Supplementary Appendix (not for publication) for: The Value of Network Information

Similar documents
Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications

Homework 5 Solutions

2M2. Fourier Series Prof Bill Lionheart

u(x) s.t. px w x 0 Denote the solution to this problem by ˆx(p, x). In order to obtain ˆx we may simply solve the standard problem max x 0

Math 124B January 31, 2012

6 Wave Equation on an Interval: Separation of Variables

Akaike Information Criterion for ANOVA Model with a Simple Order Restriction

ODE Homework 2. Since M y N x, the equation is not exact. 2. Determine whether the following equation is exact. If it is exact, M y N x 1 x.

Math 124B January 17, 2012

BASIC NOTIONS AND RESULTS IN TOPOLOGY. 1. Metric spaces. Sets with finite diameter are called bounded sets. For x X and r > 0 the set

Reichenbachian Common Cause Systems

Generalized Bell polynomials and the combinatorics of Poisson central moments

ORTHOGONAL MULTI-WAVELETS FROM MATRIX FACTORIZATION

Another Class of Admissible Perturbations of Special Expressions

A CLUSTERING LAW FOR SOME DISCRETE ORDER STATISTICS

Problem set 6 The Perron Frobenius theorem.

The arc is the only chainable continuum admitting a mean

An Extension of Almost Sure Central Limit Theorem for Order Statistics

The Group Structure on a Smooth Tropical Cubic

Mat 1501 lecture notes, penultimate installment

Lecture Notes 4: Fourier Series and PDE s

XSAT of linear CNF formulas

CS229 Lecture notes. Andrew Ng

Wave Equation Dirichlet Boundary Conditions

Stat 155 Game theory, Yuval Peres Fall Lectures 4,5,6

#A48 INTEGERS 12 (2012) ON A COMBINATORIAL CONJECTURE OF TU AND DENG

On the Goal Value of a Boolean Function

Math 220B - Summer 2003 Homework 1 Solutions

Pattern Frequency Sequences and Internal Zeros

A NOTE ON QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-DEATH PROCESSES AND THE SIS LOGISTIC EPIDEMIC

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

THE REACHABILITY CONES OF ESSENTIALLY NONNEGATIVE MATRICES

Coupling of LWR and phase transition models at boundary

Uniprocessor Feasibility of Sporadic Tasks with Constrained Deadlines is Strongly conp-complete

Srednicki Chapter 51

MA 201: Partial Differential Equations Lecture - 10

PRIME TWISTS OF ELLIPTIC CURVES

On colorings of the Boolean lattice avoiding a rainbow copy of a poset arxiv: v1 [math.co] 21 Dec 2018

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

Integrating Factor Methods as Exponential Integrators

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

Lecture Note 3: Stationary Iterative Methods

Restricted weak type on maximal linear and multilinear integral maps.

(1 ) = 1 for some 2 (0; 1); (1 + ) = 0 for some > 0:

David Eigen. MA112 Final Paper. May 10, 2002

An explicit Jordan Decomposition of Companion matrices

Two-Stage Least Squares as Minimum Distance

PRESENTING QUEER SCHUR SUPERALGEBRAS

K a,k minors in graphs of bounded tree-width *

arxiv: v1 [math.fa] 23 Aug 2018

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

The Symmetric and Antipersymmetric Solutions of the Matrix Equation A 1 X 1 B 1 + A 2 X 2 B A l X l B l = C and Its Optimal Approximation

Product Cosines of Angles between Subspaces

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

4 1-D Boundary Value Problems Heat Equation

MAT 167: Advanced Linear Algebra

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 2, FEBRUARY

Approximated MLC shape matrix decomposition with interleaf collision constraint

UNIFORM CONVERGENCE OF MULTIPLIER CONVERGENT SERIES

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents

The Relationship Between Discrete and Continuous Entropy in EPR-Steering Inequalities. Abstract

B. Brown, M. Griebel, F.Y. Kuo and I.H. Sloan

Construct non-graded bi-frobenius algebras via quivers

A Brief Introduction to Markov Chains and Hidden Markov Models

MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

6.434J/16.391J Statistics for Engineers and Scientists May 4 MIT, Spring 2006 Handout #17. Solution 7

Appendix of the Paper The Role of No-Arbitrage on Forecasting: Lessons from a Parametric Term Structure Model

Functions of Several Variables

Many-Help-One Problem for Gaussian Sources with a Tree Structure on their Correlation

are left and right inverses of b, respectively, then: (b b 1 and b 1 = b 1 b 1 id T = b 1 b) b 1 so they are the same! r ) = (b 1 r = id S b 1 r = b 1

4 Separation of Variables

Iterative Decoding Performance Bounds for LDPC Codes on Noisy Channels

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues

(f) is called a nearly holomorphic modular form of weight k + 2r as in [5].

