Estimation of Gumbel Parameters under Ranked Set Sampling

Similar documents
New Entropy Estimators with Smaller Root Mean Squared Error

Estimating the Population Mean using Stratified Double Ranked Set Sample

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Abstract. Ranked set sampling, auxiliary variable, variance.

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Control Charts for Mean for Non-Normally Correlated Data

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Topic 9: Sampling Distributions of Estimators

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Random Variables, Sampling and Estimation

ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

Properties and Hypothesis Testing

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

Chapter 6 Sampling Distributions

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

Linear Regression Models

Estimation of the Population Mean in Presence of Non-Response

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

1 Inferential Methods for Correlation and Regression Analysis

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

A new distribution-free quantile estimator

Confidence Intervals For P(X less than Y) In The Exponential Case With Common Location Parameter

Lecture 2: Monte Carlo Simulation

1.010 Uncertainty in Engineering Fall 2008

Lecture 3. Properties of Summary Statistics: Sampling Distribution

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

A statistical method to determine sample size to estimate characteristic value of soil parameters

Using the IML Procedure to Examine the Efficacy of a New Control Charting Technique

International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Element sampling: Part 2

Lecture 33: Bootstrap

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

Expectation and Variance of a random variable

Varanasi , India. Corresponding author

Estimation for Complete Data

Computing Confidence Intervals for Sample Data

Parameter, Statistic and Random Samples

MATH/STAT 352: Lecture 15

Power Comparison of Some Goodness-of-fit Tests

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

A proposed discrete distribution for the statistical modeling of

Akaike Information Criterion and Fourth-Order Kernel Method for Line Transect Sampling (LTS)

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Access to the published version may require journal subscription. Published with permission from: Elsevier.

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

Department of Mathematics

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept

MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS

Section 14. Simple linear regression.

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Modied moment estimation for the two-parameter Birnbaum Saunders distribution

Extreme Value Charts and Analysis of Means (ANOM) Based on the Log Logistic Distribution

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES*

Lecture 7: Properties of Random Samples

STATISTICAL INFERENCE

Modified Lilliefors Test

(7 One- and Two-Sample Estimation Problem )

The standard deviation of the mean

The new class of Kummer beta generalized distributions

Unbiased Estimation. February 7-12, 2008

STAC51: Categorical data Analysis

Output Analysis (2, Chapters 10 &11 Law)

Control chart for number of customers in the system of M [X] / M / 1 Queueing system

Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

Alternative Ratio Estimator of Population Mean in Simple Random Sampling

POWER AKASH DISTRIBUTION AND ITS APPLICATION

Transcription:

Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com Sameer A. Al-Subh Mutah Uiversity, Karak, Jorda, salsubh@yahoo.com Follow this ad additioal works at: http://digitalcommos.waye.edu/masm Part of the Applied Statistics Commos, Social ad Behavioral Scieces Commos, ad the Statistical Theory Commos Recommeded Citatio Yousef, Omar M. ad Al-Subh, Sameer A. (2014) "Estimatio of Gumbel Parameters uder Raked Set Samplig," Joural of Moder Applied Statistical Methods: Vol. 13 : Iss. 2, Article. DOI: 10.22237/masm/1414815780 Available at: http://digitalcommos.waye.edu/masm/vol13/iss2/ This Regular Article is brought to you for free ad ope access by the Ope Access Jourals at DigitalCommos@WayeState. It has bee accepted for iclusio i Joural of Moder Applied Statistical Methods by a authorized editor of DigitalCommos@WayeState.

