ISSUES AND APPROACHES TO COUPLING GIS TO IRRIGATION DISTRIBUTION NETWORK AND SEEPAGE LOSS MODELS

Similar documents
ISSUES AND APPROACHES TO COUPLING GIS TO AN IRRIGATION DISTRIBUTION NETWORK AND SEEPAGE LOSS MODELS ABSTRACT

4. GIS Implementation of the TxDOT Hydrology Extensions

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

NR402 GIS Applications in Natural Resources

Welcome to NR502 GIS Applications in Natural Resources. You can take this course for 1 or 2 credits. There is also an option for 3 credits.

Rapid Intervention Program (RIP) to Improve Operational Management and Efficiencies in Irrigation Districts in Iraq

Applying GIS to Hydraulic Analysis

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press, ISSN

Introduction to the 176A labs and ArcGIS Purpose of the labs

Development of a Web-Based GIS Management System for Agricultural Authorities in Iraq

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

Introduction to the 176A labs and ArcGIS

Introduction to GIS. Geol 4048 Geological Applications of Remote Sensing

13 Watershed Delineation & Modeling

Popular Mechanics, 1954

Geo-spatial Analysis for Prediction of River Floods

Application of Geographical Information System (GIS) tools in watershed analysis

INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEM By Reshma H. Patil

These modules are covered with a brief information and practical in ArcGIS Software and open source software also like QGIS, ILWIS.

GIS Boot Camp for Education June th, 2011 Day 1. Instructor: Sabah Jabbouri Phone: (253) x 4854 Office: TC 136

Display data in a map-like format so that geographic patterns and interrelationships are visible

Watershed Application of WEPP and Geospatial Interfaces. Dennis C. Flanagan

Lecture 2. Introduction to ESRI s ArcGIS Desktop and ArcMap

REMOTE SENSING AND GEOSPATIAL APPLICATIONS FOR WATERSHED DELINEATION

Introduction INTRODUCTION TO GIS GIS - GIS GIS 1/12/2015. New York Association of Professional Land Surveyors January 22, 2015

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner

EEOS 381 -Spatial Databases and GIS Applications

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore

Course overview. Grading and Evaluation. Final project. Where and When? Welcome to REM402 Applied Spatial Analysis in Natural Resources.

Introduction to Geographic Information Systems

Second National Symposium on GIS in Saudi Arabia Al Khober, April 23-25, 2007

GIS Software. Evolution of GIS Software

UNIT 4: USING ArcGIS. Instructor: Emmanuel K. Appiah-Adjei (PhD) Department of Geological Engineering KNUST, Kumasi

Calibration of Manning s Friction Factor for Rivers in Iraq Using Hydraulic Model (Al-Kufa River as Case study)

FLOOD HAZARD MAPPING OF DHAKA-NARAYANGANJ-DEMRA (DND) PROJECT USING GEO-INFORMATICS TOOLS

)UDQFR54XHQWLQ(DQG'tD]'HOJDGR&

Using the Stock Hydrology Tools in ArcGIS

Estimating of Manning s Roughness Coefficient for Hilla River through Calibration Using HEC-RAS Model

Assessment of Physical status and Irrigation potential of Canals using ArcPy

Fundamentals of ArcGIS Desktop Pathway

GEOGRAPHIC INFORMATION SYSTEMS

What are the five components of a GIS? A typically GIS consists of five elements: - Hardware, Software, Data, People and Procedures (Work Flows)

Acknowledgments xiii Preface xv. GIS Tutorial 1 Introducing GIS and health applications 1. What is GIS? 2

COURSE SCHEDULE, GRADING, and READINGS

GIS CONCEPTS ARCGIS METHODS AND. 3 rd Edition, July David M. Theobald, Ph.D. Warner College of Natural Resources Colorado State University

GIS Lecture 4: Data. GIS Tutorial, Third Edition GIS 1

StreamStats: Delivering Streamflow Information to the Public. By Kernell Ries

Yanbo Huang and Guy Fipps, P.E. 2. August 25, 2006

HEC & GIS Modeling of the Brushy Creek HEC & GIS Watershed Modeling of the

Floodplain Modeling and Mapping Using The Geographical Information Systems (GIS) and Hec-RAS/Hec-GeoRAS Applications. Case of Edirne, Turkey.