CONGRUENCES. 1. History

arxiv: v1 [math.co] 17 Dec 2018

Approximated MLC shape matrix decomposition with interleaf collision constraint

arxiv:math/ v2 [math.pr] 6 Mar 2005

SUPPLEMENTARY MATERIAL TO INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS

Online Load Balancing on Related Machines

Chapter 5. Wave equation. 5.1 Physical derivation

Monomial Hopf algebras over fields of positive characteristic

Reflection principles and kernels in R n _+ for the biharmonic and Stokes operators. Solutions in a large class of weighted Sobolev spaces

MONOCHROMATIC LOOSE PATHS IN MULTICOLORED k-uniform CLIQUES

Age of Information: The Gamma Awakening

THINKING IN PYRAMIDS

Partial permutation decoding for MacDonald codes

Convergence Property of the Iri-Imai Algorithm for Some Smooth Convex Programming Problems

FRIEZE GROUPS IN R 2

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

CS 331: Artificial Intelligence Propositional Logic 2. Review of Last Time

Research Article On the Lower Bound for the Number of Real Roots of a Random Algebraic Equation

Week 5 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer

Do Schools Matter for High Math Achievement? Evidence from the American Mathematics Competitions Glenn Ellison and Ashley Swanson Online Appendix

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

14 Separation of Variables Method

Discrete Fourier Transform

T.C. Banwell, S. Galli. {bct, Telcordia Technologies, Inc., 445 South Street, Morristown, NJ 07960, USA

Transcription:

Suppementary Appendix not for pubication for: The Vaue of Network Information Itay P. Fainmesser and Andrea Gaeotti September 6, 03 This appendix incudes the proof of Proposition from the paper "The Vaue of Network Information." For competeness, we repeat the statement of the Proposition. Proposition. Suppose that γk max < /. Then, for any of the price discrimination schemes considered, there exists a unique finite price schedue p that soves the monopoy s profit maximization probem. We now prove the Proposition. Notation and definitions Reca that γ > 0 is the network externaity coefficient, that out-degrees are indexed by k and in-degrees by. Reca further that P k and H are the fractions of consumers with out-degree k and in-degree respectivey, and that = Ek ] and = E k] capture the conditiona expected out-degree of a consumer with in-degree and conditiona expected in-degree of a consumer with out-degree k. Let K out = k max K in = k max K in/out = k max + k max where k max is maxima degree among a in- and out-degrees of a individuas. Let ϕ out : {0,..., k max } {0,..., K out } ϕ in : {0,..., k max } {0,..., K in } ϕ in/out : {0,..., k max } {0,..., K in/out } Fainmesser: Department of Economics, Brown University, Providence, RI 09 emai: Itay_Fainmesser@Brown.edu; Gaeotti: Department of Economics, University of Essex, Wivenhoe Park, Cochester CO 3S, United Kingdom emai: agaeo@essex.ac.uk.

be the bijections defined by ϕ out i = i ϕ in i = i ϕ in/out x, y = k max + x + y and et qk, HP k. The monopoist s profit Π is given by Π out = k P kpkxk Π in = Π in/out = H k H k P k pxk, P k pk, xk, and the negative of Hessian matrices are H out = Π out ps pt s,t {0,...,k max } H in = Π in ps pt s,t {0,...,k max } H in/out = Π in/out p ϕ in/out s p ϕ in/out t s,t {0,...,K in/out } The corresponding first order condition of the monopoy s profit maximization probem are: where 0 = Π out ps = P s ps + γ p out s P kpkk ] H s γ k k ] 0 = Π in ps = Hs ps + γ p in s s Hp γ k 0 = Π in/out = HyP x y px, y + γ p ] in/out x H pk, kγ p in/out P k px, y γ k γ k px, y k p out = H k P k pk p in = Hp p in/out = H P k pk, k

and p out ps = P s H s p in ps = Hss p in/out HyP x yy = px, y Intermediate resuts The proof of the Proposition makes use of the foowing three emmas. Lemma. Let K, Π, ϕ {K i, Π i, ϕ i }, where i {out, in, in/out}. p j, b j, c j j {0,...,K} R 3 + K+ such that for every s, t {0,..., K}, Then there exists Γ R + and Π p ϕ s p ϕ t = p sp t Γ b t c s + b s c t ] + p s {s=t}. Lemma. Let G = p s p t Γ b t c s + b s c t ] + p s {s=t} s,t {0,...,K}. Then the determinant of G is given by detg = K i p i + Γ i b i c i p i Γ p i p j b j c i b i c j ]. i<j Lemma 3. Assume that γk max < /. Then H out, H in, and H in/out are positive definite. Proofs Proof of Proposition. It suffices to show that the first and second order conditions are satisfied. The first order conditions are verified in the Appendix to the paper. To see that the second order conditions hod, note that for each price discrimination scheme, the second order partia derivatives are of the form given in Lemma. A necessary and sufficient condition for maximizing profit is that the Hessian matrix is negative definite, or equivaenty that the negative of the Hessian matrix is positive definite. The determinant of this matrix is given by the formua in Lemma. By Lemma 3, we concude positive definiteness and hence that the second order condition hods. We now compete the proof by proving the three emmas above. 3