Joural of Moder Applied Statistical Methods November 2014, Vol. 13, No. 2, 432-443. Copyright 2014 JMASM, Ic. ISSN 1538 9472 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa Applied Uiversity Zarqa, Jorda S. A. Al-Subh Mutah Uiversity Karak, Jorda Cosider the MLEs (maximum likelihood estimators) of the parameters of the Gumbel distributio usig SRS (simple radom sample) ad RSS (raked set sample) ad the MOMEs (method of momet estimators) ad REGs (regressio estimators) based o SRS. A compariso betwee these estimators usig bias ad MSE (mea square error) was performed usig simulatio. It appears that the MLE based o RSS ca be a robust competitor to the MLE based o SRS. Keywords: Raked set samplig; simple radom samplig, parameters, Gumbel distributio, maximum likelihood estimator, bias, mea square error, regressio estimator, method of momet estimator. Itroductio There are may areas of applicatio of the Gumbel distributio icludig evirometal scieces, system reliability, ad hydrology. I hydrology, for example, the Gumbel distributio may be used to represet the distributio of the miimum level of a river i a particular year based o miimum values for the past few years. It is useful for predictig the occurrece of extreme earthquakes, floods, ad other atural disasters. The potetial applicability of the Gumbel distributio to represet the distributio of miima relates to extreme value theory, which idicates that it is likely to be useful if the distributio of the uderlyig sample data is of the ormal or expoetial type. The problem of estimatio of the ukow parameters of the Gumbel distributio is cosidered by may authors uder simple radom samplig. Maciuas et al. (1979) cosidered the estimates of the parameters of the Gumbel distributio by the methods of probability weighted momets, momets, ad Omar M. Yousef is a lecturer i the Basic Scieces Departmet. Email him at abuyaza_o@yahoo.com. Sameer A. Al-Subh is a assistat professor i the Departmet of Mathematics ad Statistics. Email him at salsubh@yahoo.com. 432

YOUSEF & AL-SUBH maximum likelihood. They used both idepedet ad serially correlated Gumbel umbers to derive the results from Mote Carlo experimets. They foud the method of probability weighted momets estimator is more efficiet tha the estimators. Leese (1973), derived the MLE (maximum likelihood estimator) of Gumbel distributio parameters i case of cesored samples ad he gave expressios for their large-sample stadard errors. Fioretio ad Gabriele (1984), give some modificatios of the MLE the Gumbel distributio parameters to reduce the bias of the estimators. Phie (1987) estimated the parameters of the Gumbel distributio by momets, MLE, maximum etropy ad probability weighted momets. He derived the asymptotic variace-covariace matrix of the MLEs ad used simulatio to compare betwee the various estimators. He foud that the MLE is best i terms of the root MSE (mea square error). Corsii et al. (1995), discussed the MLE ad Cramer-Rao (CR) bouds for the locatio ad scale parameters of the Gumbel distributio. Mousa et al. (2002), foud the Bayesia estimatio for the two parameters of the Gumbel distributio based o record values. RSS as itroduced by McItyre (1952) is a igeious samplig techique for selectig a sample which is more iformative tha a SRS to estimate the populatio mea. He used of RSS techique to estimate the mea pasture ad forage yields. RSS techique is very useful whe visual rakig of populatio uits is less expesive tha their actual quatificatios. Therefore, selectig a sample based o RSS ca reduce the cost ad icrease the efficiecy of estimatio. The basic idea behid selectig a sample uder RSS ca be described as follows: Select m radom samples each of size m, usig a visual ispectio or ay cheap method to rak the uits withi each sample with respect to the variable of iterest. The select, for actual measuremet, the i th smallest uit from the i th sample, i = 1,, m. I this way, a total of m measured uits are obtaied, oe from each sample. The procedure could be repeated r times util a sample of = mr measuremets are obtaied. These mr measuremets form RSS. Takahasi ad Wakimoto (1968) gave the theoretical backgroud for RSS. They showed that the mea of a RSS is a ubiased estimator of the populatio mea with variace smaller tha that of the mea of a SRS. Dell ad Clutter (1972) showed that the RSS mea remais ubiased ad more efficiet tha the SRS mea for estimatig the populatio eve if rakig is ot perfect. A comprehesive survey about developmets i RSS ca be foud i Che (2000) ad Muttlak ad Al-Saleh (2000). Because there are may attractive applicatios of Gumbel distributio, it is of iterest to coduct a statistical iferece for the Gumbel distributio. The statistical iferece icludes the study of some properties of Gumbel distributio, 433

