Cold atom gyroscope with 1 nrad.s -1 rotation stability

Similar documents
State of the art cold atom gyroscope without dead times

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Absolute gravity measurements with a cold atom gravimeter

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Atom interferometry in microgravity: the ICE project

Towards compact transportable atom-interferometric inertial sensors

Advanced accelerometer/gradiometer concepts based on atom interferometry

Characterization and limits of a cold atom Sagnac interferometer

Cold atom interferometers for inertial measurements. Arnaud Landragin

Atomic Quantum Sensors and Fundamental Tests

Progress on Atom Interferometer (AI) in BUAA

arxiv: v1 [physics.atom-ph] 19 Jun 2014

Point source atom interferometry with a cloud of finite size

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Travaux en gravimétrie au SYRTE

New Searches for Subgravitational Forces

Fundamental Physics with Atomic Interferometry

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Precision atom interferometry in a 10 meter tower

Atom interferometry applications in gravimetry

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Atom Quantum Sensors on ground and in space

Forca-G: A trapped atom interferometer for the measurement of short range forces

Lecture 2:Matter. Wave Interferometry

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

Gravitational tests using simultaneous atom interferometers

arxiv: v2 [gr-qc] 6 Jan 2009

Atom Interferometry I. F. Pereira Dos Santos

Detecting inertial effects with airborne matter-wave interferometry

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Status of the ACES/PHARAO mission

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

arxiv: v1 [physics.atom-ph] 17 Dec 2015

arxiv: v1 [physics.ins-det] 25 May 2017

arxiv: v1 [physics.atom-ph] 17 Jan 2017

Gottfried Wilhelm Leibniz Universität Hannover

Christian J. Bordé. Bruxelles, mai 2018

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors

arxiv: v1 [physics.atom-ph] 30 May 2017

Atom Interferometry II. F. Pereira Dos Santos

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Optical Lattice Clock with Neutral Mercury

RDECOM. Optimal pulse schemes for high-precision atom interferometry U.S.ARMY. Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

EE 570: Location and Navigation

A Laser gyroscope system to detect gravito-magnetic effect on Earth. (G-GranSasso, INFN Comm. II)

arxiv: v1 [physics.atom-ph] 31 Aug 2008

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Recent Advances in High Resolution Rotation Sensing

Quantum superposition at the half-metre scale

An ultra-stable thermal environment in high precision optical metrology

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Large Momentum Beamsplitter using Bloch Oscillations

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Atom Interferometry Measurements of Atomic Polarizabilities and Tune-out Wavelengths

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

Test of special relativity using a fiber network of optical clocks

arxiv: v3 [physics.atom-ph] 16 Oct 2015

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

Pioneer anomaly: Implications for LISA?

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

CDF. Antimatter Gravity Experiment. An Opportunity for Fermilab to (potentially) Answer Three of the Big Questions of Particle Physics

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Atom Interferometry. Prof. Mark Kasevich Dept. of Physics and Applied Physics

Testing General Relativity with Atom Interferometry

Comparison of 3 absolute gravimeters based on different methods for the e-mass project

LISA Technology: A Status Report

TOBA: Torsion-Bar Antenna

How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle

Principes pour le fonctionnement des capteurs quantiques interféromètres et horloges. A. Landragin

High energy X-ray vortex generation using inverse Compton scattering

HOLGER MÜLLER BIOGRAPHY. Research Area(s): Atomic, Molecular and Optical Physics ASSOCIATE PROFESSOR. Office: 301C LeConte

Quantum Optics. Manipulation of «simple» quantum systems

A Terrestrial, Atom Interferometer, Experiment Searching for Dark Energy Density and Other Dark Contents of the Vacuum

Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006

arxiv: v1 [physics.atom-ph] 7 Dec 2018

Rotation sensing with trapped ions

Tests of fundamental physics using atom interferometry

Day 3: Ultracold atoms from a qubit perspective

Inertial Navigation and Various Applications of Inertial Data. Yongcai Wang. 9 November 2016

Atom Interferometry. Abstract

Mobile and remote inertial sensing with atom interferometers

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

NanoKelvin Quantum Engineering

Introduction to intense laser-matter interaction

Compensation of gravity gradients and rotations in precision atom interferometry

QND for advanced GW detectors

A proposal to measure the speed of propagation of gravitational phenomena

Transcription:

Cold atom gyroscope with 1 nrad.s -1 rotation stability D. Savoie, I. Dutta, B. Fang, B. Venon, N. Miélec, R. Sapam, C. Garrido Alzar, R. Geiger and A. Landragin LNE-SYRTE, Observatoire de Paris IACI team GPHYS 2016 06/07/2016 I. Dutta et al., Phys. Rev. Lett. 116, 183003

Outline Application of cold atom inertial sensors for fundamental physics Principles of atom interferometry Cold atom gyroscope at SYRTE GPHYS 2016 2

Applications Inertial Navigation: onboard accelerometers or gyroscopes Inertial navigation : Accelerometers and gyroscopes Canuel et al, PRL (2006) Geiger et al, Nature Comm. (2011) GPHYS 2016 3

