ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

Similar documents
Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoidal Steady-State Analysis

Fundamentals of Engineering Exam Review Electromagnetic Physics

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Response of RLC Circuits

11. AC Circuit Power Analysis

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

ECE 201 Fall 2009 Final Exam

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Chapter 10 AC Analysis Using Phasors

Sinusoids and Phasors

Fall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

12. Introduction and Chapter Objectives

Prof. Shayla Sawyer CP08 solution

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

04-Electric Power. ECEGR 452 Renewable Energy Systems

Chapter 9 Objectives

4/27 Friday. I have all the old homework if you need to collect them.

Sinusoidal Steady-State Analysis

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

Sinusoidal Steady State Analysis

EE40 Homework #6. Due Oct 15 (Thursday), 12:00 noon in Cory 240

Sinusoidal Steady State Analysis (AC Analysis) Part I

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Lecture 11 - AC Power

ECE Spring 2017 Final Exam

Phasors: Impedance and Circuit Anlysis. Phasors

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits

Figure Circuit for Question 1. Figure Circuit for Question 2

REACTANCE. By: Enzo Paterno Date: 03/2013

3.1 Superposition theorem

Notes on Electric Circuits (Dr. Ramakant Srivastava)

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

Sinusoidal Steady-State Analysis

Electric Circuit Theory

Chapter 10: Sinusoidal Steady-State Analysis

Handout 11: AC circuit. AC generator

Electric Circuits I FINAL EXAMINATION

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

In Chapter 15, you learned how to analyze a few simple ac circuits in the time

Chapter 5 Steady-State Sinusoidal Analysis

Introduction to AC Circuits (Capacitors and Inductors)

EE1-01 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ANALYSIS OF CIRCUITS. Tuesday, 28 May 10:00 am

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

Basic Electrical Circuits Analysis ECE 221

EE292: Fundamentals of ECE

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Note 11: Alternating Current (AC) Circuits

09/29/2009 Reading: Hambley Chapter 5 and Appendix A

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09

To find the step response of an RC circuit

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

AC analysis - many examples

Lecture 4: R-L-C Circuits and Resonant Circuits

ECE Spring 2015 Final Exam

Module 4. Single-phase AC Circuits

BASIC NETWORK ANALYSIS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

Chapter 33. Alternating Current Circuits

Electrical Engineering Fundamentals for Non-Electrical Engineers

MET 487 Instrumentation and Automatic Control. Lecture 3

Sinusoidal Steady- State Circuit Analysis

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.

Chapter 10: Sinusoidal Steady-State Analysis

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

Sinusoidal Steady State Power Calculations

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

Electric Circuits Fall 2015 Solution #5

8. Introduction and Chapter Objectives

BIOEN 302, Section 3: AC electronics

Circuits. Fawwaz T. Ulaby, Michel M. Maharbiz, Cynthia M. Furse. Solutions to the Exercises

Driven RLC Circuits Challenge Problem Solutions

Single Phase Parallel AC Circuits

Problem Set 5 Solutions

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

R-L-C Circuits and Resonant Circuits

EE221 - Practice for the Midterm Exam

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Experiment Guide for RC Circuits

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ECE 205: Intro Elec & Electr Circuits

Alternating Current Circuits

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp

1 Phasors and Alternating Currents

Transcription:

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Real vs. Complex Numbers j 1 The product of a real number & the operator j is an imaginary number. 2 3 j, j, j, 5.1 j 7 The sum of a real number & an imaginary number is a complex number, z. where the real part is denoted and the imaginary part is denoted a Re j j b z Re 2 4 2, Im 2 4 4 Im 24 j, 1 j z rectangular form 2

Addition & Subtraction Graphical addition & subtraction are performed like vector addition ( tip-to-tail ). M N 31j 22j M N 51j Algebraic addition & subtraction are performed piece-wise: M a b j 1 1 N a b j 2 2 M N a a b b j 1 2 1 2 3

Multiplication: Rectangular Form Multiplication may be accomplished in rectangular form z a b j 1 1 1 z a b j 2 2 2 z z a b j a b j 1 2 1 1 2 2 a a a b j a b j b b j 1 2 1 2 2 1 1 2 a1a2 a1b 2 a2b1 j b1b 2 a a b b a b a b j 1 2 1 2 1 2 2 1 2 M N 5 3 2 4 53j M N j j 2 24j 10 20 j 6 j 12 j 22 14 j but it is more easily accomplished in polar form. 4