ESTIMATION OF GUMBEL PARAMETERS emphasizig o estimatio of Gumbel parameters. The estimatio of the locatio ad scale parameters, deoted as α ad β respectively, of the Gumbel distributio uder SRS ad RSS is studied. The Gumbel parameters were estimated by usig several methods of estimatio i both cases of SRS ad RSS such as maximum likelihood, momets ad regressio. Furthermore, the performace of these estimators is ivestigated ad compared through simulatio. Bias, mea square error (MSE) ad efficiecy of these estimators were used for compariso. Parameter Estimatio Usig SRS The cdf ad pdf of the radom variable X which has a Gumbel distributio with parameters α ad β are give respectively by x Fx ( ;, ) exp exp, 1 x x f( x;, ) exp exp, (1) (2) where α is the locatio parameter ad β is the scale parameter, β > 0, x ad α (, ). Let X1, X2,, X be a radom sample from X. The MLEs, MOMEs (method of momet estimators) ad REGs (regressio estimators) will be examied i case of both parameters are ukow based o X1, X2,, X. MLEs Let X1, X2,, X be a radom sample from (2). The log-likelihood fuctio is give by xi xi l(, ) log exp. i1 i1 (3) 434

YOUSEF & AL-SUBH After takig the derivatives with respect to α ad β equatig to 0, the MLEs are obtaied as ˆ ad ˆ log. (4) ˆ x x w z MLE, S i i MLE, S MLE, S i1 where x i 1 zi zi exp, z zi ad wi. ˆ mle, S i1 z MOMEs The mea ad variace for Gumbel distributio are give by 2 2 2 ad. (5) 6 The momet estimators of the two parameters are ˆMOME, S 6 s ad ˆ ˆ MOME, S x MOME, S (6) where s, x are the sample stadard deviatio ad mea, respectively, ad γ = 0.57721566 is Euler s costat. REGs x x Let y Fx ( ;, ) exp exp l y= exp x x l y= exp t=l -l y = t a x b 1 where a ad b. 435

ESTIMATION OF GUMBEL PARAMETERS The regressio estimators of the two parameters are ˆ 1, ad ˆ ˆ,, ˆ REG S REG S REG S t ax (7) aˆ x x t t i i i1 where aˆ. 2 i1 x i x Parameter Estimatio Uder RSS MLEs Let X(i:m), i = 1,, m ad = 1,, r deote the i th order statistics from the i th set of size m of the th cycle be the RSS data for X with sample size = mr. Usig (1) ad (2), the pdf of X(i:m) is give by (Arold et al.,1992) i-1 m-i 1 fi : m( X ) cf( X ) 1- F( X ) f ( X ), where c B( i, m -i 1), 1 X X f( X ) exp exp ad F X by X ( ) exp exp. r l(, ) f ( X ) m i1 1 r m i1 1 i: m i r m i i1 1 The the likelihood fuctio is give -1 m-i = c F( X ) 1- F( X ) f ( X ) mr -1 m-i c F( X ) 1- F( X ) f ( X ). 436

YOUSEF & AL-SUBH The log-likelihood fuctio is give by r L(, ) mr log c ( i 1)log F( X ) m 1 i1 r m r m ( m i)log(1 F( X )) log f ( X ). 1 i1 1 i1 (8) Takig the derivatives of (8) with respect to α ad β respectively, ad equatig the resultig quatities to zero. Because there is o explicit solutio for (8), the equatios eed to be solved umerically to fid ˆ ˆ MLE, R ad MLE, R. Ad-hoc Estimators These are the same as the estimators i (6) ad (7) with SRS replaced by RSS Estimator Compariso A compariso betwee all above estimators for both parameters of the Gumbel distributio was carried out uder SRS ad RSS usig simulatio. The package R has bee used to coduct the simulatio. The followig values of the parameters ad sample sizes have bee cosidered: α = 0.5, β = 1; α = 1, β = 0.5; α = 1, β = 1; α = 1, β = 2; α = 2, β = 1, = ad =. For each, a set (m;r) is decided such that = mr. The bias ad the MSE are computed for all the estimators uder cosideratio. The efficiecy betwee all estimators with respect to the MLE based o SRS are calculated where the efficiecy of the estimator is defied as where If ˆ ˆ 2 1 ˆ ˆ ˆ MSE( 1) eff ( 2, 1) MSE( ˆ ) 10,000 ˆ 1 2 ˆ 2t 2 MSE. 10, 000 eff, 1 the ˆ 2 is better tha ˆ 1. The bias of the estimators is reported i Tables 1 ad 3 ad the efficiecies of the estimators is reported i Tables 2 ad 4. t1 2 437