Lemma Proof. We compute the second partia derivatives. Reca that Cs = for any t, s, x, y, z, w {0,..., k max }, H s = ˆs and et Ct = ˆt. Then, Π out pt ps = γ p P s ps + pt γ k s γ P kpkk ] H s γ k k = P s {s=t} γs p γ k pt γ P kpkk H s γ k pt k = P s {s=t} γs γ k P t H t γ γ k P tt H s γ = P s {s=t} P sp t s H t + t H s γ k γ = P s {s=t} P sp t sct + tcs γ k ] Π in pt ps = Hs ps + γ ps s Hp pt γ k ] = Hs {s=t} + γ Hp γ k pt Π in/out pz, w px, y = = Hs = Hs {s=t} + {s=t} + γ γ k γ γ k γ = Hs {s=t} HsHt γ k HyP x y pz, w = qx, y {z,w=x,y} s p pt s s Htt s ] Htt ] s t Htt + sht t Cs + s Ct γ p px, y + γ k x γ γ k x p pz, w ] ] ] pz, w H k = qx, y {z,w=x,y} γ ] ww zγ xqz, qz, w γ k γ k γ = qx, y {z,w=x,y} qx, yqz, w γ k xw + γ γ k γ = qx, y {z,w=x,y} qx, yqz, w xw + zy γ k,k pk, kγ p P k γ k px, y pk, kγ qk, γ k qx, yy zy p px, y To concude: for the case of discrimination on out-degree, we take p i = P i, b i = i, c i = Ci, and Γ = for discrimination on in-degree, we take p i = P i, b i = i, c i = Ci, and Γ = in- and out-degrees, we take p i = qi = qi, i, b i = i, c i = i, and Γ = γ γ k γ k. γ k ; ; and for discrimination on

Lemma Proof. Fix k max = K > 0. For {,..., K}, and for any J {0,..., K} with J =, et L = {0,..., } and M J = G st s L t J. Denote S = J L. We wi write J = {j 0, j,..., j } with j 0 < j < < j. Aso denote Q = J \ L = {m i } 0 i< Q and R = L \ J = {n i } 0 i< R. Note that J = S Q and L = S R. Aso, Q = R since J = = L. Moreover, note that any eement of the set Q exceeds any eement of the set S. We caim that M J = κ, Jψ, J where κ, J = S i J L if R = 0 p i n 0+ S if R = n 0+n if R = and + Γ i b ic i p i + Γ p ip j b i b j c i c j b i c j if Q = 0 Γ b n0 c m0 + b m0 c n0 + ψ, J = Γ r S bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r if Q =. Γ b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 if Q = 0 if Q 3 Denote Φ = i=0 p i. We wi prove the caim by induction on. First we wi show that the formua is vaid for =. Next we wi show that, if the formua is vaid for < K, then it is aso vaid for +. Base case = : det G st = p 0 p t Γ b t c 0 + b 0 c t ] + p 0 {0=t} p 0 = Γ b 0c 0 ] + p 0 if t = 0, i.e. Q = 0 p 0 p t Γ b t c 0 + b 0 c t ] if t 0, i.e. Q = p 0 + Γ b 0 c 0 p 0 ] if t = 0, i.e. Q = 0 =. p 0 p t Γ b t c 0 + b 0 c t ] if t 0, i.e. Q = Now assume hods for some < K. Let L = L {} = {0,..., }, and et J = J {j} for some j J. Accordingy, et S = J L, Q = J \ L, and R = L \ J. We need to show that hods for +, i.e., that M J + For two sets X and Y, et X Y be the disjoint union of X and Y. = κ +, J ψ +, J. 5

