Graphene and Carbon Nanotubes. R. Saito Tohoku University

Similar documents
Carbon based Nanoscale Electronics

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Chirality and energy dependence of first and second order resonance Raman intensity

Graphite, graphene and relativistic electrons

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Carbon Nanotubes (CNTs)

3-month progress Report

Graphene and Carbon Nanotubes

Carbon nanotubes and Graphene

京都 ATLAS meeting 田代. Friday, June 28, 13

From graphene to Z2 topological insulator

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Yutaka Shikano. Visualizing a Quantum State

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Spin orbit interaction in graphene monolayers & carbon nanotubes

Quantum Confinement in Graphene

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Illustrating SUSY breaking effects on various inflation models

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Theory of Quantum Transport in Graphene and Nanotubes II

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

GRAPHENE the first 2D crystal lattice

2 Symmetry. 2.1 Structure of carbon nanotubes

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Luttinger Liquid at the Edge of a Graphene Vacuum

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Graphene. Tianyu Ye November 30th, 2011

Quantum transport through graphene nanostructures

Quantum Hall Effect in Graphene p-n Junctions

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction:

Russell Stewart Deacon

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Exciton Photophysics of Carbon Nanotubes

Coupling of spin and orbital motion of electrons in carbon nanotubes

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay)

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Metallic Nanotubes as a Perfect Conductor

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

The Quantum Spin Hall Effect

Manipulating and determining the electronic structure of carbon nanotubes

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Quantum Oscillations in Graphene in the Presence of Disorder

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Curvature-induced optical phonon frequency shift in metallic carbon nanotubes

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3.14. The model of Haldane on a honeycomb lattice

Graphene: massless electrons in flatland.

The unification of gravity and electromagnetism.

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

XAFS Spectroscopy X-ray absorption fine structure

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

2011/12/25

Final exam. Introduction to Nanotechnology. Name: Student number:

The Physics of Nanoelectronics

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Carbon nanotubes: Models, correlations and the local density of states

5 Topological insulator with time-reversal symmetry

Topological Insulators

ᣂቇⴚ㗔 䇸䉮䊮䊏䊠䊷䊁䉞䉪䉴䈮䉋䉎 䊂䉱䉟䊮䋺ⶄว 㑐䈫㕖ᐔⴧ䉻䉟䊅䊚䉪䉴䇹 ᐔᚑ22ᐕᐲ ળ䇮2011ᐕ3 4ᣣ䇮 ੩ᄢቇᧄㇹ䉨䊞䊮䊌䉴 㗄 A02 ኒᐲ 㑐ᢙᴺℂ 䈮ၮ䈨䈒㕖ᐔⴧ 䊅䊉䉴䉬䊷䊦㔚 વዉ䉻䉟䊅䊚䉪䉴 ઍ ᄢᎿ ㆺ

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

States near Dirac points of a rectangular graphene dot in a magnetic field

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Band Structure of Isolated and Bundled Nanotubes

structure of graphene and carbon nanotubes which forms the basis for many of their proposed applications in electronics.

From Graphene to Nanotubes

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Transversal electric field effect in multilayer graphene nanoribbon

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Physics of graphene. Hideo Aoki Univ Tokyo, Japan. Yasuhiro Hatsugai Univ Tokyo / Tsukuba, Japan Takahiro Fukui Ibaraki Univ, Japan

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Robustness of edge states in graphene quantum dots

Effect of dimensionality in polymeric fullerenes and single-wall nanotubes

Electronic states on the surface of graphite

2-D Layered Materials 1

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Estimation of Gravel Size Distribution using Contact Time

Graphene and Quantum Hall (2+1)D Physics

(Suppression of) Dephasing in a Field-Effect Black Phosphorus Transistor. Guillaume Gervais (Physics) and Thomas Szkopek (Electrical Eng.

