The Adjoint Functor Theorem.

Similar documents
Adjunctions! Everywhere!

Morita Equivalence. Eamon Quinlan

Categories and functors

1 Introduction. 2 Categories. Mitchell Faulk June 22, 2014 Equivalence of Categories for Affine Varieties

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection

SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES

Algebraic Geometry Spring 2009

Notes on the definitions of group cohomology and homology.

Lecture 6: Etale Fundamental Group

Level raising. Kevin Buzzard April 26, v1 written 29/3/04; minor tinkering and clarifications written

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY

Metric spaces and metrizability

Algebraic Geometry Spring 2009

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

The positive complete model structure and why we need it

Representable presheaves

Algebraic Geometry

Universal Properties

INTRO TO TENSOR PRODUCTS MATH 250B

Chapter 3. Introducing Groups

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Assume the left square is a pushout. Then the right square is a pushout if and only if the big rectangle is.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

DESCENT THEORY (JOE RABINOFF S EXPOSITION)

The Major Problems in Group Representation Theory

ORDERS OF ELEMENTS IN A GROUP

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26

Exercises on chapter 0

c 1 v 1 + c 2 v 2 = 0 c 1 λ 1 v 1 + c 2 λ 1 v 2 = 0

Cosets and Lagrange s theorem

INVERSE LIMITS AND PROFINITE GROUPS

Homework 3: Relative homology and excision

Sequence convergence, the weak T-axioms, and first countability

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

Math 210B. Profinite group cohomology

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Yale University Department of Mathematics Math 350 Introduction to Abstract Algebra Fall Midterm Exam Review Solutions

Math 249B. Nilpotence of connected solvable groups

Raynaud on F -vector schemes and prolongation

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009

6 Cosets & Factor Groups

An introduction to locally finitely presentable categories

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Compactifications of Siegel Modular Varieties

MA554 Assessment 1 Cosets and Lagrange s theorem

18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Kiehl s finiteness theorems

Locally G-ringed spaces and rigid spaces

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH

Math 210B. Artin Rees and completions

SEPARATED AND PROPER MORPHISMS

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

Review of category theory

3. The Sheaf of Regular Functions

Lecture 4: Constructing the Integers, Rationals and Reals

Category Theory. Categories. Definition.

SEPARATED AND PROPER MORPHISMS

Direct Limits. Mathematics 683, Fall 2013

CM10196 Topic 2: Sets, Predicates, Boolean algebras

EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY

OVERVIEW OF SPECTRA. Contents

Proof of Langlands for GL(2), II

Representations of quivers

Exercises to Applied Functional Analysis

Linear Algebra, Summer 2011, pt. 2

Operads. Spencer Liang. March 10, 2015

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

Mini-Course on Moduli Spaces

Algebraic groups Lecture 1

LECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.

SPEAKER: JOHN BERGDALL

Lecture 3: Flat Morphisms

Solution to Proof Questions from September 1st

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Lecture 6: Finite Fields

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

FORMAL GLUEING OF MODULE CATEGORIES

The cardinal comparison of sets

A PRIMER ON SESQUILINEAR FORMS

GROUPS AND THEIR REPRESENTATIONS. 1. introduction

REAL ANALYSIS I Spring 2016 Product Measures

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada

LECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EXAMPLES

WHY WORD PROBLEMS ARE HARD

2.4 The Extreme Value Theorem and Some of its Consequences

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015.

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Math 300: Final Exam Practice Solutions

Transcription:

The Adjoint Functor Theorem. Kevin Buzzard February 7, 2012 Last modified 17/06/2002. 1 Introduction. The existence of free groups is immediate from the Adjoint Functor Theorem. Whilst I ve long believed this statement to be true, I have not (until now) ever bothered to understand a precise statement of one of the Adjoint Functor theorems, so I thought it would be a good exercise to do so. My reference is Mac Lane s Categories for the working mathematician. There I discovered something I vaguely knew already there are several adjoint functor theorems. One version appears to be called Freyd s Adjoint Functor Theorem, or the General Adjoint Functor Theorem (p117 of Mac Lane). Another is called the Special Adjoint Functor Theorem (p125), and a corollary of this is called the classical form of the Special Adjoint Functor Theorem, or the SAFT (p126). I ve been told that the SAFT was motivated by the construction of the Stone-Cech compactification of a topological space indeed SAFT gives this compactification with little difficulty). My initial thought was to understand the SAFT on the basis that it could be the easiest to understand. But (see later on) I realised soon after trying to understand the statement of the theorem that it would not apply to the case of constructing free groups! It will construct Stone-Cech compactifications, but wouldn t do what I wanted, so I gave up and decided to go for the General Adjoint Functor Theorem. Having established which version of the Adjoint Functor Theorem I wanted to understand, the problem now becomes one of unravelling the definitions. So let s go. The way Mac Lane sets things up is as follows. He starts with a model of set theory and the assumption that there is a universe U in his model. A set is small if it s an element of U. His definition of a category is a set of objects and a set of morphisms, but these sets don t have to be small. For example, Set is the category of all small sets, Grp is the category of all small groups, and so on. He will frequently assume however that his categories have small hom-sets, however, which of course means that if a, b C then Hom(a, b) is a small set. 1

