History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/13/17

Similar documents
History of. Charles Darwin ( ) Today s OUTLINE: Evolutionary Thought: The Grand Evolutionary Synthesis. Carol Eunmi Lee 9/17/18

The world distribution of organisms was puzzling: Marsupial mammals generally very rare, but all Australian mammals were marsupials

Evolution. A Brief and Idiosyncratic History of the Concept of. Evolution. Archbishop James Ussher ( ) Pre-scientific World View

Evolution after Darwin

Chapter 16: Evolutionary Theory

2/17/17. B. Four scientists important in development of evolution theory

Chapter 22: Descent with Modification: A Darwinian View of Life

Class Copy! Return to teacher at the end of class! Mendel's Genetics

Darwin was not the first

History of Genetics in Evolution

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution. I. Early Ideas about Evolution (10.1) A. Early scientists proposed ideas about evolution

THE THEORY OF EVOLUTION

9/19/2013. Lecture 2 19 th century progress. Biology 145 EVOLUTION. Evidence for Evolution prior to 1830

History of Genetics in Evolution

Study of similarities and differences in body plans of major groups Puzzling patterns:

Module: NEO-LAMARCKISM AND NEO-DARWINISM (12/15)

Introduction to Quantitative Genetics. Introduction to Quantitative Genetics

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

Chapter 2 Evolution: Constructing a Fundamental Scientific Theory

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and

Evolution. Just a few points

Full file at CHAPTER 2 Genetics

A Summary of the Theory of Evolution

The Revival of Darwinism after 1900

Reproduction and Evolution Practice Exam

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Biological Anthropology

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to:

Genetic Changes Lesson 2 HW

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d.

Section 15 3 Darwin Presents His Case

Endowed with an Extra Sense : Mathematics and Evolution

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine?

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

Evolution and Epigenetics. Seminar: Social, Cognitive and Affective Neuroscience Speaker: Wolf-R. Brockhaus

Evolution and Natural Selection

NOTES CH 17 Evolution of. Populations

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

Unit 2 Lesson 4 - Heredity. 7 th Grade Cells and Heredity (Mod A) Unit 2 Lesson 4 - Heredity

EVOLUTION change in populations over time

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called.

Biology Slide 1 of 41

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Quantitative Genetics & Evolutionary Genetics

Publication of On the Origin of Species Darwin Presents His Case

Thursday, March 21, 13. Evolution

11.1 Traits. Studying traits

EVOLUTION change in populations over time

Population Genetics I. Bio

#Evolution. Nothing in Biology makes sense except in the light of evolution.

EQ: How are genetic variations caused and how do they lead to natural selection?

1.A- Natural Selection

The Evolutionary Synthesis

1. they are influenced by many genetic loci. 2. they exhibit variation due to both genetic and environmental effects.

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

UNIT 4: EVOLUTION Chapter 10: Principles of Evolution

EVOLUTION. HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time.

WHAT IS EVOLUTION? Change over time. evolution 1

Evolution. Chapters 16 & 17

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

2. the variants differ with respect to their expected abilities to survive and reproduce in the present environment (S 0), then

Outline for today s lecture (Ch. 14, Part I)

BIO 1130FF. An introduction to Organismal biology Midterm examination Worth either 15% or 20% of your final grade. Saturday, October 5, 2013

Chapter 17: Population Genetics and Speciation

1 of 5 9/17/08 4:47 PM

Meiosis -> Inheritance. How do the events of Meiosis predict patterns of heritable variation?

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES)

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Biology 20 Evolution

Introduction to Evolution

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM.

Biology 3201 Unit 4 Evolution Ch Introducing Evolution (part 1) What is Evolution?

Concepts of Evolution

CHAPTER 2--THE DEVELOPMENT OF EVOLUTIONARY THEORY

AGENDA Go Over DUT; offer REDO opportunity Notes on Intro to Evolution Cartoon Activity

Natural Selection and Evolution

FYI Green text has info we DID NOT cover in class. Rest should be good review! Darwin and DNA: How genetics spurred the evolution of a theory

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

NOTES Ch 17: Genes and. Variation

Reproduction- passing genetic information to the next generation

The Wright Fisher Controversy. Charles Goodnight Department of Biology University of Vermont

Lab 2A--Life on Earth

Darwin s Observations & Conclusions The Struggle for Existence

Understanding Natural Selection

full file at

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle.