Physics of Semiconductors (Problems for report)

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Transcription:

東北大学 TOHOKU UNIVERSITY The 1 st GCOE international symposium "Weaving Science Web beyond Particle-Matter Hierarchy" 2009.3.5-7, Sendai, Japan Graphene and Carbon Nanotubes K. Nomura R. Saito Tohoku University http://flex.phys.tohoku.ac.jp k x k y

Why do we need nano-materials? Carbon Nanotubes and Graphene are Important For Motivating the Nanoworld The Shrinking of Electronics and Moore s Law Rapid advances in molecular Biology at the nanoscale Evolution of Materials Chemistry from a molecule to a quantum dot 100 nm DRAM 1/2 pitch, 3-yr cycle DRAM 1/2 pitch, 2-yr cycle MPU gate length 10 nm 1 nm 1999 2003 2007 2011 2015 2019 2023 2027 2031 2035 2039 2043 2047 Moore s Law Biology at the nanoscale Molecule quantum dot

Moore s Law For Semiconductor Electronics Soon, All Microchips Will Be nanoscale Devices 100 nm DRAM 1/2 pitch, 3-yr cycle DRAM 1/2 pitch, 2-yr cycle MPU gate length 10 nm 1 nm 1999 2003 2007 2011 2015 2019 2023 2027 2031 2035 2039 2043 2047 Semiconductor devices were approaching the nano scale when nanotubes had their official birthday. Semiconductor Research Corporation

Biological Building Blocks in the Nanoworld Artist s conception of a DNA strand being packed inside a virus capsid by a molecular motor. The rotary motor of the virus exerts a force of 60 pn to compress the DNA to 6000 times its normal volume. The internal pressure thus generated is later used by the virus to launch this DNA into a cell. (Credit: C. Bustamante, UCBerkeley)

A Potential Quantum Dot Building Block For Electronics Applications Left: Lithographically-patterned coupled quantum dot molecule formed in a GaAs/AlGaAs heterostructure. Using voltages applied to the gates, a double-well potential is created where individual electrons can be trapped in the left or right hand well. The charge state of the molecule is read out using the quantum point contact of the confining gates as a sensor. Right: Measured phase diagram of the molecule, where (nl,nr) indicates the number of electrons in the left and right wells. The slanted lines indicate places where the charge state changes. (Credit: C. Marcus, Harvard U.)

Carbon Nanotubes - a Prototype 1D (one-dimensional) material of the Nanoworld Left: Electron spiraling down a nanotube. The nanotube energy levels are quantized, as in an atom, so that every (n,m) nanotube species has a different fluorescence peak energy determined by its diameter and chirality, as shown in the right panel. (Credits: left, P. McEuen, Cornell U; right, R.B. Weisman, Rice U)

Carbon Allotropes with various dimensions Diamond graphite graphene nanotube nanowire fullerene D. O. S. D. O. S. D. O. S. D. O. S. E E E E 3D Bulk Semiconductor 2D Quantum Well 1D Quantum Wire 0D Quantum Dot Hill, J. W., and Petrucci, R. H., General Chemistry, 3rd edition, Prentice Hall, NJ, (2002)

Diamond Family of carbon hybridization and geometry R. Saito, in Carbon Alloy Elsevier (2003) sp 3 : Diamond (3D) sp 2 : Graphite (2D) Fullerene (0D) Fullerene Polymer(1-3D) Nanotube (1D) Peapod (0D+1D) sp: Carbyne (1D) Not crystal: HOPG, VGCF, glassy, whisker, fiber, nanohorn, turbostratic, ribbon Nanotube Polymer Graphite Fullerene ribbon Peapod

Nanotube Structure Rolling graphene into a cylinder Chiral vector: C h = na 1 + ma 1 (n,m) Physical properties depend on (n,m): 2 2 dt = 3aC C ( n + m + Diameter 3p n m = 3 p ± 1 nm) 1/ 2 /π metal semiconductor Chirality 3m θ = tan 1 2n + m (4,2) (10,10) achiral, metallic (10,5) chiral, semiconducting Shigeo MARUYAMA's Fullerene and Nanotube Site

18 years of Carbon Nanotubes S. Iijima, (1991), M. S. Dresselhaus et al. (1991) Arc Method:(by Y. Saito) J. Mintmire et al., R. Saito et al., N. Hamada et al, K. Tanaka et al, Laser Ablation:(by H. Kataura) (5,5) Armchair Nanotube (9,0) Zigzag Nanotube (6,5) Chiral Nanotube