Outline. Chapter 1. A history of products. What is ArcGIS? What is GIS? Some GIS applications Introducing the ArcGIS products How does GIS work?

software, just as word processors or databases are. GIS was originally developed and cartographic capabilities have been augmented by analysis tools.

GIS and Web Technologies to Improve Irrigation Districts

Determination of Urban Runoff Using ILLUDAS and GIS

GIS Project: Groundwater analysis for the Rhodes property (Socorro, NM).

GIS CONCEPTS ARCGIS METHODS AND. 2 nd Edition, July David M. Theobald, Ph.D. Natural Resource Ecology Laboratory Colorado State University

Introduction-Overview. Why use a GIS? What can a GIS do? Spatial (coordinate) data model Relational (tabular) data model

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

Automatic Watershed Delineation using ArcSWAT/Arc GIS

QGIS FLO-2D Integration

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

GeoWEPP Tutorial Appendix

Lecture 2. A Review: Geographic Information Systems & ArcGIS Basics

Geometric Algorithms in GIS

Data Structures & Database Queries in GIS

Geography 38/42:376 GIS II. Topic 1: Spatial Data Representation and an Introduction to Geodatabases. The Nature of Geographic Data

GIS Geographic Information System

Applied Cartography and Introduction to GIS GEOG 2017 EL. Lecture-2 Chapters 3 and 4

A Technique for Importing Shapefile to Mobile Device in a Distributed System Environment.

Lecture 1 Introduction to GIS. Dr. Zhang Spring, 2017

Abstract: Contents. Literature review. 2 Methodology.. 2 Applications, results and discussion.. 2 Conclusions 12. Introduction

GIS in Weather and Society

Among various open-source GIS programs, QGIS can be the best suitable option which can be used across partners for reasons outlined below.

GIS Workshop Data Collection Techniques

Muhammad Rezaul Haider (A ). Date of Submission: Course No.: CEE 6440, Fall 2016.

MUDMAP TM. Software Description

A Review: Geographic Information Systems & ArcGIS Basics

Teaching GIS for Land Surveying

Watershed Modeling With DEMs

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual)

This paper outlines the steps we took to process the repository file into a Geodatabase Utility Data Model for Bloomfield Township s analysis.

GIS APPLICATIONS IN SOIL SURVEY UPDATES

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

Environmental Systems Research Institute

Introduction to GIS. Phil Guertin School of Natural Resources and the Environment GeoSpatial Technologies

Designing a Dam for Blockhouse Ranch. Haley Born

ESRI Object Models and Data Capture 2/1/2018

FLOOD RISK MAPPING AND ANALYSIS OF THE M ZAB VALLEY, ALGERIA

Week 01 Lecture Notes Antelope Valley College Geography 205

How to Pick a GIS. GIS Software Chapter 8 in Longley, Goodchild, Maguire, and Rhind,, 2001

FLOOD HAZARD AND RISK ASSESSMENT IN MID- EASTERN PART OF DHAKA, BANGLADESH

FLOODPLAIN MAPPING OF RIVER KRISHNANA USING HEC-RAS MODEL AT TWO STREACHES NAMELY KUDACHI AND UGAR VILLAGES OF BELAGAVI DISTRICT, KARNATAKA

GEOGRAPHIC INFORMATION SYSTEMS AND IT SOLUTIONS FOR THE ENVIRONMENT

Use of ArcGIS Applications for Analysis and Representation of the Terrains: The Case Study of Alakır River Sub-basin

AN ASSESSMENT OF THE IMPACT OF RETENTION PONDS

Lecture 11. Data Standards and Quality & New Developments in GIS

SRJC Applied Technology 54A Introduction to GIS

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING

INTRODUCTION TO ARCGIS Version 10.*

Transcription:

