. Let (z 2)(z 4). Then f is holomorphic on three annuli: { z < 2}, {2 < z < 4}, and {4 < z }. We will find the Laurent series expansion of f in each annulus. For this purpose, we first express f as a z 2 + b z 4, where a, b C are to be determined. After a reduction of fractions, we find that a /2 and b /2. Now we have z 2 z n z, z < 2; (4.2) 2 2n z 2 /z 2 z 2 n z n+ 55 z n, z > 2; (4.3) 2n+.

z 4 z 4 /z 4 z z 4 4 n z n+ z n, z < 4; (4.4) 4n z n, z > 2. (4.5) 4n+ Then the Laurent series expansion of f in { z < 2} equals to ( /2) (4.2) plus /2 (4.4); that in {2 < z < 4} equals to ( /2) (4.3) plus /2 (4.4); and that in {4 < z } equals to ( /2) (4.3) plus /2 (4.5). Proof of the above theorem. First, from Cauchy s theorem, the value of each a n does not depend on t. Let z 0 A. Pick s < S (r, R) such that s < z 0 < S. Let ε min{ z 0 s, S z 0 }/2 > 0. Let J { z S}, J 2 { z s}, and J 3 { ε}. Then J 2 and J 3 lie inside J. The function z z 0 is holomorphic on J, J 2, J 3, and the domain bounded by these circles. From Cauchy s Theorem and Cauchy s formula, J Now we expand z z 0 dz using J 2 dz J 3 dz 2πif(z 0 ). /z z 0 /z z0 n z n+, z J. /z 0 z/z 0 J k0 z k+ 0 z k k z n 0 z n+, z J 2. The first holds because z 0 /z < for z J. The second holds because z/z 0 < for z J 2. Thus, 2πif(z 0 ) dz dz J J 2 z n 0 z0 n dz + zn+ z n+ dz. J 2 If the infinite sums exchange with the integrals, we have 2πif(z 0 ) ( J ) z n+ dz z0 n + ( J 2 ) z n+ dz z0 n 2πia n z n 0. (4.6) It remains to show that the two series inside the integrals converge uniformly on the curves. Note that, for z J, zn 0 z 0 n z n+ f J R n+, 56

and from z 0 /R <, we find that z 0 n f J R n+ f J R From comparison principle, we see that z J 2, and from z 0 /r >, we find that zn 0 z 0 n z n+ f J2 r n+, z 0 n f J2 r n+ f J 2 r ( z0 ) n <. R z n 0 z n+ converges uniformly over z J. For k ( r ) k <. z 0 From comparison principle, we see that proof is now finished. z n 0 z n+ converges uniformly over z J 2. The Theorem 4..2. The Laurent series expansion of the above f is unique. Proof. We leave this as a homework problem. Remark. We will not use (4.) to calculate the coefficients a n. Instead, we will find the a n using other methods, and then use (4.) together with the uniqueness of the Laurent series expansion to calculate the value of integrals z t dz for n Z. z n+ For example, the Laurent series expansion of e /z is (/z) n n! 0 z n ( n)!. So a n 0 if n > 0 and a n /( n)! if n 0. A similar example is e /z2 ( /z2 ) n n!. Then we have e /z dz 2πia 2πi. z Similarly, if f is holomorphic in A {r < < R}, then f has a unique Laurent series expansion in A: a n ( ) n, where Homework. Chapter V 2: 4, 8 Additional: a n dz, n Z, r < t < R. 2πi z z 0 t ( ) n+ 57

. Suppose that f is holomorphic in A {r < z < R}, where 0 r < R. Suppose that there are two series of complex numbers (a n ) n Z and (b n ) n Z such that a n z n b n z n, z A. Show that a n b n for all n Z. This means that the Laurent series expansion is unique. Hint: It suffices to show that if f 0, then a n 0 for all n. Use a nz n a nz n to construct a bounded entire function. 2. Suppose f is holomorphic in {r < z < R}. Prove that for any s (r, R), f (z) z n dz n dz, n Z. zn+ z s 4.2 Isolated Singularities Suppose f is holomorphic in U, z 0 U, but there is r > 0 such that D(z 0, r)\{z 0 } U. Then we say that z 0 is an isolated singularity of f. Then f has a Laurent expansion in {0 < z z 0 < r}: where z s a n ( ) n, (4.7) a n dz, n Z, t (0, r). (4.8) 2πi z z 0 t ( ) n+ Case : a n 0 for all n N. Then (4.7) becomes the usual power series a n(z z 0 ) n, which converges to a holomorphic function in { < r}. Thus, if we define f(z 0 ) a 0, then f is holomorphic in U {z 0 }. In this case, we call z 0 a removable singularity. Case 2: Not all a n, n N, equal to 0, and there are only finitely many nonzero a n. We may find m N such that a m 0 and a n 0 for n > m. In this case, we call z 0 a pole of f of order m. We find that z 0 is a removable singularity of g(z) : ( ) m, and g(z 0 ) a m 0. A pole of order is called a simple pole. Case 3: There are infinitely many nonzero a n, n N. In this case, we call z 0 an essential singularity of f. For any m N, z 0 is still a (essential) singularity of ( ) m. Suppose there is m Z such that a m 0 and for all n < m, a n 0. This means that z 0 is either a removable singularity or a pole, and f is not constant 0 near z 0. In this case, we say that the order of f at z 0 is m, and write ord z0 f m. We see that ord z0 f m if and only if there is a holomorphic function g in D(z 0, r) with g(z 0 ) 0 such that ( ) m g(z). If m 0, z 0 is removable. If m, z 0 is a zero 58