Carbon Nanotubes & Graphene both are rapidly growing fields Nanotube publications go back to 1952 Graphene publications go back to 1947 Number of nanotube publications is still growing rapidly 6000 5000 4000 3000 2000 1000 1993 SWNT 0 1991 1996 2001 2006 number of publications containing Carbon Nanotube vs. time

Why now graphene? High performance nano-device high mobility 100,000cm 2 /Vs at 300K Improvement of nanotechnology Fabricated easier than nanotubes Long spin coherence µm Exotic physics (QHE) at 300K Stable, chemically inactive Challenge for graphene devices Integration, process technique Synthesis (SiC, CVD, Scotch tape) Opening energy gap, Edges, defects Graphene = single layer of graphite = 2D graphite

Quantum Hall Effect of Graphene

Hall Effect in 1878 In a magnetic field R H = V H I B

Quantum Hall Effect in 1980

Quantum Hall Effect (Classical) Hall effect Quantum Hall effect von Klitzing ν= σ xy = 1 = n R xy e h 2 ν Landau level Filling factor ν N 2π 2 = n = 2π Bn N eb φ

QHE of Graphene in 2005 σ ( n yx = + 1/ 2) [4e 2 / h] Nature 438 (2005) 04233, 04235 Half-integer quantum Hall effect Zheng-Ando, Gusynin-Sharapov, Peres et al.

Additional Quantum Hall Plateaus 6 2-2 6 4 2 1 0-1 -2-6 Valley and spin splitting in the strong field limit -4-6

Graphene Quantum Hall Ferromagnet K B=0 K K K K K SU ( 2) SU (2) = SU (4) spin valley disordered [weak B] clean [strong B] E C << Γ E C >> Γ

QHE in zero-field limit Non-relativistic Relativistic σ xy = 0 weak B field (strong disorder)? σ xy 2 e = ± 2h 0 1 2 3 a a strong B field (weak disorder) -3/2 1/2-1/2 3/2

QHE: Localization in B-fields ( p ea( r) ) H = + V ( r) 2m 2 V(r) 0

Localization and QHE Topological metal k y QHE in a vanishing B-field k x B = 0 massless Dirac fermions B 0 Relativistic (Dirac eq.) σ xy 2 e = ± 2h Non-relativistic (Schrodinger)

Singularity at Dirac point K-K decoupled case (long-range potential) QHE of Dirac fermions in Bg0 σ xy = ± 2 e 2h (per valley, per spin) Phase diagram ν = h eb n Phys. Rev. Lett. 100, 246806 (2008)

Why are nanotube and graphene special? 1.Quantum effect at 300K 2.Constant Fermi velocity v F = c/300 3. Large variety of geometries more than 300. A B Hexagons make graphene special. Similarity to elementary particle physics

A and B carbon atoms in graphene Two component wave function a 1 a 2 X C 2 Pseudo spin A Lattice Structure of Graphene 2 fold symmetry between A and B B

Pseudo Spin vs Real Spin α β 1 0 0 1 1 0 0 1 A B only A site only B site up spin down spin

Energy Band of Graphene Tight Binding Hamiltonian Schrodinger Eq. Conduction band K and K : Dirac points Valence band Γ K M K K point K point

Taylor expansion of f(k) around the K point Eigenvalue Eigenvector = Θ Θ Θ Θ i i i i e e e e 1 1 0 0 = Θ Θ Θ Θ i i i i e e e e 1 1 0 0 ± = Ψ Θ i e 1 (k) K point Hamiltonian around the K point CC 0 F a v γ = k y k x

The phase of the wavefunction and Berry s phase T. Ando et al., J. Phys. Soc. Jpn. 67, 2857 (1998) γ (Θ) Ψ Ψ 1 ( 1 k) = Θ( e i k + ) Ψ Θ: 0 2π around the K point, ( k + 2π ) = Ψ1 ( 1 k We must add the Berry Phase γ: Θ ) = e iθ( k)/ 2 ( k ) 2 + iθ( k) / 2 e iθ( k)/ 2 ( = e Ψ1( k) Ψ2 ( k + 2π ) = Ψ2 ( k) Θ+γ ) γ (Θ) = π 0 Ψ1 ( k + 2π ) = Ψ1 ( k) Ψ2 ( k + 2π ) = Ψ2 ( k)