By cofactor expansion aong the ast row, we have M J + = i+ M J \{j i } G ji, 0 i so it suffices to show that i+ M J \{j i } G ji = κ +, J ψ +, J. 0 i We consider the foowing cases. Case 0. R = 0 In this case Q = R = and J = S = {0,..., }, so L \ J \ {} = L \ {} \ J \ {} = L \ J = 0 Simiary, for r S \ {}, L \ J \ {r} = J L {r} C C J = L C {r} = L \ J L {r} = {r} = and in particuar R = {r}. Thus r+ p Φ Φ M J \{r} M J \{} We wi show that M J S p Φ S M J p Φ + + G r = Γ b r c + b c r + Γ j,r p p r Γ b c r + b r c ] G = + Γ b i c i p i + Γ p i p j bi b j c i c j b i c j i< = +Γ i {0,...,} b ic i p i + Γ p ip j b i b j c i c j b i c j = r+ r+ Γ b r c + b c r + Γ r< b c r + b r c b j c j p j b b r p j c j + c c r p j b j j,r p Γ b c ] + p.. Since S = +, b c r + b r c b j c j p j b b r p j c j + c c r p j b j 6

p p r Γ b c r + b r c ] + + + Γ i< = + AΓ + BΓ + CΓ 3. b i c i p i + Γ i,j< It suffices to show A = i {0,...,} b ic i p i, B = A = p b c + i< b ic i p i. Next note that B = p p r b c r + b r c ] b r c + b c r r< + p b c ] b i c i p i i< + p i p j bi b j c i c j b i c j i,j< = p p i b c i + b i c ] b i c + b c i + b i c i p i b c p = = = + + i< i,j< p i p j bi b j c i c j b i c j p p i b c i + b i c i b c + b i c ] + bi c i p i b c p i< i,j< i< i< p i p j bi b j c i c j b i c j p p i b c i + b i c i b c b i c ] + p i p bi b c i c b i c + = p i p j bi b j c i c j b i c j. To see that C = 0, note that C = p r< j,r p i p j bi b j c i c j b i c j p Γ b c ] + p ip j b i b j c i c j b i c j, and C = 0. Ceary we have i,j< p p j b b j c c j b c j j< p i p j bi b j c i c j b i c j + i,j< b c r + b r c b j c j p j b b r p j c j + c c r p j b j pr b c r + b r c ] + p i p j bi b j c i c j b i c j b c ] i,j< = i,j< p i p j bi b j c i c j b i c j b c i + b i c b j c j p j b b i p j c j + c c i p j b j pi b c i + b i c ] + p i p j bi b j c i c j b i c j b c ] 7

= p i p j b c i + b i c b j c j b b i c j + c c i b j b c i + b i c ] + ] b i b j c i c j b i c j b c ] i,j< Note that for every i, j, the coefficient of p i p j is zero: b c i + b i c b j c j b b i c j + c c i b j b c i + b i c ] ] + b i b j c i c j b i c j b c ] b c j + b j c b i c i b b j c i + c c j b i b c j + b j c ] ] + b i b j c i c j b jc i b c ] = b c i b j c j b i c jc i + c j b i c i b j c ] i c j c b i b j c j c i b jb i + b j b i c i c j b ] i b j = 0. b c + b c b i b j c i c j ] ci b i b j c j b i c j c i b j b i c j + cj b j b i c i c i b j b i c j b j c i ] Case. R = Case a. S In this case, R = L \ J =. Note that M J + = i M J \{j i } G ji j i J = i M J \{j i } G ji j i S Q = i M J \{} G + First, note anaogousy to Case 0 that j i S\{} i M J \{j i } G ji + i M J \{j i } G ji. j i Q L \ J \ {} = L \ J Next consider r S \{}. Note that r J and hence r J C. Since R, we have L \J = R = R \{} = L \ J, so =. L \ J \ {r} = J L {r} C C J = L C {r} = L \ J L {r} = L \ J {r} 8

= L \ J {r} = + =. Now consider j Q. Note that j {0,..., }. As before R = R \ {}, so Thus n0+r p m0 p Φ M J \{r} L \ J \ {j} = L J {j} C C J = L C {j} = L {} C J C L {j} = L {} C J C G r = L \ J = L \ {} \ J = L \ J \ {} = L \ J =. = Γ b n0 b m0 c r c b n0 b c r c m0 b r b m0 c n0 c + b r b c n0 c m0 p p r Γ b c r + b r c ] n0+ M J \{} G p m0 Φ = Γ b n0 c m0 + b m0 c n0 + Γ bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r p Γ b c ] + p r S \{} n0+ M J \{m 0 } G m0 p Φ = Γ b n0 c + b c n0 + Γ b c n0 + b n0 c b r c r p r b b n0 p r c r + c c n0 p r b r p p m0 Γ b c m0 + b m0 c ] We wi show that S M J p m0 p Φ + r S \{} = Γ b n0 c m0 + b m0 c n0 + Γ r S bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r. First note that S M J p m0 p Φ + 9