Name: Period Study Guide 17-1 and 17-2

Introduction to population genetics & evolution

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

Darwin s Theory of Evolution. The Puzzle of Life s Diversity

Lesson 1 Syllabus Reference

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

Unit 7: Evolution Guided Reading Questions (80 pts total)

The Origin of Species

Evolution Test Review

Transcription:

Today s OUTLINE: History of Evolutionary Thought: The Grand Evolutionary Synthesis (1) The Sources of Confusion (2) Reconciling Mendel and Darwin (3) The Main Tenets of the Evolutionary Synthesis (4) Key Developments since the Synthesis Dr. Carol Eunmi Lee University of Wisconsin, Madison (5) Gaps in our Understanding Today Charles Darwin (1809-1882) Darwin s contribution: Population Speciation as a result of Natural Selection Last time we discussed Darwin s contributions to evolutionary thinking More offspring are produced than can survive Limited resources and competition for resources There is heritable variation in a population Individuals better adapted to environment survive Survivors leave more offspring ( Survival of the Fittest ) Thus, average character of population is altered But, Darwin s theory was not complete Because Darwin knew nothing about mutation, he had no idea how variation was generated in populations Because Darwin knew nothing about genetics or genes, he had no idea how variation was passed on to offspring (Mendel) Darwin did not know about nonadaptive evolutionary forces, such as Genetic Drift Mendel s work held part of the key to what was missing in Darwin s Theory Mendel published in 1865 was ignored until 1900 Presented a mechanism for how traits got passed on Individuals pass alleles on to their offspring intact (the idea of particulate (genes) inheritance) Title goes here 1

Rediscovery of Mendel s laws of inheritance In 1900, Mendel s laws of inheritance were rediscovered Dutch biologist Hugo de Vries, German plant geneticist Carl Correns, and Austrian plant breeder Erich von Tschermak-Seysenegg Worked out laws of inheritance independently Discovered Mendel s work as they were publishing their own Formed the beginning of the foundation of Genetics: Mendel is considered the Father of Genetics Hardy-Weinburg Equilibrium (Lecture 3) Wilhem Weinberg January 13, 1908 G. H. Hardy July 10, 1908 in Science Could mathematically show expectations of Mendelian inheritance and whether expectations are realized in nature BUT Mendel and Darwin s ideas seemed Incompatible PROBLEMS! Mendel s principles: dealt with particulate (discrete) traits (e.g. yellow vs. green, wrinkled vs. smooth) BUT, Darwin observed continuous traits (e.g. beak size, body length) Q: So, how would continuous traits get passed on? Selection vs Mutations Mutations discovered after 1900 Q: If mutations are arising, why need selection... if things are just mutating? Controversy between Mutationists vs Darwinists Mutationists (+ Mendelianism) They thought that evolution required only mutations and passing on of discrete traits Darwinists They thought that evolution required only Natural Selection on continuous variation Title goes here 2

Discrete vs Quantitative Traits Darwin was unable to clearly see the pattern of inheritance because he studied quantitative variation Discrete trait: a trait that has distinct values, rather than a range of phenotypes, usually encoded by one or a few genes. Examples: number of fingers, color of Mendel s peas, sickle cell anemia, ABO blood type, number of eggs in a bird clutch, presence/absence of human widow s peak, presence/absence of dimples, etc. Quantitative (continuous) trait: a trait that has a continuum of phenotypes and is encoded by multiple genes. Examples: body size, height, weight, intelligence (IQ), Running speed, beak shape, hair color, skin color, milk yield of cows, lifespan, etc. Frequency Frequency Type Type Proponents of the Darwinist Theory Proponents of Darwinism were correct about mechanisms of Natural Selection, but they did not understand what Selection was acting on, as they were unaware of the unit of inheritance (genes) or how the variation was passed on to the next generation They came up with the idea of Blending inheritance where offspring gain characteristics of both parents, like mixing colors of paint but, this was a vague idea that was incorrect Many of them were Biometricians (statistical types) that thought that evolution was gradually acting on continuous traits Proponents of the Mutationist/Mendelist Theory Many Prominent Geneticists at the time supported the Mutationist/Mendelist theory Proponents of the mutationist theory included Hugo de Vries, among those who discovered Mendel s 1900 paper and Thomas Hunt Morgan, founder of Drosophila genetics Thought that evolution arose through genetic changes (mutations) that were discrete and sudden Controversy between Mutationists vs Darwinists Controversy persisted for ~30 years up till the 1930s, during which little progress was made New species originated when they mutated from pre-existing species, but this process was independent of natural selection Problems to Resolve: At the heart was the question of whether Mendelian genetics and Mutation could be reconciled with mechanisms of Natural Selection. A second issue was whether the broad-scale changes (macroevolution) seen by palaeontologists could be explained by changes seen in local populations (microevolution). Problem caused by: Binary thinking (Black or White thinking): it s this or that if I m right, you must be wrong à When in fact the two or more factors might interact Inability to see overarching mechanism that could explain a wide range of phenomena: How could your Hardy-Weinberg (Mendel) explain the inheritance of 5.1 cm, 5.5 cm beak length (continuous characters)? à When in fact, one principle might govern and explain the different patterns Title goes here 3