4 π rotational symmetry of Pseudo Spin vs Real Spin A B α β 4 π rotation in the k space rotation around the K (K ) point 4 π rotation in the real space rotation around z-axes

Absence of Back scattering T. Ando et al., J. Phys. Soc. Jpn, 67, 2857 (1998) A time reversal pair of back scatterimg Cancel scattering amplitude to each other by the phase difference of π.

Question: what is the field that polarizes Pseudo Spin or Real Spin? α β 1 0 0 1 1 0 0 1 A B only A site only B site up spin down spin A: Magnetic field B B

Effective Hamiltonian around the K point K point K point

Dirac s equation Mass Hamiltonian of a relativistic electron with electronic real spin Paul Adrien Maurice Dirac 1902.8.8-1984.10.20 When m=0 A B Similar Hamiltonian for graphene with pseudo-spin σ: operator for pseudo spin

Vector field Real spin and the magnetic field Zeeman term Magnetic field does not polarize the pseudo spin. Similar field A q for pseudo spin

Edge electronic states at the zigag edge of graphene M. Fujita et al, J. Phys. Soc. Jpn. 65 (1996) 1920 Delocalized states: Edge states: Pseudo-spin polarized states W.F. has a value only either A or B site. Spacialy localized at zigzag edge Amplitude of WF

Vector potential for pseudo spin K. Sasaki, R. Saito, Prog. Theor. Phys. Suppl. 176, 253 (2008) A q is expressed by δγ 0 modification of nearest neighbor interaction Why? modification of off-diagonal element with time reversal symmetry A B

Analytic solution of zigzag edge states by A q K. Sasaki et al., J. Phys. Soc. Japan, 75, 074713 (2006) Edge states zigzag edge formation γ 0(1 c) tight binding results A q field results up: energy dispersion, down: localization length

Zigzag edge vs Armchair edge K. Sasaki et al., J. Phys. Soc. Japan, 75, 074713 (2006) Zigzag edge Armchair edge B z =0 No pseudo-spin polarization no edge states Useful for considering edge states for any edge

Direction of Pseudo-Spin = 1 0 0 1 σ z ( ) 0 1 1 0 0 1 1 2 1 ) ( ) ( = = Θ + Θ k i k i e e σ z Extended states Edge states σ z A B Pauli matrices

Parity anomaly in graphene origin of the mass K. Sasaki, R. Saito, J. Phys. Soc. Japan, 77, 054703 (2008) Weyl equation (periodic system) Weyl equation (finite system) Zigzag edge Broken A and B symmetry Partial polarization of pseudo-spin Occurrence of the mass Most simple realization of Parity anomaly 1. Deformation-induce magnetic field 2. Coulomb-induce mass term

Electron-phonon interaction is expressed by A q K. Sasaki, R. Saito, G. Dresselhaus, M. S. Dresselhaus, H. Farhat, J. Kong, Phys. Rev. B, 77, 245441 (2008) Electron-photon interaction Electron-phonon interaction K point K point Broken time-reversal symmetry Time-reversal symmetry over the k space

Electro-chemical doping and Raman spectrosocpy of single wall carbon nanotubes Farhat et al., Phys. Rev. Lett., 99 145506(2007) TO LO isolated metallic SWNT E F dependent upshift of TO? Broadening

Chiral angle dependence of KA K. Sasaki, R. Saito, et al. Phys. Rev. B, 77, 245441 (2008) Zigzag Chiral Armchair Why TO becomes hard for zigzag NT? Θ dependent el-ph interaction LO: TO: K. Ishikawa and T. Ando, J. Phys. Soc. Jpn. 75, 84713 (2006). T. Ando, J. Phys. Soc. Jpn. 77, 14707 (2008).