Now to the statement of the the General Adjoint Functor Theorem, as found on p117 of Mac Lane. The theorem, also called Freyd s Adjoint Functor Theorem was formulated and popularised by Freyd in 1964. Recall that a left adjoint to a functor G : A X is a functor F : X A such that there are natural bijections between A(F x, a) and X(x, Ga). Theorem 1.1 (General Adjoint Functor Theorem). If A is small-complete and has small hom-sets, then a functor G : A X has a left adjoint iff it s continuous and satisfies the SSC (see below). The SSC, or solution set criterion, is the following: for all x X there s a small set I and a set of objects a i : i I of A and a set of arrows f i : x G(a i ) such that every arrow x G(a) can be written as a composite h = G(t)f i for some i, where t : a i a is an arrow in A. Rather than talking about the definitions of the category-theoretic words in this theorem (continuous, small complete), I will talk about the SSC for a while, as it s more mathematical. Let s consider for example the forgetful functor from groups to sets. Does this satisfy the SSC? Well it certainly does: if x is a set, one can use the set with one element for I, define a 1 to be the free group on x and f 1 to be the canonical map; this works. But of course this presupposes the existence of free groups! In fact what I ve just given you here is a special case of the proof that if the functor has an adjoint then it satisfies the SSC (with I the set with one element). The whole point of course is that way before one knows the existence of free groups, one can check the SSC if x is a set and f : x G(a) is a map to the underlying set of a group a, then the subgroup generated by x has size bounded by the cardinality of x (or can be countably infinite if x is finite) and hence one can consider all groups of cardinality at most this, and then let I run through all maps from x to all of these groups! If we consider the forgetful functor from compact Hausdorff topological spaces to topological spaces, then here s the argument that the SSC holds. It suffices to show that if X is a subset of a compact Hausdorff topological space Y then the closure of X has cardinality at most 2 2X. WLOG Y is the closure of X. Here s a map L from Y to the power set of the power set of X: define L(y) to be the collection of subsets T of X with the property that y is in the closure of T. I claim that this is an injection; if z is another element of Y then choose disjoint opens U containing y and V containing z in Y ; then the closure of U X certainly misses V and hence U X isn t an element of L(z). On the other hand, U X is dense in U and hence U X is an element of L(y). Hence L is an injection and we ve got a bound on the cardinality of the closure of X and now we easily get an SSC, just take all compact Hausdorff topological spaces of size at most this cardinality and so on.... 2 Notation in the theorem. My task now is to explain what small-complete is, what continuous means (it means that the functor preserves all small limits, which I ll explain), and to do 2