Genetic Drift A concept as important as Natural Selection But, not as prominent on people s minds 1872 Gulick: Neutral theory (Genetic Drift) 1921 A.C. Hagedoorn produced data to support Neutral Theory Genetic Drift The Modern Synthesis 1930s ~ 1940s Also called the Synthesis of Evolution and Genetics The synthesis of population genetics (role of mutation, selection, genetic drift), paleontology, systematics Darwin and Mendel Reconciled The Modern Synthesis 1930s ~ 1940s Also called the Synthesis of Evolution and Genetics Among the Greatest Scientific Revolutions of the Century Three of the "architects" of the evolutionary synthesis: G. Ledyard Stebbins, Jr., George Gaylord Simpson, Theodosius Dobzhansky Photograph from Smocovitis, V. B. 1997. G. Ledyard Stebbins, Jr. and the evolutionary synthesis (1924-1950). American Journal of Botany 84: 1625-1637. Some Key Tenets of the Modern Synthesis Populations are the units of Evolution The Evolutionary Synthesis was important because many scientists from different fields convened to discuss the evolutionary mechanisms and clear up confusion and inconsistencies Mendel vs Darwin: continuous traits are also coded by particulate genes, but many genes Mutation vs Selection: Mutations are sources of genetic variation upon which Selection acts Natural Selection and Mutation are not the only evolutionary forces. Examples: Genetic Drift, Recombination Microevolutionary processes, such as Drift, Selection, Mutation, lead to Macroevolutionary changes Title goes here 4

Some Tenets of the Evolutionary Synthesis The phenotype is different from the genotype Acquired characters (phenotypic plasticity) are not inherited Traits are inherited via genes, and they do not blend with other genes (Darwin was wrong about this one) Genes mutate, resulting in different alleles Evolution occurs at the population level, due to a change in proportions of individuals with different genotypes Changes in proportion in a population could occur via random genetic drift (Sewall Wright) or Natural Selection the rate of mutation is usually too low to cause large changes in proportions Even very weak natural selection could cause substantial changes over a longer time scale Mutations generate the genetic variation upon which natural selection acts Microevolutionary processes lead to Macroevolutionary changes (speciation) All organisms on the planet are related to one another in a great tree of life, and have diverged by branching from common ancestors Gaps in the fossil record are likely due to incompleteness of the fossil record. Gradual changes seen in many parts of the fossil record suggest gradual changes over time Mutation vs Selection and Reconciling Mendel and Darwin Mutation vs Selection And Reconciling Mendel and Darwin continuous and discrete traits could follow the same principles of inheritance (Mendel), just that continuous traits are coded by many genes (loci) If there are many genes (loci) coding for a trait, rather than one, the offspring look intermediate between the parents (looks like blending inheritance ) BUT, the SAME Mendelian patterns of inheritance apply for multi-locus traits, it s just that you don t see the particulate inheritance of each gene in the offspring, but the average effect across all the genes affecting the trait How do you deal with multi-locus quantitative traits? (2 nd point below) Hardy Weinberg: multiple alleles at a single locus: 3 alleles: (p + q + r) 2 which expands to... p 2 + 2pq + q 2 + 2pr + 2qr + r 2 =1.0 4 alleles: (p + q + r + s) 2 Hardy Weinberg: multiple loci HW principle still applies to each locus independently Need to use principles of Quantitative Genetics to examine effects of multiple loci The Population Geneticists Fisher vs Wright JBS Haldane Sewall Wright Both appreciated the importance of Natural Selection AND Genetic Drift But they argued about the relative importance Mathematical theory of population genetics showed that mutation and selection TOGETHER cause adaptive evolution: RA Fisher Mutation is NOT an alternative to Natural Selection, but the raw material upon which natural selection acts. Title goes here 5