Applications Inertial Navigation: onboard accelerometers or gyroscopes Geosciences: monitoring global phenomena through Ω Earth t, g t Fang et al, arxiv:1601.06082 Freier et al, arxiv:1512.05660 Geoscience: Measurements of Earth rotation with gyroscopes Measurement of gravity with gravimeters GPHYS 2016 4

Applications Inertial Navigation: onboard accelerometers or gyroscopes Geosciences: monitoring global phenomena through Ω Earth t, g t Fundamental physics (e.g. test of equivalence principle, Lorentz invariance tests) Example: weak equivalence principle test: simultaneous acceleration measurement with 2 types of atoms in free fall. - State of the art with cold atoms : δa a = 10 8 - Perspective : δa a = 10 15 Zhou et al, PRL (2015) Aguilera, CQG (2014) GPHYS 2016 5

Applications Inertial Navigation: onboard accelerometers or gyroscopes Geosciences: monitoring global phenomena through Ω Earth t, g t Fundamental physics (e.g. test of equivalence principle, Lorentz invariance tests) Gravitational wave detection below 10 Hz Dimopoulos et al, PRD (2008) Chaibi et al, 2016 PRD (2016) Gravitational wave detection: Detection of GW of lower frequencies than Earth-based optical detectors GPHYS 2016 6

Applications Inertial Navigation: onboard accelerometers or gyroscopes Geosciences: monitoring global phenomena through Ω Earth t, g t Fundamental physics (e.g. test of equivalence principle, Lorentz invariance tests) Gravitational wave detection below 10 Hz Fang et al, arxiv:1601.06082 Freier et al, arxiv:1512.05660 Dimopoulos et al, PRD (2008) Chaibi et al, 2016 PRD (2016) Canuel et al, PRL (2006) Geiger et al, Nature Comm. (2011) Zhou et al, PRL (2015) GPHYS 2016 Aguilera, CQG (2014) 7

Principles of atom interferometry I 2 I 1 I in I 1 1 2 1 cos I in Optical Mach-Zehnder t X T T Light -> Matter waves Mirrors and separators -> Light pulses Output channel intensity -> Transition Probability /2 /2 Atomic Mach-Zehnder P f, p e, p k 1 2 1 cos GPHYS 2016 8

Why an atomic gyroscope? Sagnac effect GPHYS 2016 9

Why an atomic gyroscope? Sagnac effect With photons : A : cm² to m² E~1eV In general : ΔΦ Ω = 4πE hc² AΩ energy Physical area of the interferometer GPHYS 2016 10

Why an atomic gyroscope? Sagnac effect With photons : A : cm² to m² E~1eV With atoms : A : mm² to cm² E~10 11 ev In general : ΔΦ Ω = 4πE hc² AΩ energy Physical area of the interferometer GPHYS 2016 11

4-pulse gyroscope GPHYS 2016 12

Sensitivity of the Gyroscope 800 ms interrogation time -> 11 cm² Sagnac area 1 rad.s -1 rotation rate signal -> 4,6x10 6 rad phase shift in the AI GPHYS 2016 13

The SYRTE cold atom gyroscope Long interrogation time -> large area : 11 cm² Big scale factor : 1 rad/s ->4,6x10 6 rad (Earth rotation rate: 7,3x10-5 rad/s) Allows no-dead-time operation A few 10 7 Cs atoms at 1,2 µk launched at 5 m/s I. Dutta, PhD Thesis GPHYS 2016 14

Hybrid measurement with vibration sensors Sensitivity function to parasitic accelerations Atomic Gyroscope Mecanical Accelerometers GPHYS 2016 15

Continuous measurements Sequential operation of cold atom interferometers Cycle time T c Cooling AI Detection Cooling AI Detection Dead time T D Leads to loss of information GPHYS 2016 16

Usual measurement cycle π π/2 detection preparation Interrogation Dead -time Interrogation Dead -time Interrogation time GPHYS 2016 17

Continuous Measurements On our experiment π π/2 detection preparation Interrogation Interrogation Interrogation time GPHYS 2016 18

Rotation measurement Fit by packet with the estimated vibration phase -> the useful signal is the phase offset of the fit of each packet GPHYS 2016 19

Performances Short term: 100nrad.s -1.Hz -1 I. Dutta et al., Phys. Rev. Lett. 116, 183003 Long term stability: 1 nrad/s @10000 s GPHYS 2016 20

Conclusion Cold-atom interferometers can be used for various applications We demonstrated a continuous measurement in an AI We operated a cold atom gyroscope with a stability of 1 nrad/s : state of the art Perspective for fundamental physics: Use the experiment as an horizontal accelerometer to test Lorentz invariance GPHYS 2016 21

Ranjita Sapam Carlos Garrido Alzar Remi Geiger Indranil Dutta Bess Fang Denis Savoie Arnaud Landragin Nicolas Mielec IACI team of SYRTE, Jan. 2015

Thank you for your attention!