Charged Cosmic Ray Physics

Similar documents
Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

P A M E L A Payload for Antimatter / Matter Exploration and Light-nuclei Astrophysics

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

Air Shower Measurements from PeV to EeV

Indirect Dark Matter Detection

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Cosmic Rays: high/low energy connections

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition

arxiv: v1 [astro-ph.he] 28 Jan 2013

Measurements of Particle Fluxes in Space

Mass Composition Study at the Pierre Auger Observatory

Measurement of the CR e+/e- ratio with ground-based instruments

Dr. John Kelley Radboud Universiteit, Nijmegen

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

UHE Cosmic Rays in the Auger Era

The Pierre Auger Observatory Status - First Results - Plans

Results from the PAMELA Space Experiment

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Primary CR Energy Spectrum and Mass Composition by the Data of Tunka-133 Array. by the Tunka-133 Collaboration

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

From the Knee to the toes: The challenge of cosmic-ray composition

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Ultrahigh Energy cosmic rays II

Hadronic interactions of ultra-high energy cosmic rays

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

THE AMS RICH COUNTER

Latest results and perspectives of the KASCADE-Grande EAS facility

Topic 7. Relevance to the course

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

OVERVIEW OF THE RESULTS

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Indirect Search for Dark Matter with AMS-02

Recent results from the Pierre Auger Observatory

Ultra High Energy Cosmic Rays: Observations and Analysis

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

Measurement of air shower maxima and p-air cross section with the Telescope Array

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

High Energy Neutrino Astronomy

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

HAWC and the cosmic ray quest

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration

Observation of UHECRs in horizontal flux

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Experimental review of high-energy e e + and p p spectra

Ultra High Energy Cosmic Rays I

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

(High-Energy) Cosmic Rays

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Cosmic Antimatter. Stéphane. Coutu The Pennsylvania State University. 3 rd. Astrophysics Arequipa,, Peru August 28-29, 29, 2008

ISAPP Gran Sasso June 28-July 9, Observations of Cosmic Rays

Cosmic Rays - in Poland

The air-shower experiment KASCADE-Grande

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Status and results from the Pierre Auger Observatory

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

The Pierre Auger Observatory in 2007

Cosmic-ray energy spectrum around the knee

Cosmic Ray Studies with PAMELA Experiment

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

Recent Results from the KASCADE-Grande Data Analysis

The Pierre Auger Observatory

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Radiation (Particle) Detection and Measurement

arxiv: v1 [astro-ph.he] 8 Apr 2015

PAMELA Five Years of Cosmic Ray Observation from Space

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

High-energy cosmic rays

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

SUPPLEMENTARY INFORMATION

Silicon Detectors for the Search of Cosmic Antimatter and Dark Matter

Mass composition studies around the knee with the Tunka-133 array. Epimakhov Sergey for the Tunka-133 collaboration

Five Years of PAMELA in orbit

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

arxiv: v1 [astro-ph.he] 2 Jul 2009

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

The multimessenger approach to astroparticle physics

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

Cosmic Rays II. CR observation Air and space based experiments Underground. experiments. experiments. Ground based. Astroparticle Course 1

Cosmic Rays and the need for heavy payloads

Experimental High-Energy Astroparticle Physics

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Transcription:

Charged Cosmic Ray Physics hip region: absolute flux of var. primaries cosmology antimatter SUSY knee region: CR composition knee position for var. primaries CR source type? CR travel distance? ankle region: GZK cutoff CR direction CR point sources GZK cosmology Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 1

How to measure Cosmic Rays Direct Measurements (E < 10 15 ev): Balloon Satellite Indirect Measurements (EAS, E > 10 15 ev): Scintillator detector array Cherenkov counter array Tracking chambers Cherenkov tank detector array Fluorescence telescopes... (?) Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 2

Sketches photon 1014 ev of different showers... iron proton 1014 ev 1014 ev red = electrons, positrons, gammas green = muons blue = hadrons Energy cuts: 0.1 MeV for e+-, gammas 0.1 GeV for muons, hadrons Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 3

Sketches of single components proton shower Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 4

Balloon Measurements: CAPRICE98 New Mexico Arizona, US, 1998 at 5.5 g/cm² ~ 37 km ~ 4.5 mbar p, He: 3 350 GeV p, d : 3 49 GeV Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 5

Satelliten-Experimente ISS Höhe: ~ 340 km Startdatum: 29. July 2010, Endeavour STS-134 Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 6

Satellite Measurements: PAMELA altitude: 350 600 km p, He, Be, C: 0.08 700 GeV p : 0.08 190 GeV e : 0.05 400 GeV e + : 0.05 270 GeV Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 7

Launch in Bajkonur: 15 th June 2006 Resurs-DK1 Satellite Resurs-DK1 Satellite PAMELA Detector Launch of Resours-DK1 with PAMELA antimatter spectometer Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 8

Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 10

The TOF System - 3 Planes of Scintillators S1, S2, S3 Each hodoscope plane with 2 crossed layers, segmented in X/ Y strips - Total: 48 Channels - Ham. PMT R5900 - paddle ~ 110ps, TOF ~ 330ps (MIP) Used for : TRIGGER: crossing particles TOF: ParticleID and for Albedo rejection (upward) de/dx measurements Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 11

Antiproton-Proton Ratio ~ 500 days of data, 1 billion triggers Results agree with theoretical expectations for secondary emission! Phys. Rev. Lett. 102, 051101 (2009) Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 12

Exciting Result: Positron Fraction! Separation of positrons and protons e - e + Protons Nature 458, 607-609 (2 April 2009) High statistic results disagree with conventional models at high energies! primary positron emission from nearby pulsars or dark matter annihilation? Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 13