Ronald Aylmer Fisher (1890-1962) Ronald Aylmer Fisher (1890-1962) Natural selection occurs in large populations Many genes are involved Background in math, physics, astronomy, and genetics Made key contributions to the field of Statistics Mutations are the main substrate for selection Other Contributions: Adding mathematical rigor into the theory of selection Elegant synthesis of Mendelian inheritance into the Theory of Selection Important developments in Statistics (ANOVA) Sewall Wright (1889-1988) Sewall Wright (1889-1988) Heavily influenced by examples from agriculture Worked for the US Dept of Agriculture: breeding in guinea pigs and cattle Became a professor at UW-Madison in Genetics Inbreeding and Genetic Drift are important for creating new gene interactions These new gene interactions (epistasis caused by new recombinations) are the main substrate for selection The Population Geneticists Reconciling Microevolutionary Mechanisms and Macroevolutionary processes If you want to read more about this topic, this book is a good read Title goes here 6

Ernst Mayr Microevolution à Macroevolution Ernst Mayr George Gaylord Simpson G. Ledyard Stebbins Bernhard Rensch and others George Gaylord Simpson Microevolutionary processes within species account for macroevolution among species That is, mutation, recombination, natural selection, and other processes that act within species (microevolution) are the SAME mechanisms that account for the origin of new species and major long term evolution (macroevolution) James F. Crow (1916-2012) University of Wisconsin, Madison His work has touched on nearly every area of evolutionary genetics -will discuss some of his contributions in Lecture on Mutations http://www.genetics.wisc.edu/catg/crow/index.html Professor James Crow Lecture: Selection on Quantitative Traits (multi-locus traits): video.wpt.org/video/1811393836/ Moral of the Story Scientists from different fields should talk to each other Should avoid binary thinking (this vs. that, right vs. wrong), as different mechanisms might work together in an integrated fashion We are often biased by what we study (example of continuous vs. discrete traits) After the Evolutionary Synthesis The Importance of Natural Selection vs Genetic Drift Ongoing debate after the Evolutionary Synthesis Title goes here 7

Even after the synthesis the relative importance of Natural Selection and Genetic Drift was debated During the Evolutionary Synthesis, Sewall Wright focused more on importance of Genetic Drift, whereas Fisher focused on Natural Selection Shortly after the Evolutionary Synthesis many focused on selection to the point of assuming that most phenotypes were the result of Natural Selection Emphasis on Genetic Drift resurged in the 1970s, 80s with Kimura s Neutral Theory Then in the 2000s and 2010s interest in Selection increased with the ability to detect signatures of Natural Selection in genome sequence data Motoo Kimura (1924-1994) The Neutral Theory of Molecular Evolution Classic Paper: Kimura, Motoo. 1968. Evolutionary rate at the molecular level. Nature. 217: 624 626. Classic Book: Kimura, Motoo (1983). The neutral theory of molecular evolution. Cambridge University Press. The Neutral Theory of Molecular Evolution (Lecture #6) The Neutral theory posits that the vast majority of evolutionary change at the molecular level is caused by random genetic drift rather than natural selection. Motoo Kimura Neutral theory is not incompatible with Darwin's theory of evolution by natural selection: adaptive changes are acknowledged as present and important, but hypothesized to be a small minority evolutionary change. Recent tests of selection have found that in many cases evolution is not neutral, even in non-coding regions of the genome. While the Evolutionary Synthesis was a HUGE leap in the right direction, there were a few tenets that required modification (as a result of new discoveries in Genetics) Nevertheless, the neutral theory is useful as a null hypothesis, against which selection could be tested. Some Tenets of the Evolutionary Synthesis The phenotype is different from the genotype Acquired characters (phenotypic plasticity) are not inherited not always true Traits are inherited via genes, and they do not blend with other genes (Darwin was wrong about this one) Genes mutate, resulting in different alleles Evolution occurs at the population level, due to a change in proportions of individuals with different genotypes Changes in proportion in a population could occur via random genetic drift (Sewall Wright) or Natural Selection the rate of mutation is usually too low to cause large changes in proportions Even very weak natural selection could cause substantial changes over a longer time scale Mutations generate the genetic variation upon which natural selection acts Microevolutionary processes lead to Macroevolutionary changes (speciation) All organisms on the planet are related to one another in a great tree of life, and have diverged by branching from common ancestors Gaps in the fossil record are likely due to incompleteness of the fossil record. Gradual changes seen in many parts of the fossil record suggest gradual changes over time not always true Completing the Synthesis Advances in Genetics Epigenetic Inheritance (Lecture #9) Some genetic changes could lead to radical changes in phenotype (Lecture #7) Polyploidization seen often in plants Changes in developmental genes Regulatory Evolution Transposons Title goes here 8