= S \{} i+ n 0+i M J \{j i } G j p m0 p Φ i j i S \{} + + n 0+ M J \{} G + + n 0+ = n 0+ S \{} p m0 p Φ j i S \{} = n 0+ AΓ + BΓ + CΓ 3. M J \{j i } G j i + It suffices to show that A = b n0 c m0 + b m0 c n0, B = and C = 0. First, it is easy to see that and hence A = b n0 c m0 + b m0 c n0. Next, note that M J \{} M J \{m 0 } G m 0 G M J \{m 0 } G m 0 r S bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r, S p m0 p Φ A = S p m0 Φ p b n0 c m0 + b m0 c n0, S p m0 p Φ B = + S p m0 Φ p bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r r S \{} + S p m0 Φ p b c ] b n0 c m0 + b m0 c n0 S p Φ p p m0 b c m0 + b m0 c ] b n0 c + b c n0 B = + bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r r S \{} + p b c ] b n0 c m0 + b m0 c n0 p b c m0 + b m0 c ] b n0 c + b c n0 = + bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r r S \{} + p b n0 c m0 b c + b m0 c n0 b c p b c m0 b n0 c + b c m0 b c n0 + b m0 c b n0 c + b m0 c b c n0 ] = + bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r + = r S \{} bm0 c n0 + b n0 c m0 b c p b m0 b n0 p c + c m 0 c n0 p b bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r r S To see that C = 0, note that C = r S \{} b n 0 b m0 c r c b n0 b c r c m0 b r b m0 c n0 c + b r b c n0 c m0 p p r b c r + b r c ] 0

S \{} p b c bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r r S \{} + S \{} p b c m0 + b m0 c ] b c n0 + b n0 c b r c r p r b b n0 p r c r + c c n0 p r b r r S \{} Note that each term in the sum is zero: for each r, b n 0 b m0 c r c b n0 b c r c m0 b r b m0 c n0 c + b r b c n0 c m0 b c r + b r c ] + b c bm0 c n0 + b n0 c m0 b r c r b m0 b n0 c r + c m0 c n0 b r b c m0 + b m0 c ] b c n0 + b n0 c b r c r b b n0 c r + c c n0 b r b m0 c n0 c b c n0 c m0 c b c c m0 c n0 + b c m0 + b m0 c c c n0 = b r + c r b n 0 b m0 c b n0 b c m0 b b c b m0 b n0 + b c m0 + b m0 c b b n0 + b r c r c b n0 b m0 c b n0 b c m0 c b m0 c n0 c b + b c n0 c m0 b + b r c r b m0 c n0 b c + b n0 c m0 b c b r c r b c m0 b c n0 + b c m0 b n0 c + b m0 c b c n0 + b m0 c b n0 c ] = 0. Case b. R First consider j S. Since R = L \ J, we have J. In this case, = R = Q = J \ L. Since j S, we have j L, so J \ {j} \ L = J \ {j} L \ {} = J \ L \ {} = J \ {} \ L \ {} = J \ L Note that R = {}, and hence S = {0,..., }. This impies that for j S, so j+ p m0 Φ M J \{j} = = Γ b j c m0 + b m0 c j + Γ r S \{j} bm0 c j + b j c m0 b r c r p r b m0 b j p r c r + c m0 c j p r b r. Now et j Q. Reca that in this case, L \ J =. Using the facts that j L and J, we have L \ J \ {j} L J = C {j} = L J C L {j}

Then for j Q, we have Thus Φ M J \{j} S M J p m0 p Φ = S p m0 p Φ = Γ b ji c m0 + b m0 c ji + Γ j i S p ji Γ b c ji + b ji c ] + + Γ i = L J C = L \ J = L \ {} \ J = L \ J \ {} = R = = 0. = + Γ b i c i p i + Γ p i p j bi b j c i c j b i c j. i L i,j L i+ i+ M J \{j i } G j i + + M J \{m 0 } j i S b i c i p i + Γ = + AΓ + BΓ + CΓ 3 r S \{j i } p i p j bi b j c i c j b i c j It suffices to show that A = b c m0 + b m0 c, B = and C = 0. First, it is easy to see that A = b c m0 + b m0 c. Next, note that bm0 c ji + b ji c m0 b r c r p r b m0 b ji p r c r + c m0 c ji p r b r Γ b c m0 + b m0 c ] r S bm0 c + b c m0 b r c r p r b m0 b p r c r + c m0 c p r b r, B = b ji c m0 + b m0 c ji p ji b c ji + b ji c ] + b i c i p i b c m0 + b m0 c ] j i S i = b ic m0 + b m0 c i p i b c i + b i c ] + b i c i p i b c m0 + b m0 c ] i< = p i b ic m0 b c i + b i c m0 b i c + b m0 c i b c i + b m0 c i b i c + b i c i b c m0 + b i c i b m0 c i< = p i b i c m0 b c i + b m0 c i b i c b i c m0 b i c b m0 c i b c i i< = p i cm0 b b i c i + b m0 c b i c i c m0 c b i b m0 b c i i<