ISSUES AND APPROACHES TO COUPLING GIS TO IRRIGATION DISTRIBUTION NETWORK AND SEEPAGE LOSS MODELS Yanbo Huang 1 Milton Henry 2 David Flahive 3 Guy Fipps 4 ABSTRACT There are several possible approaches to incorporating GIS into models for management of irrigation schemes, depending on the objective, availability of data and resources, and the skill of the modeler. This paper outlines some methods and challenges related to applying GIS to simulation modeling of irrigation distribution networks. Two examples are presented: a GISbased irrigation distribution network model currently under development, and an analysis of seepage canal seepage losses using GIS. Main issues and challenges include user considerations, lack of proper georeferenced data, GIS product cost, availability of skills and the difficulties in incorporating existing software into GIS. INTRODUCTION Geographic Information Systems (GIS) is increasingly being used in water resources primarily because of its ability to store, analyze and display spatial data. A few researchers have linked GIS with simulation models for irrigation management. For example, Gupta et al (2003) used the interpolation techniques of ArcInfo to generate a topographic map of an irrigation command area in India. The digitized map data was then used as an input into hydraulic model. Ines, et al. (2002) used GIS and crop growth models to estimate irrigation water productivity. In both cases, data analysis and model simulations were done external to GIS, and GIS was used to input and store spatial data, and to display results. Rao, et al. (2000) noted that few utilize the true analytical power of GIS and computer simulation models, partly because: of the loose linkages developed to-date between GIS. and most public domain software are extremely cumbersome to use. 1 Extension Associate, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117, USA 2 Graduate Research Assistant, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117, USA 3 Systems Analyst, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117, USA 4 Professor and Extension Engineer, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843-2117, USA

There are several possible approaches to appling GIS to modeling, depending on purpose, availability of resources, and the skill of the modeler. This paper outlines some of the possible approaches to applying GIS to both irrigation management and irrigation network modeling. We demonstrate two GIS model approaches that are currently under development at Texas A&M University. One is a GIS-based branching open-channel irrigation distribution network model, in which GIS is coupled to a hydraulic model. The second example is the use of spatial analysis and raster processing options available in GIS, to model irrigation water conveyance, given canal condition and seepage loss rates. Possible approaches to integration of GIS with hydraulic models include: 1. Loosely coupling models: The hydraulic models are run independently of GIS, and the linkage of the programs can be customized via Visual Basic in ArcGis. 2. Closely coupled models that are linked to a GIS coverage data model, such as ArcGis via a user interface (Figure 1): Creating ArcGIS databases (management and spatial) to provide the site-specific information. Identifying model data files that are required for model assembly. 3. Closely coupled models that are linked to a relational database, such as a Geo-database that stores geographic data: A geo-database is a relational database that stores geographic data. At its most basic level, it acts as a container for storing both spatial and attribute data and the relationship between them. These allow the user to build more complex data models including modeling the flow in geometric networks. Geodatabases are built using ArcCatalog software from ESRI. 4. Modeling using tools within GIS Several tools are available in within GIS to develop models and carry out spatial analysis. These form part of GIS analysis using raster algebra and include: Geo-statistical functions used to interpolate surfaces based on the spatial location of measured data. This is useful for interpolating geological variables such as rainfall, temperature, and hydraulic conductivity Distance functions that allow the user to determine the nearest location to a feature or the least cost path to a particular destination.

USER User Interface Model ArcGIS Figure 1. Schematization of Closely Coupled System Components IRRIGATION DISTRIBUTION NETWORK MODELS In irrigation networks, water is distributed through open channels and pipelines. The water levels in open-channels change with respect to time and space, and the physical profile of the canals themselves may also vary greatly within the same system. These factors increase the complexity of simulating distribution networks compared to pressurized pipelines (Chow, 1959). Over the past three decades, there has been much research in developing computer models and software packages for water resources planning and management (Wurbs, 1994). However, there has been little work on modeling of irrigation distribution networks. Examples include: Steady, a steady-state canal hydraulic model (Merkley, 1994), CanalMan, a hydraulic simulation model of unsteady flow in branching canal networks (Merkley, 1997), HEC-RAS, river hydraulic models of one-dimensional steady and unsteady flows (Brunner, 2001). Of these three, only HEC-RAS has the ability to import three-dimensional river schematic and cross section data created in a GIS or CADD (Computer Aided Drafting and Design) system. After completing a hydraulic analysis, the computed water surface profiles can be exported back to the GIS or CADD system for development and display of a map. At Texas A&M, we are developing a new, combined open channel, pipeline distribution network model. In this model, we are using OOP (Object-Oriented Programming) C++ programming language and GIS functions can being built with ArcGIS.