enough to convince myself that this theorem applies in the free group case. By the way, Mac Lane comments that the free group application is good because it constructs free groups without entering into the usual (rather fussy) explicit construction of the elements of [the free group on X] as equivalence classes of words in letters of X. I find it hard to believe that this comment isn t tonguein-cheek! It might avoid this, but it doesn t avoid constructions in comma categories in the proof of the theorem! Anyway, let s get down to the definitions. A category is small if it comprises of a small set of objects and a small set of morphisms. Now some words on limits. If J and C are categories, then C J is the category of functors J C. Note that if C has small hom-sets and J is small then C J has small hom-sets. There s an obvious diagonal functor : C C J. A limit for F : J C is a universal arrow from to F. In other words, it s an object r = lim(f ) C (think of a projective limit) and a natural transformation (r) F which is universal amongst natural transformations (c) F. In other words, for any c C and any natural transformation (c) F, that is, arrows from c to all objects of J such that all the triangles commute maybe I should say that this is called a cone to the base F from the vertex c there s a map c r making everything commute. A small diagram in a category C is a morphism F : J C with J a small category. A category C is small complete if all small diagrams in C have limits in C. For example, Set, Grp, Ab, Rng, R-Mod, Comp Haus are all small complete. A functor H : C D preserves small limits if for all F : J C (J small) with a limiting cone ν : b F, hitting everything with H gives us a limiting cone hν : Hb HF. This is a bit more than sending limiting objects to limiting objects it sends limiting diagrams to limiting diagrams. A functor is called continuous if it preserves all small limits. Note that a random nicelooking functor might not be continuous: the functor from Set to Ab sending a set to the free abelian group on the set, isn t continuous. Note however that if C is a category with small hom-sets and c is an object of C then Hom C (c, ) is continuous. If C is complete and H : C D preserves all small products and all equalizers of parallel pairs, then H is continuous this is an exercise on p114 of Mac Lane. It can be thought of as a morphism version of a corollary on p109 of Mac Lane, which says that if C is a category which has equalizers of all pairs of arrows, and all small products, then it s small-complete. Remark 2.0.1. When typing this up, I noticed that on p118 of Mac Lane there is a representability theorem, which gives necessary and sufficient conditions for a functor to Set to be representable. I wondered whether this would be useful for constructing universal elliptic curves! Of course, it shouldn t be, because people like Schlessinger and Artin were proving deeper (non-formal) representability results in specific cases and must have been aware of this general nonsense. To apply the theorem on p118 to elliptic curves, even before one checks the analogue of SSC, one needs that the opposite category to the category of schemes is small- 3

complete. But I don t think that this is true even though the opposite of the category of schemes is close to the category of rings, I don t think it s close enough. When constructing p-divisible groups, for example, one really doesn t take the direct limit; over an affine base one could take the projective limit of the resulting global sections, and this would construct a limit that worked in the category of rings, but I don t think that this limit is a limit in the category of schemes. Here s a concrete direct system in the category of schemes: consider the direct system defining µ p over Z say. I think I once convinced myself that this had no limit in the category of schemes but unfortunately I can t reconstruct my proof! Maybe I should chck this later? 1. On the other hand, 1 quotients don t exist in the category of schemes and surely this is enough. 3 Examples. 1) Can I deduce the existence of free groups? Let G : Grp Set be the forgetful functor. A left adjoint will be F : Set Grp such that Hom Grp (F S, K) = Hom Set (S, K) for any group K and set S. So indeed it s what we re after. I remarked above that Grp is small-complete but to check that the forgetful functor is continuous, it s worth finding out why this is the case. That Set is small complete is clear the obvious definitions work. One checks that the same obvious definitions work for Grp. The fancy way of saying this is that the forgetful functor Grp Set creates limits, which is stronger than saying it preserves them! The proof of this is just diagram-chasing. Erm... that s it for examples because I ve wasted too much time on this already! 4 Appendix: the uselessness of the Special Adjoint Functor Theorem. I would have to define more terms if I wanted to give a full precise statement of the Special Adjoint Functor Theorem, so I will simply refer the reader to p125 of Mac Lane for the gory details. Here s the heart of the problem though. A small set Q of objects of a category C is called a small cogenerating set if for any f g : a b in C there is q Q and a map h : b q with hf hg. For example, if C = Set, T is a set with 2 elements, and Q = {T }, then Q is a small cogenerating set for C. The Special Adjoint Functor Theorem and its corollary apply to functors G : C X with the property that C has a small cogenerating set. Unfortunately Lemma 4.1. Grp doesn t have a small cogenerating set. Proof. It suffices to construct abstract simple groups of arbitrarily large cardinality as this would make any small generating set contain elements of arbitrarily large 1 it would be nice to see an example. 4

cardinality in our universe, which can t happen. So the lemma follows from the assertion that PGL 2 (k) is simple for any algebraically closed field k. This latter assertion is true here s a proof. We have to show that the normal subgroup generated by any non-identity element is the whole thing. Take a non-identity element and let N be the normal subgroup it generates. One can conjugate the element so that it s upper-triangular, and some easy messing around now shows that N contains an element of the form ( 1,t 0,1) with t 0, and then that N contains all upper triangular unipotent matrices, and then all lower triangular unipotent matrices, and then all matrices in SL 2 (k) with a 1 in the bottom right hand corner (each is an upper unipotent times a lower unipotent), and hence all matrices in PGL 2 (k) with non-zero bottom right hand corner, and hence all of PGL 2 (k) (use ( 1,1 0,1) ). Hence we can t use the Special Adjoint Functor Theorem, or SAFT, to construct free groups. In fact this small cogenerating set condition is the one that s usually the hardest to check, and not always true. 5