= i< bm0 c + b c m0 b i c i p i b m0 b p i c i + c m0 c p i b i, from which the caim foows since S = {0,..., }. To see that C = 0, note that C = j i S r S \{j i } + bm0 c ji + b ji c m0 b r c r p r b m0 b ji p r c r + c m0 c ji p r b r pji b c ji + b ji c ] p i p j bi b j c i c j b i c j b c m0 + b m0 c ] = bm0 c i + b i c m0 b j c j p j b m0 b i p j c j + c m0 c i p j b j pi b c i + b i c ] + p i p j bi b j c i c j b i c j b c m0 + b m0 c ] ] = p i p j bm0 c i + b i c m0 b j c j b m0 b i p j c j + c m0 c i p j b j b c i + b i c ] + b i b j c i c j b i c j b c m0 + b m0 c ] ] We wi show that, for each i, j with i j, the coefficient of p i p j is zero: b m0 c i + b i c m0 b j c j b m0 b i c j + c m0 c i b j b c i + b i c ] + b i b j c i c j b i c j b c m0 + b m0 c ] b m0 c j + b j c m0 b i c i b m0 b j c i + c m0 c j b i b c j + b j c ] + b i b j c i c j b jc i b c m0 + b m0 c ] = b ci bm0 c i + b i c m0 b j c j b m0 b i c j + c m0 c i b j + cm0 bi b j c i c j b i c ] j + c bi bm0 c i + b i c m0 b j c j b m0 b i c j + c m0 c i b j + bm0 bi b j c i c j b i c ] j + b cj bm0 c j + b j c m0 b i c i b m0 b j c i + c m0 c j b i + cm0 bi b j c i c j b jc ] i + c bj bm0 c j + b j c m0 b i c i b m0 b j c i + c m0 c j b i + bm0 bi b j c i c j b jc ] i = 0. Hence C = 0. Case. R = Case a. S Reca that M J + = i M J \{j i } G ji j i J = i M J \{j i } G ji j i S Q = i M J \{} G + j i S \{} i M J \{j i } G ji + i M J \{j i } G ji. j i Q 3

Consider r S \ {}. Note as in Case a that This impies M J \{r} = 0 for r S \ {}, so M J + L \ J \ {r} = L \ J {r} = + = 3. = i M J \{} G + i M J \{j i } G ji j i Q Consider j Q {}. Note aso as in Case a that L \ J \ {j} = L \ J =. Denote Q = {m 0, m } and R \ {} = R = {n 0, n }. By, M J \{m } n 0+n S Φ r J \S p r Γ G m = p p m0 b n0 b c n c m0 b n0 b m0 c n c b n b c n0 c m0 + b n b m0 c n0 c p p m Γ b c m + b m c ] M J \{m 0 } n 0+n S Φ r J \S p r Γ G m0 = p p m b n0 b c n c m b n0 b m c n c b n b c n0 c m + b n b m c n0 c p p m0 Γ b c m0 + b m0 c ] M J \{} n 0+n S Φ r J \S p r Γ G = p m0 p m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p Γ b c ] + p The sum of these three terms reduces to n 0+n S Φ r J \S p r Γ j i Q {} i+ M J \{j i } G ji = + p p m0 b n0 b c n c m0 b n0 b m0 c n c b n b c n0 c m0 + b n b m0 c n0 c p p m Γ b c m + b m c ] + + p p m b n0 b c n c m b n0 b m c n c b n b c n0 c m + b n b m c n0 c p p m0 Γ b c m0 + b m0 c ] + + p m0 p m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p Γ b c ] + p = p p m0 b n0 b c n c m0 b n0 b m0 c n c b n b c n0 c m0 + b n b m0 c n0 c p p m Γ b c m + b m c ] p p m b n0 b c n c m b n0 b m c n c b n b c n0 c m + b n b m c n0 c p p m0 Γ b c m0 + b m0 c ] + p m0 p m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p Γ b c ] + p = b c m b n0 b c n c m0 b n0 b m0 c n c b n b c n0 c m0 + b n b m0 c n0 c p p m 0 p m Γ