DISTRIBUTION NETWORK MODEL PROTOTYPE The Texas A&M model prototype has been developed as follows: 1. Generic modeling Open-channel branching irrigation distribution networks are analyzed and modeled generically. The generic model is based on a canal system as shown in figure 2 (note: flow is assumed to be steady and subcritical). This layout is divided into three parts: upstream, middle, and downstream. Gradually varied flow is assumed in the upstream and downstream sections, while uniform flow is assumed in the middle section. At the upstream end is a square sluice gate with the opening G o and sill height h. Under the gate, the flow is assumed to flow freely. At the downstream end is a dam with a water depth of y d immediately behind the dam. A C++ program has been coded to simulate the flow in this branching distribution network and has recently been expanded to turnouts in each of the laterals. 2. Model verification The model has been validated with the data measured from an irrigation system in Jamaica. The details of the verification will not be discussed in this paper. Figure 2. Generic Layout of Branching Open-Channel Irrigation Distribution Network 3. GIS data input/output GIS is used to provide input data to the model and to display the output or results of the model (Figure 3). In ArcView, attribute tables have been set up which describe map features (stored in dbase tables or.dbf files).

Two methods are available for GIS input and output for simulation: a. Export and import as text files The original ArcView (.dbf) data files are exported as.txt files (ASCII text file format). Using stardard data input commands, models then extract needed data from the text files. Models can be written that will then write output text (.txt) files with the results. ArcView can then join these.txt files from models with original.dbf files to generate new dbase tables. b. Export and import as dbase tables Original ArcView.dbf files can be exported to a database such as SQL server. The SQL server manages GIS data in a centralized mode. The SQL server then exports useful data to the models. The models send back the calculation results to the SQL server. ArcView can join the.dbf files from the SQL server to generate new dbase tables for the map. SYSTEM IMPLEMENTATION The system prototype has been implemented using the data measured from a branching openchannel irrigation distribution system in Jamaica. Figure 4 is the map sketch of the system. This is actually a GIS map, which wass made with ArcGIS (ArcMap with ArcCatalog). As it shows this map consists of following three shape files: 1. Fields: Polygon shape files which represent the fields with or without different kinds of crops, hypothetically crop 1 and crop 2 in the map. 2. Canals This is a polyline shape file to represent irrigation canal segments (main, lateral, turnout, etc.). Each of the canal segments has a record in a dbase.dbf table to store the data, such as system ID, name, length, canal shape, roughness factor, bottom slope, side slope, and bottom width. These data are needed for the open-channel model to implement. 3. Structures This is a point shape file to represent irrigation regulation structures along the system (weir, gate, flume, etc.). Each of the structures has a record in a dbase.dbf table to store the data such as, structure ID, name, width, and calibration factors. These data are also required in the model. The model output or results are written to a dbase table which is then used to produce shape files and the new information on the map. Figure 5 (a) and (b) show an example of identified features before and after simulating a canal segment. With the model results, ArcView can produce maps of discharge and depth profiles, including depth around the structures and settings of the structures such as gate opening.

Figure 3. Schematic of Irrigation Distribution Network before model implementation Figure 4: Schematic of Irrigation Distribution Network after model implementation

MODELING IRRIGATION WATER CONVEYANCE USING GIS TOOLS GIS was used in determining the most suitable or least cost path for conveying water in a distribution network. In the least cost path analysis discussed below, the eight neighbors of a cell are evaluated and the path then moves to the cell with the smallest accumulated value. A cost surface represents a factor or combination of factors that affect travel across an area. Different cost surfaces can be combined as long as they are ranked on a common scale. Weights can be assigned to each factor based on the relative importance of that factor. In this example, the conveyance capacity of open canal is dependent on several factors including: Canal condition type and quality of lining, presence of weeds Soil infiltration rate which contributes to seepage losses Geometry side slope, top and bottom width defines capacity Slope provides the driving force These factors were combined to develop least path cost surfaces as shown in Figure 5. The total cost raster is shown in Figure 6. The least cost path for conveying water from the source to a location at the lower end of the network is shown in Figure 7. Slope Reclassified Slope Seepage loss rate Reclassified Seepage loss Cost Distance Surface Canal Condition Reclassified Condition Total Cost Least Cost Path Top Width Reclassified Top Width Cost Direction Surface Figure 5: Flow chart for calculating cost surface Least cost path analysis is expected to form part of broader studies, to determine the most cost effective canals for rehabilitation. This would account for other factors including rehabilitation costs, and crop productivity on different soils.