Gate voltage dependence of G band Raman spectra J. S. Park, et al. unpublished Armchair SWNT Chiral SWNT Zigzag SWNT K. Sasaki, et al. Phys. Rev. B 77, 245441 (2008) TO E F >0 LO LO TO TO E F <0 For LO mode of zigzag tube, No Electron-phonon int.

Edge states superconductivity of graphene K. Sasaki, et al., J. Phys. Soc. Japan, 76, 033702, (2007) Eliashberg equation Tang et al., Science 292 (01) for SWNT (0.4nm diameter) Takesue et al., PRL 96 (06) for MWNT (10nm diameter) Two problems 1. no D(E F ) 2. suppression of el-ph interaction U : repulsive Coulomb interaction Edge states could overcome the problems. Energy bandwidth of edge states K. Sasaki et al., Appl. Phys. Lett., 88, 113110 (2006)

Pseudo Spin and A q Summary Edge states: polarized pseudo spin A B Strong electron-phonon interaction superconductivity similarity to real spin σ z : Edge states parameter Application of A q to el-ph interaction

Thank you.

局在解 Sasaki et al., JPSJ75 (2006) ほとんどゼロエネルギー状態 局在長がエッジに沿った方向の波数に依存

Single peak or double peaks? Spin Polarization STS experiments for a step edge in graphite Klusek et al., Appl. Surf. Sci. 161 (2000) Niimi et al., Appl. Surf. Sci. 241 (2005) Kobayashi et al., PRB 71 (2005)

Sasaki et al., arxiv:0801.4170 to appear in J. Phys. Soc. Jpn. (2008)

Mass from Coulomb interaction

Mean field approximation neglect Equal densities at A and B atoms Pseudo-spin polarization disappears, and Real-spin is polarized

後方散乱の抑制 不純物による散乱 波数に依存した相対位相 多重散乱でも後方散乱が抑制 Nakanishi et al., JPSJ67, 2857(98) 2 成分間の干渉効果 Suzuura and Ando, PRB65, 235412(02) エッジ状態 二成分間の相対位相や大きさの比 ( 擬スピン ) が物性に関係

A 原子 エッジ状態の性質をすべて再現する Sasaki et al., JPSJ75 (2006) B 原子

グラフェンの擬スピンとは何か まとめ 二成分間の相対位相 実スピン 後方散乱の抑制エッジ状態 ディラック方程式と電磁場 擬スピンをそろえる場

Ishikawa et al., JPSJ75 (2006) Sasaki et al., PRB77 (2008)

エッジ状態は擬スピンが傾いている B 原子 A 原子

Calculation of G band Raman spectra G band Raman spectra = Intensity + Spectral width a 1. Raman Intensity I(ω, E L ) optical matrix el-ph matrix optical matrix k b K E L phonon energy j Phonon energy Laser energy resonance window Original frequency Correction frequency Including el-ph coupling 2. Spectral width Electron-hole pair creation matrix by el-ph interaction electron energy hole energy Spectral width Fermi distribution function K. Sasaki, et al. Phys. Rev. B 77, 245441 (2008) Spectral width is given by the decay length Γ.

Gate voltage dependence of G band Raman spectra Armchair SWNT Chiral SWNT Zigzag SWNT K. Sasaki, et al. Phys. Rev. B 77, 245441 (2008) TO E F >0 LO LO TO TO E F <0 J. S. Park, et al. unpublished For LO mode of zigzag tube, Electron-phonon coupling Almost zero

BN nano ribbon

Zigzag BN nanoribbon F. Zheng et al. (unpublished) Zone boundary k = π/a, f = 0

Energy band of BN nanoribbon F. Zheng et al. (unpublished) B Edge state around B edge N Edge state around N edge Pseudo spin polarized everywhere.

Coulomb interaction in BN ribbon F. Zheng et al. (unpublished) BN B Energy gap decreases (BN) increases (G) One spin direction appears at E F G N U B = U N = 7.5eV

Half metalicity in BN ribbon F. Zheng et al. (unpublished) Only down spin can flow at N zigzag edge Half metalicity D: dangling bond E: edge states