b c m0 b n0 b c n c m b n0 b m c n c b n b c n0 c m + b n b m c n0 c p p m 0 p m Γ + b c b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p p m 0 p m Γ + b m c b n0 b c n c m0 b n0 b m0 c n c b n b c n0 c m0 + b n b m0 c n0 c p p m 0 p m Γ b m0 c b n0 b c n c m b n0 b m c n c b n b c n0 c m + b n b m c n0 c p p m 0 p m Γ + b c b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p p m 0 p m Γ + b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 p = p b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0. Hence M J = j i Q {} = S Φ p r Γ r J \S = S p Φ i M J \{j i } G ji j i Q {} i M J \{j i } G ji r J \S p r Γ b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0. Case b. R First consider j S. Note as in Case b that Now et j Q. As in case b, we have Thus r J \S p r J \ {j} \ L = J \ L =. L \ J \ {j} = L \ J \ {} = R = =. M J = i M J \{j i } G ji j i J = S Φ i+ n0+i Γ b n0 b m0 c ji c m j i J \Q b n0 b m c ji c m0 b ji b m0 c n0 c m + b ji b m c n0 c m0 G j i + S Φ + n 0+ Γ b n0 c m + b m c n0 r J \S \m 0 p r 5

+ Γ r S bm c n0 + b n0 c m b r c r p r b m b n0 p r c r + c m c n0 p r b r ] G m 0 + S Φ r J \S \m p r + n 0+ Γ b n0 c m0 + b m0 c n0 + Γ r S bm0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r ] G m = +n 0 S Φ r J \S p r b n0 b m0 c ji c m b n0 b m c ji c m0 j i J \Q Γ b ji b m0 c n0 c m + b ji b m c n0 c m0 p p ji Γ b c ji + b ji c ] + +n 0 S Φ Γ b n0 c m + b m c n0 + Γ b m c n0 + b n0 c m b r c r p r r S r J \S \m 0 p r b m b n0 p r c r + c m c n0 p r b r ] p p m0 Γ b c m0 + b m0 c ] +n 0 S Φ r J \S \m p r Γ b n0 c m0 + b m0 c n0 + Γ r S b m0 c n0 + b n0 c m0 b r c r p r b m0 b n0 p r c r + c m0 c n0 p r b r ] p p m Γ b c m + b m c ] = AΓ 3 + +n 0 S p Φ p r BΓ r J \S First we wi show that B = b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 : B = b n0 c m + b m c n0 b c m0 + b m0 c ] b n0 c m0 + b m0 c n0 b c m + b m c ] = b n0 c m b c m0 + b n0 c m b m0 c + b m c n0 b c m0 + b m c n0 b m0 c b n0 c m0 b c m + b n0 c m0 b m c + b m0 c n0 b c m + b m0 c n0 b m c = b n0 b m0 c c m b n0 b m c c m0 b b m0 c n0 c m + b b m c n0 c m0 Now we wi show that A = 0: S p Φ r Q p A = b n0 b m0 c r c m b n0 b m c r c m0 b r b m0 c n0 c m + b r b m c n0 c m0 b c r + b r c ] r r S bm c n0 + b n0 c m b r c r b m b n0 c r + c m c n0 b r b c m0 + b m0 c ] r S + r S bm0 c n0 + b n0 c m0 b r c r b m0 b n0 c r + c m0 c n0 b r b c m + b m c ] It suffices to show that each term is zero. Indeed for every r we have b n0 b m0 c r c m b n0 b m c r c m0 b r b m0 c n0 c m + b r b m c n0 c m0 b c r + b r c ] 6

b m c n0 + b n0 c m b r c r b m b n0 c r + c m c n0 b r b c m0 + b m0 c ] + b m0 c n0 + b n0 c m0 b r c r b m0 b n0 c r + c m0 c n0 b r b c m + b m c ] = b n0 b m0 c r c m b n0 b m c r c m0 b r b m0 c n0 c m + b r b m c n0 c m0 b c r ] + b n0 b m0 c r c m b n0 b m c r c m0 b r b m0 c n0 c m + b r b m c n0 c m0 b r c ] b m c n0 + b n0 c m b r c r b c m0 + b m0 c ] + b m b n0 c r + c m c n0 b r b c m0 + b m0 c ] + b m0 c n0 + b n0 c m0 b r c r b c m + b m c ] b m0 b n0 c r + c m0 c n0 b r b c m + b m c ] ] ] = c r b n0 b m0 c m b b n0 b m c m0 b + b m b n0 b c m0 + b m0 c b m0 b n0 b c m + b m c ] ] + b r b m0 c n0 c m c + b m c n0 c m0 c + c m c n0 b c m0 + b m0 c c m0 c n0 b c m + b m c + b r c r b m0 c n0 c m b + b m c n0 c m0 b + b n0 b m0 c m c b n0 b m c m0 c = 0. ] ] b m c n0 + b n0 c m b c m0 + b m0 c + b m0 c n0 + b n0 c m0 b c m + b m c Case 3. R = 3 Case 3a. S For any j J, we have L \ J \ {j} = L \ J {j} C = L J {j} C C J C {j} = L Since S J, we have L \ J = L \ J and hence By, this impies M J \{j} = L J C L {j} L \ J \ {j} L J C = L \ J = L \ J = 3. = 0 for every j J and hence M J + = 0. 7