DATA GENERATION AND ANALYSIS The dataset for this analysis was generated from measurements and data from the Lower Rio Grande Valley in Texas: Seepage loss rates were generated from ponding tests conducted in the project area. Canal condition is based on a rating system under development at Texas A&M. Canals were rated on a scale of 1 5, based on a visual inspection of the level of cracks, and weeds in the canals. The lower value indicates small number of cracks and low weed infestation. Figure 6: Total cost raster surface for water conveyance Figure 7: A least cost path alternative given equal weight to each factor.

The seepage loss tests and canal condition rating form part of the Rapid Assessment Tool (RAT) being developed at Texas A&M University assess the rehabilitation needs of the canal network. ISSUES AND CHALLENGES GIS Integration with existing hydraulic models. While several good hydraulic models exist, their codes are not always compatible with new GIS applications. Persons who need models that are closely coupled to GIS may need to develop their own code. While very time consuming, it would avoid the integration problems reported in the literature. An added advantage is that these new codes and models can be made available on the World Wide Web and thus transferred rapidly and inexpensively to users. Data availability and data quality. The usefulness of models and GIS depends heavily on the availability of good and quality data. This includes properly georeferenced spatial data of system components including canals, along with attribute data such canal capacity. Some data including digital elevation models of different areas in the United States are available on public domain, and is available via the Internet. This may not be the case in other countries where digital data may not be as well developed or not readily available. Accurate seepage loss measurements are both time-consuming and costly to generate, but are necessary for suitable analysis. Accurate data is also needed to properly calibrate and validate models. User considerations. This is a most import aspect of model integration. Model integration should result in user friendly products that satisfy the demand of the user, combined with proper support. Cost of data, hardware and software. GIS modeling requires the use of fast computers having large data storage capacities. While the required computer hardware is becoming increasingly more powerful, and relatively low-priced, this may not be the case with computer software. Availability of skills. The use and integration of GIS in irrigation applications require specialized knowledge, which can only be acquired through training and human resource development. As such skills are not always available in irrigation districts, the opportunity exists therefore for major human resource development solutions to match the development of spatial technology. Integration with other spatial technologies. The availability of global positioning systems (GPS) and remote sensing can enhance both data accuracy and the easy of collecting data. GPS allows for accurate georeferencing and measurement. Alternatively satellite imagery can produce both land use and seepage loss data, which are critical for analysis in irrigated agriculture.

CONCLUSIONS This paper has demonstrated two approaches to GIS-based model development in irrigation system simulation. The results show that both approaches are useful in modeling aspects of both flow and irrigation system management. Coupling GIS to hydraulic and seepage loss models should properly evaluate several issues and challenges as part of model development. These include user needs, codes used in existing models, data availability, data quality, cost as well as integration with other spatial technologies such as GPS and remote sensing. We expect the Internet to play an integral role in model development in the future. REFERENCES Md. H Ali, L. T. Shui and W. R. Walker. 2003. Optimal Water Management for Reservoir Based Irrigation Projects Using Geographic Information Systems. G. W. Brunner. 2001. HEC-RAS: User s Guide. Hydraulic Engineering Center, Institute for Water Resources, US Army Corps of Engineers. V. T. Chow. 1959. Open-Channel Hydraulics. McGraw-Hill Book Company, New York. P.K Gupta, T. Das, N.S. Raghuwanshi, R. Singh, S. Dutta and S. Panigraphy. 2003. Hydrological Modelling of canal command using Remote Sensing and GIS. GISdevelopment. A. V. M. Ines, A. D. Gupta and R. Loof. 2002. Application of GIS and crop growth models in estimating water productivity. Agricultural Water Management 54: 205-225. G. P. Merkley. 1997. CanalMan: User s Guide. Dept. of Biological and Irrigation Engineering, Utah State University. G. P. Merkley. 1994. Steady: User s Guide. Dept. of Biological and Irrigation Engineering, Utah State University. M. N. Rao, D. A. Waits and M. L. Neilson. 2000. A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modeling & Software 15: 745-753. R. A. Wurbs. 1994. Computer models for water resources planning and management. Water Resources Support Center, Institute for Water Resources, US Army Corps of Engineers.