Neutralino annihilation Production takes place everywhere in the halo!! Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 14

Measurement of primary and secondary CR elements A really CRITICAL point! The possibility to disentangle exotic signal from pure secondary production depends strongly on the precise knowledge of the parameters which regulate the diffusion of cosmic rays in the Galaxy. Boron/Carbon ratio DIFFERENT diffusion coeff.: K(E)= K 0 R 0.3 δ: Magnetic rigidity R pc ze 0.45 0.6 0.7 0.85 Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 15

Orbit characteristics km SAA km Quasi-polar (70.0 ) Elliptical (350 600 km) In the South Pole PAMELA crosses the electron Van Allen belt, and for some orbits the SAA (South Atlantic Anomaly) Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 16

Trigger & DataRate TOF Scintillator Coincidence S1 x S2 x S3 out of Belts and SAA S2 x S3 elsewhere Average trigger rate 25 Hz (for orbits with SAA). DownLink 25 Hz x 5kB/evt ~ 10 GB/day (compressed mode) Up to 20 GB daily accumulation + downlink in a few ground-connections Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 17

Physics packets rate 30 Hz 15 Hz Data rate consistent with the position along the orbit Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 18

Flight data: 36 GV interacting proton Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 19

Extended AirShowers (EAS): Detection Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 20

Extended AirShowers (EAS): Results Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 21

Scintillator Arrays I: KASCADE(-GRANDE) Complex array consisting of: KASCADE-array: hadron calorimeter e/μ scintillator array muon tracking chamber GRANDE-array: scintillator array: 0.5 m² 37 stations x 10 m² = 370 m² piccolo trigger array Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 22

KASCADE-array KASCADE Station distance: 13 m Array size: 200 x 200 m 2 GRANDE Station distance: 130 m Array size: 0.5 km 2 Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 23

KASCADE-array: Detectors Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 24

Longitudinal Profiles - Energies Shower Maximum: X max ~ ln (E 0 ) Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 25

Longitudinal Profiles e/μ-ratio On ground level, Fe showers are older than p showers weaker em. component e/μ-ratio lower Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 26

KASCADE: Results ] 1.5 [m -2 s -1 sr -1 GeV 4 10 3 10 2 10 QGSJet 01 E dn/de 2.5 10 1 10 6 proton helium carbon 7 10 8 10 primary energy E [GeV] integral knee: index change from -2.7 to -3.1 at (3.96 ± 0.84) PeV knee positions: E p < E He < E C < E Fe (Plots & Values: H. Ulrich, Kascade Collaboration) Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 27

Cherenkov Counter Arrays: TUNKA Č light KASCADE: CR Composition from e/μ fraction TUNKA: CR Composition from depth of shower maximum determination Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 28

TUNKA: Array Tunka Valley, Lake Baikal, RUS TUNKA-25: 0.11 km² 25 stations 6 x 10 14 < E < 10 17 ev TUNKA-133: 1 km² 133 (bigger) stations 6 x 10 14 < E < 10 18 ev Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 29

Cherenkov Tank arrays: IceTop Southpole, Antarctica 1 km² 80 Stations x 2 x 3.14 m² = 503 m² Energieschwelle: E > 0.3 PeV slightly larger than K-GRANDE IceTop Tanks with sunshades Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 30

IceTop Tanks HG DOM LG DOM Perlite 0.9 m 0.6 m Ice Diffus reflektierende Schicht 2.0 m Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 31

Digitales Optisches Modul Minimiere Signalverlust Minimiere Anzahl der Auslesekanäle (Kabel) Minimiere Datenaufkommen PMT mit integrierter HV-Versorgung Digitalisierung Lokale Koinzidenz mit Nachbarn Kalibrierung und Tests Autonome Steuerung DOM Funktionsweise eines Photomultipliers (PMT): 32 cm Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 32

Neutrinoteleskop IceCube IceTop : 320 optische Sensoren... in 160 Eistanks...auf 1 km² Fläche 4800 optische Sensoren... an 80 Trossen...in 1 km³ Eis Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 33

Luftschauer, Atomkerne und Myonbündel geladener Atomkern ausgedehnter Teilchenschauer elektromagnetisch Signatur: Licht in mehreren IceTop-Tanks und/oder eine lange, sehr helle Lichtspur im Eis Myonen Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 34

Koinzidentes Ereignis Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 35

HiRes: Telescopes HiRes-1: 10 18.5 10 20.5 ev 21 mirrors 3-17 elevation 5 m² mirrors 256 pixel camera HiRes-2: 10 17.2 10 20 ev 42 mirrors (2 rows) 3-31 elevation Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 36

Auger Observatory Surface Array + Fluorescence Telescopes Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 37

AUGER: Surface Detector 3000 km² = 30 x AGASA 1600 Cherenkov tanks = 16 x AGASA 1600 x 10 m² = 16000 m² = 65 x AGASA E > 5 x 10 18 ev Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 38

Auger Fluorescence Telescopes Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 39

Fluorescence Reconstruction E prim X 1 de dx dx Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 40

Surface Reconstruction Energy from fluorescence detector Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 41

X max and Mass Composition Elongation rate Composition seems the get heavier above 2 x 10 18 ev Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 42

Energy Spectrum Hybrid Energy Spectrum Auger 2009 GZK region Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 43

UHEAS Auger 2009 Auger and Hires see GZK-Cutoff! GZK-Effect: Sources of UHECRs are at distances > 50 Mpc Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 44

DESY Summer Students 2010 http://www.desy.de/summerstudents/ Hermann Kolanoski, Astroteilchenphysik WS09/10-3.Kosm.Strahlung 45