Case 3b. R First consider j S. Note that R impies J. Since j S L, we have This impies M J \{j} = 0 for j S. Hence Now et j Q. As in case b, we have J \ {j} \ L = J \ {j} L M J + = J \ L = J \ {} \ L = J \ {} L = J \ L = 3. = M j i Q i J \{j i } G ji. L \ J \ {j} = L \ J \ {} = R = 3 =. Denote R \ {} = {n 0, n } and Q = {m 0, m, m } with n 0 < n and m 0 < m < m. By, we have M J \{m 0 } S Φ r S p r Γ G m0 = p m p m b n0 b m c n c m b n0 b m c n c m b n b m c n0 b m + b n b m c n0 c m p p m0 Γ b c m0 + b m0 c ] M J \{m } S Φ r S p r Γ G m = p m0 p m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 b m + b n b m c n0 c m0 p p m Γ b c m + b m c ] M J \{m } S Φ r S p r Γ G m = p m0 p m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 b m + b n b m c n0 c m0 p p m Γ b c m + b m c ] Thus p m0 p m p m S Φ r S p r Γ i+ M J \{j i } G ji j i Q = b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 b c m + b m c b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 b c m + b m c + b n0 b m c n c m b n0 b m c n c m b n b m c n0 c m + b n b m c n0 c m b c m0 + b m0 c = b c m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 b c m b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 8

so M J + + b c m0 b n0 b m c n c m b n0 b m c n c m b n b m c n0 c m + b n b m c n0 c m = 0, = 0. + b m c b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 b m c b n0 b m0 c n c m b n0 b m c n c m0 b n b m0 c n0 c m + b n b m c n0 c m0 + b m0 c b n0 b m c n c m b n0 b m c n c m b n b m c n0 c m + b n b m c n0 c m Case. R > 3 In this case, R = L \ J = L J C. Since we have By, this impies M J \{j} L \ J \ {j} = L \ J {j} C = L J {j} C C = L J C {j} = L J C L {j}, L \ J \ {j} L J C L J C = 3. = 0 for every j J, and hence M J + = 0. Lemma 3 Proof. First we wi consider the case of discrimination on in-degree. The case of discrimination on out-degree is identica. Using the determinant formua given in Lemma, it suffices to show that Γ i<j p i p j b j c i b i c j ] < + Γ i b ip i c i. Reca from the proof of Lemma that p i = P i, b i = i, c i = Ci, and Γ = γ k. Since γkmax < by assumption, we have γ k <. This impies γ k > and hence γ k <, so Γ = γ γ k < k max = k max. Reca that for any random variabe X, we have EX ] = x px x max xpx = x max EX. Thus i<j p i p j b j c i b i c j ] = i<j pi p j i c j ijc i c j + j c i pi p j i c j ijc i c j = i i j i pi p j i c j ijc i c j j 9

pi p j i c j + p i p j ijc i c j i j i j i p i p j c j + p i ic i i j i = E k ] E + k max p i c i i = E k ] ] E + k max Ec] = E ] k ] E + k max = E ] k ] E ] + k E max k max. Since 0 < Γ < k max, we have Γ pi p j b j c i b i c j ] < pi k max p j b j c i b i c j ] i<j < < + Γ i i<j b i p i c i as caimed. Now we wi consider the case of discrimination on in- and out-degrees. Again by Lemma it suffices to show that Γ i j p i p j b j c i b i c j ] < + Γ i b ip i c i. As before, we have <. This impies γ k Γ = γ γ k < k max = k max. Reca that = i,i i qi, i, ˆ = i,i i qi, i, and ˆ = due to consistency. Note that i j i j i j + i j < i j k max + i j k max, Using the parameters p i = qi = qi, i, b i = i, c i = i, and Γ = have i j qiqj i j i j ] < qiqj k max i j + j i i j < k max i,j γ obtained in the proof of Lemma, we γ k i j qiqj 0

= k max i qi j qj = k max ˆ = k max. i,i j,j Since 0 < Γ <, we have kmax Γ i j qiqj i j i j ] < k max qiqj i j i j ] i j < < + Γ i i i qi. This shows that det H > 0 where the size of the matrix K is arbitrary. Note that the K K upper-eft sub-matrix of H is defined exacty by the same formua as H. Then, since the resut hods for the sub-matrix of any size K, we concude that H is positive definite.