ESTIMATION OF GUMBEL PARAMETERS Table 1. The bias ad MSE of estimators of α Bias MSE (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) 0.1-1.156-1.141 1.647 1.499 0.058 1.522 1.486 m=3, r=4-1.183-1.130-1.153-1.146 1.480 1.469 m=4, r=3-1.140-1.146 1.427 1.444 m=2, r= -1.187 1.601-1.149 1.601 1.4 0.033 1.515 1.415 m=3, r=8-1.213 0.103-1.179-1.152 1.473 1.405 m=4, r=6-1.167-1.152 1.430 1.393 2.268 5.841-2.285 5.841 5.907 2.205 4.2 5.943 m=3, r=4-1.728-1.471 2.174-2.283 4.211 5.799 m=4, r=3 2.092-2.292 4.211 5.793 m=2, r= -2.047 4.211-2.298 4.211 5.666 2.296 5.810 5.636 m=3, r=8 2.321-1.508 2.135-2.306 4.211 5.628 m=4, r=6 2.174-2.302 4.211 5.567-1.167 1.666-1.144 1.666 1.519 3.793 1.549 1.486 m=3, r=4-1.728 1.901-1.160-1.141 1.499 1.446 m=4, r=3-1.153-1.151 1.456 1.457 m=2, r= -1.203 1.640-1.140 1.640 1.432 3.793 1.549 1.389 m=3, r=8-1.229 1.921-1.182-1.148 1.480 1.395 m=4, r=6-1.176-1.152 1.453 1.394-1.139 1.558-1.144 1.558 1.516 0.362 1.485 1.490 m=3, r=4-1.143-0.576-1.131-1.141 1.427 1.457 m=4, r=3-1.9-1.148 1.410 1.448 m=2, r= -1.168 1.557-1.140 1.557 1.432 0.389 1.469 1.392 m=3, r=8-1.185-0.6-1.159-1.142 1.436 1.381 m=4, r=6-1.137-1.149 1.371 1.388-0.589 0.419-0.571 0.419 0.376 0.205 0.393 0.371 m=3, r=4-0.598 0.375-0.575-0.569 0.368 0.361 m=4, r=3-0.577-0.572 0.364 0.360 m=2, r= -0.602 0.419-0.576 0.419 0.353 0.157 0.387 0.356 m=3, r=8-0.619 0.344-0.597-0.573 0.378 0.347 m=4, r=6-0.585-0.575 0.359 0.347 438

YOUSEF & AL-SUBH Table 2. The efficiecy of estimators of α (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) 1.082 1.108 m=3, r=4 1 1.099 28.397 1.113 1.1 m=4, r=3 1.154 1.141 m=2, r= 1.057 1.131 m=3, r=8 1 1.4 48.515 1.087 1.140 m=4, r=6 1.0 1.149 1.387 0.983 m=3, r=4 1 0.989 2.649 1.387 1.007 m=4, r=3 1.387 1.008 m=2, r= 0.725 0.747 m=3, r=8 1 0.743 1.834 1.000 0.748 m=4, r=6 1.000 0.756 1.076 1.1 m=3, r=4 1 1.097 0.439 1.111 1.152 m=4, r=3 1.144 1.143 m=2, r= 1.059 1.181 m=3, r=8 1 1.145 0.432 1.108 1.176 m=4, r=6 1.9 1.176 1.049 1.046 m=3, r=4 1 1.028 4.304 1.092 1.069 m=4, r=3 1.105 1.076 m=2, r= 1.060 1.119 m=3, r=8 1 1.087 4.003 1.084 1.7 m=4, r=6 1.136 1.2 1.066 1.9 m=3, r=4 1 1.114 2.044 1.139 1.161 m=4, r=3 1.151 1.164 m=2, r= 1.083 1.177 m=3, r=8 1 1.187 2.669 1.108 1.207 m=4, r=6 1.167 1.207 439