of f after removing the singularity, and we say that z 0 is a zero of f of order m. A zero of order is called a simple zero. Since a n f (n) (z 0 ) n!, z 0 is a zero of order m iff f (k) (z 0 ) 0 for 0 k m and f (m) (z 0 ) 0. If m < 0, z 0 is a pole of f of order m. Note that if f and g are holomorphic at z 0, and if f(z 0 ), g(z 0 ) 0, then h fg and h 2 f/g are both holomorphic at z 0, and h (z 0 ), h 2 (z 0 ) 0. This means that ord z0 f ord z0 g 0 implies that ord z0 (fg) ord z0 (f/g) 0. Now if ord z0 f m and ord z0 g n, then there are F and G, which are holomorphic at z 0 with F (z 0 ), G(z 0 ) 0, such that ( ) m F (z) and g(z) ( ) n G(z). Then we get g(z) ( ) m+n F (z)g(z), /g(z) ( ) m n F (z)/g(z). Thus, we have ord z0 (f g) ord z0 f + ord z0 g, ord z0 (f/g) ord z0 f ord z0 g. Examples.. We have ord z0 0 for any z 0 C, ord 0 z ord 0 sin z (because the derivative of z and sin z does not vanish at 0). Thus, ord 0 /z ord 0 / sin z, which implies that 0 is a simple pole of /z and / sin z. From ord 0 sin z/z ord 0 sin z ord 0 z 0, we see that 0 is a removable singularity of sin z/z. After removing the singularity 0, we extend sin z/z to an entire function. 2. Since the Laurent series expansion of e /z at 0 is 0 zn ( n)!, there are infinitely many n < 0 such that a n 0. So 0 is an essential singularity of e /z. Definition 4.2.. Let U be an open set. Suppose that S U has no accumulation point in U. If f is holomorphic on U \ S, and each z 0 S is a pole of f, then we say that f is meromorphic on U. A meromorphic function may be constructed by the quotient of two holomorphic functions. Suppose f and g are holomorphic in a domain U such that g is not constant 0. Let Z denote the set of zeros of g. Then Z has no accumulation point in U. Let h f/g. Then h is holomorphic in U \ Z. Every z Z is either a removable singularity or a pole of h depending on whether ord z f ord z g. By extending h to be analytic on the removable singularities, we obtain a meromorphic function on U. Examples. The quotient of two polynomials is called a rational function, which a meromorphic on C. The functions tan z sin z cos z cos z and cot z sin z are meromorphic in C. For tan z, since the zeroes of cos z are kπ + π/2, k Z, which are simple because cos z sin z 0 at kπ + π/2, and since sin(kπ + π/2) 0, we find that every kπ + π/2 is a simple pole of tan z. Similarly, cot z is also a meromorphic function in C, whose poles are kπ, k Z, and every pole is simple. Homework. For each of the following functions, find all of its singularities, and determine the type of each singularity. If a singularity is a pole, also find the order of this pole. (a) cos(/z); (b) sin z cos z ; (c) z sin z. 59

Now we describe the behavior of f near an isolated singularity of each kind. We will always assume that z 0 is a singularity of f, and f is holomorphic on D(z 0, r) \ {z 0 }. Theorem 4.2.. z 0 is a removable singularity of f f is bounded in D(z 0, r ) \ {z 0 } for some r (0, r). Proof. Since the extended f is continuous at z 0, there is r (0, r) such that f(z 0 ) < for z D(z 0, r), which implies that f(z 0 ) + in D(z 0, r ) \ {z 0 }. Suppose M on D(z 0, r ) \ {z 0 }. From (4.8), we see that, for any t (0, r ), a n 2π Mt n L({ t}) Mt n, n Z. If n, then t n 0 as t 0, which implies that a n 0 for n. Theorem 4.2.2. z 0 is a pole of f lim z z0. Proof. z 0 is a pole of f z 0 is a zero of /f lim z z0 / 0 lim z z0. Here that lim z z0 / 0 implies z 0 is a zero of /f follows from the above theorem: we first conclude that z 0 is a removable singularity of /f using the boundedness of /f near z 0, and then use the limit to see that the extended value of /f at z 0 is 0. Recall that S C is dense in C if S C, which is equivalent to the following: for any w 0 C and r > 0, D(w 0, r) S. Theorem 4.2.3. z 0 is an essential singularity of f for any t (0, r), f(d(z 0, t) \ {z 0 }) is dense in C. Proof. We first prove the part. Assume that f(d(z 0, t)\{z 0 }) is dense in C for any t (0, r). If z 0 is a removable singularity, then lim z z0 exists. So there is t (0, r) such that f(d(z 0, t) \ {z 0 }) is contained in a disc, so it can not be dense in C. If z 0 is a pole, then lim z z0. Then there is t (0, r) such that f(d(z 0, t) \ {z 0 }) { z > }, which also can not be dense in C. So z 0 must be an essential singularity. Then we prove the part. Assume that z 0 is an essential singularity, but f(d(z 0, t) \ {z 0 }) is not dense in C for some t (0, r). Then there exist w 0 C and ε > 0 such that w 0 r for every z D(z 0, t) \ {z 0 }. Let g(z) w 0. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since w 0 + g(z) for z U, we see that z 0 is either a removable singularity (if g(z 0 ) 0) or a pole (if g(z 0 ) 0) of f, which is a contradiction. Remark. Actually, it is known that the f(d(z 0, t) \ {z 0 }) in the above theorem is either the whole C or C without a single point. Using a homework problem, one can show that, if e /z, then for any r > 0, f(d(0, r) \ {0}) C \ {0}. 60