The role of Epigenetics (Lecture #9) Lamarck Revisited Lamarck was incorrect in thinking that the inheritance of acquired characters is the main mechanism of evolution However, we do now know that the inheritance of acquired characters does happen sometimes, through the inheritance of epigenetic modifications Evolution at the Molecular Genetic Level Which types of mutations predominate and contribute to adaptations more often? Structural vs Regulatory? Is phenotypic evolution occurring predominantly at the level of gene products (e.g. proteins) or at the level of gene regulation (e.g. transcription, RNA processing, translation, etc.)? cis-regulation vs trans-regulation? Is regulatory evolution occurring predominantly at the level of cis-regulatory elements (e.g. promoter, enhancers) or at the level of trans-acting factors (e.g. transcription factors, etc.)? More on Lectures on Molecular Evolution (Lecture #13) C.H. Waddington --his resurgence Largely dismissed during the Evolutionary Synthesisà attacked for being Lamarckian for his ideas on Genetic Assimilation Father of Developmental Biology Introduced the concept of Canalization Coined the term Epigenetics Conrad Hal Waddington Interested in the interplay between phenotypic plasticity (response to stress) and selectionà Genetic Assimilation Why did Waddington become popular starting in the 1990 s? Evo-Devo: Evolution of Development as playing an important role in the evolution of phenotypes Evolution of developmental program could cause radical phenotypic change The idea of evolution of canalization and decalanization of a developmental program Genetic Assimilation: stress could cause decanalization, and the phenotypes that are exposed could then be under selection à creation of Hopeful Monsters Evolution of Development (Lecture #26) How small changes in developmental genes (like Hox genes) could radically cause the evolution of body plans Role of Genomics (Lectures #15, 16) How does the whole genome evolve? How does selection act on networks of interacting genes? Will talk more about this when I get to lecture on Animal Diversity How many and which genes are involved in the formation of new species? Title goes here 9

Today: Genome Evolution and Systems Biology How do multiple genes interact? How do multiple genes affect a phenotype? Systems Biology: How does selection act on interacting gene regulatory networks? Evolution of Genome Architecture Questions: (1) What were the sources of confusion regarding evolutionary mechanisms prior to the Evolutionary Synthesis? (2) What was the Modern (Evolutionary) Synthesis? (3) What were the main tenets of the Evolutionary Synthesis? (4) What is the relationship between natural selection, genetic drift, mutations, and recombination? (5) What were some of the limitations of the Evolutionary Synthesis? (6) What were some key developments since the Evolutionary Synthesis? (7) What gaps remain in our understanding today? Sample Exam Questions 1. For several decades "Darwinists" and "Mendelists" battled over the mechanisms of evolution. Which of the following did NOT contribute to this particular conflict? (a) Geneticists/Evolutionary biologists did not understand that continuous and discrete traits follow the same principle of inheritance (b) Geneticists/Evolutionary biologists did not understand that natural selection acts on mutations in a population (c) Mendel worked with discrete traits, whereas Darwin worked with continuous traits, leading to differences in perspectives on inheritance (d) Darwin was unaware of the mechanism or unit of inheritance (e) Darwin was unaware of the mechanisms of Genetic Drift Sample Exam Question 2.Which of the following was NOT a tenet of the Evolutionary Synthesis? (a) Evolution occurs at the level of populations, in terms of changes in allele frequencies, rather than changes at the individual level (b) Selection could act on traits that are coded by multiple genes (c) Selection acts on genetic variation in traits that are caused by mutations (d) Natural Selection and Mutation are the only causes of evolutionary change (e) Microevolutionary processes within populations lead to Macroevolutionary changes among populations Answers: 1. E (Darwin did not know about Genetic Drift, but that was not a reason for the conflict between the Darwinists and Mendelists ) 2. D Title goes here 10