ESTIMATION OF GUMBEL PARAMETERS Table 3. The bias ad MSE of estimators of β Bias MSE (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) 0.889 0.296-0.023 0.327 0.077 0.963 0.337 0.079 m=3, r=4 0.273-0.042 0.303-0.013 0.301 0.074 m=4, r=3 0.308-0.011 0.302 0.069 m=2, r= 0.919 0.415-0.0 0.359 0.042 0.949 0.353 0.043 m=3, r=8 0.4-0.021 0.425-0.006 0.348 0.039 m=4, r=6 0.416 0.006 0.322 0.036 4.368 1.737 0.959 5.293 1.154 19.696 4.759 1.234 m=3, r=4 1.772 0.918 1.734 0.959 4.508 1.196 m=4, r=3 1.714 0.986 4.8 1.253 m=2, r= 4.445 2.018 0.974 5.461 1.081 20.192 5.7 1.106 m=3, r=8 2.328 0.955 1.928 0.981 4.656 1.119 m=4, r=6 1.734 0.984 4.509 1.113 0.799-0.707-1.022 0.773 1.155 0.877 0.728 1.2 m=3, r=4-0.740-1.039-0.693-1.020 0.695 1.111 m=4, r=3-0.688-1.010 0.674 1.091 m=2, r= 0.850-0.584-1.016 0.533 1.082 0.862 0.514 1.072 m=3, r=8-0.599-1.019-0.589-1.011 0.490 1.061 m=4, r=6-0.587-1.007 0.483 1.051 0.979 0.803 0.478 0.923 0.286 1.102 0.896 0.304 m=3, r=4 0.790 0.455 0.811 0.485 0.891 0.311 m=4, r=3 0.808 0.488 0.875 0.306 m=2, r= 1.001 0.927 0.481 1.045 0.274 1.089 1.040 0.272 m=3, r=8 0.913 0.482 0.927 0.489 1.035 0.276 m=4, r=6 0.908 0.492 0.974 0.277-0.257-0.356-0.5 0.193 0.291 0.119 0.181 0.282 m=3, r=4-0.369-0.522-0.358-0.5 0.179 0.280 m=4, r=3-0.347-0.506 0.169 0.272 m=2, r= -0.265-0.291-0.504 0.9 0.272 0.105 0.6 0.266 m=3, r=8-0.292-0.5-0.289-0.506 0.3 0.265 m=4, r=6-0.295-0.505 0.2 0.264 440

YOUSEF & AL-SUBH Table 4. The efficiecy of estimators of β (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) 0.973 4.139 m=3, r=4 1 4.7 0.340 1.086 4.419 m=4, r=3 1.083 4.739 m=2, r= 1.017 8.349 m=3, r=8 1 8.548 0.378 1.032 9.205 m=4, r=6 1.115 9.972 1.1 4.289 m=3, r=4 1 4.587 0.269 1.174 4.426 m=4, r=3 1.282 4.2 m=2, r= 1.065 4.938 m=3, r=8 1 5.052 0.270 1.173 4.880 m=4, r=6 1.211 4.907 1.062 0.689 m=3, r=4 1 0.669 0.881 1.1 0.696 m=4, r=3 1.147 0.709 m=2, r= 1.037 0.494 m=3, r=8 1 0.493 0.618 1.088 0.500 m=4, r=6 1.104 0.504 1.030 3.036 m=3, r=4 1 3.227 0.838 1.036 2.968 m=4, r=3 1.055 3.016 m=2, r= 1.005 3.842 m=3, r=8 1 3.814 0.960 1.010 3.786 m=4, r=6 1.073 3.773 1.066 0.684 m=3, r=4 1 0.663 1.622 1.078 0.689 m=4, r=3 1.142 0.710 m=2, r= 1.0 0.485 m=3, r=8 1 0.474 1.229 1.049 0.487 m=4, r=6 1.057 0.489 From Tables 1 to 4, the followig coclusios are put forth i) I geeral, the bias is large for all estimators. Therefore, all the estimators are cosidered as biased estimators for α. ii) From Table 1, it ca be oticed that the REG uder SRS has the smallest bias as compared to the other estimators cosidered i most cases. I geeral, for all estimators of α uder RSS, the bias is less tha the case uder SRS. iii) For fixed α, the MSE of ˆ decreases as the sample size icreases. iv) It is oticed that from Table 2 that MLE uder RSS is the most efficiet tha the MLE based o SRS. 441

ESTIMATION OF GUMBEL PARAMETERS v) The efficiecy of the other estimators (MOMEs ad REGs based o SRS ad RSS) are ot cosistet, sometimes less oe ad other times greater tha 1. Similar remarks ca be oticed for the case of β. Coclusio Based o this study, it may be cocluded that all estimators are biased. Because the MLEs uder RSS are more efficiet tha the MLE uder SRS, RSS is recommeded i case orderig ca be doe visually or by a iexpesive method. The other estimators are ot recommeded because they are ot cosistet. Refereces Arold, B. C., Balakrisha, N., & Nagaraa, H. N. (1992). A First Course i Order Statistics. New York: Joh Wiley ad Sos. Che, Z. (2000). O raked-set sample quatiles ad their applicatios. Joural of Statistical Plaig ad Iferece, 83, 5-135. Corsii, G., Gii, F., Greco, M. V., & Verrazzai, L. (1995). Cramer-Rao bouds ad estimatio of the parameters of the Gumbel distributio. Aerospace ad Electroic Systems, 31(3), 02-04. Dell, D. R., & Clutter, J. L. (1972). Raked set samplig theory with order statistics backgroud. Biometrics, 28, 545-555. Fioretio, M., & Gabriele, S. (1984). A correctio for the bias of maximum-likelihood estimators of Gumbel parameters. Joural of Hydrology, 73(1-2), 39-49. Gumbel, E. J. (1958). Statistics of Extremes. New York: Columbia Uiversity Press. Leese, M. N. (1973). Use of cesored data i the estimatio of Gumbel distributio parameters for aual maximum flood series. Water Resources Research, 9(6), 1534 1542. doi: 10.1029/WR009i006p01534 Maciuas, J., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted momets compared with some traditioal techiques i estimatig Gumbel Parameters ad quatiles. Water Resources Research, 15(5), 1055-1064. doi: 10.1029/WR015i005p01049 442

YOUSEF & AL-SUBH McItyre, G. A. (1952). A method of ubiased selective samplig usig raked sets. Australia Joural of Agricultural Research, 3, 385-390. Mousa, M. A. M., Jahee, Z. F., & Ahmad, A. A. (2002). Bayesia Estimatio, Predictio ad Characterizatio for the Gumbel Model Based o Records. A Joural of Theoretical ad Applied Statistics, 36(1), 65-74. Muttlak, H. A., & Al-Saleh, M. F. 2000. Recet developmets i raked set samplig, Pakista Joural of Statistics, 16, 269-290. Phie, H. N. (1987). A review of methods of parameter estimatio for the extreme value type-1 distributio. Joural of Hydrology, 90(3 4), 251-268 Takahasi, K., & Wakitmoto, K. (1968). O ubiased estimates of the populatio mea based o the sample stratified by meas of orderig. Aals of the Istitute of Statistical Mathematics, 20, 1-31. 443