Exponential Form e j cos jsin j z e z cos j z sin j z e a b j assume z is positive, real a b z z cos sin sin cos tan b a 2 2 2 2 2 2 a b z cos z sin 2 2 2 2 2 2 a b z cos sin z 2 2 a b z 5

Rectangular Exponential Form z a b Re Im z z tan b a z a b 2 2 M 43j z 2 2 4 3 5 1 tan 3 4 37 z = magnitude of z = phase/angle of z M 5e j37 6

Polar Form z a b j z e z j rectangular exponential polar Polar form is a shorthand for the exponential form. z = magnitude of z = phase/angle of z M j e 37 43 5 j 537 7

Multiplication: Polar Form Multiplication in polar form is carried out using exponentials z a b j z e 1 1 1 1 2 2 2 2 j z a b j z e 1 j 2 z z z e z e j 1 2 1 2 z z 1 2 1 2 z e z e 1 2 j j j 1 2 1 2 j z z, z z z z z z 1 1 1 2 2 1 1 2 1 2 1 2 M N 3 4 j 553 3 3 j 345 2 2 5 53 3 45 M N 1598 8

Division: Polar Form z z, z z 1 1 1 2 2 1 j1 j2 z e z z e 1 1 1 j2 j2 z e z e z 2 2 2 e j j 1 2 z z z 11 1 1 2 22 z2 M N 6 8 j 1053 5 5 j 545 2 2 10 53 5 45 M N 28 9

Complex Conjugate The complex conjugate of z is denoted z and if z a b j then z a b j M 31j The conjugate of z is the same number, except that the imaginary part is negated. M 31j Graphically, the complex conjugate of z is the mirror image of z across the Real axis. 10

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic Examples and Matlab Scripts THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Example: Complex Addition 9 2 j A 31j A 2 6 j A >> i1 = 9 + 2*j; >> i2 = -3 + j; >> i3 = -2 + 6*j; >> i = i1 + i2 + i3 i = 4.0000 + 9.0000i 12

Example: Complex Addition 9 2 j A 31j A 2 6 j A 4 9 j A >> i1 = 9 + 2*j; >> i2 = -3 + j; >> i3 = -2 + 6*j; >> i = i1 + i2 + i3 i = 4.0000 + 9.0000i 13

Example: Complex Multiplication Find v x i in rectangular form: v i 7 3 j m 5 4 j ma 7 3 5 4 v i j j 35 15 j 28 j 12 j 47 13 j μw 2 v 29 j, i 3 5 j A 2 9 3 5 v i j j 6 27 j10 j 45 5117 j W >> = 2 + 9*j; >> I = -3 + 5*j; >> p = * I p = -51.0000-17.0000i 14

Example: Complex Multiplication Find v x i in rectangular form: v i 7 3 j m 5 4 j ma 7 3 5 4 v i j j 35 15 j 28 j 12 j 47 13 j μw 2 v 29 j, i 3 5 j A 2 9 3 5 v i j j 6 27 j10 j 45 5117 j W >> = 2 + 9*j; >> I = -3 + 5*j; >> p = * I p = -51.0000-17.0000i 15

Example: Complex Arithmetic Determine the quantity v a v b in polar form if v n = 0. v a v b 110 0 110120 v n 110 240 v c >> v_a = 110*exp(j*0); >> v_b = 110*exp(j*-2*pi/3); >> v = v_a - v_b; >> abs(v) ans = 190.5256 >> angle(v)*180/pi ans = 30.0000 16

Example: Complex Arithmetic Determine the quantity v a v b in polar form if v n = 0. v a v b 110 0 110120 v n v a v 1100 110 120 b 110cos0 110sin 0 190.5 30 j j 110 cos 120 110sin 120 110 j0 110 1 2 j 110 3 2 165 j 55 3 2 2 165 55 3 tan 1 55 3 165 17 110 240 >> v_a = 110*exp(j*0); v c >> v_b = 110*exp(j*-2*pi/3); >> v = v_a - v_b; >> abs(v) >> angle(v)*180/pi ans = 190.5256 ans = 30.0000

Example: Complex Division Determine the ratio of L to I L : I L L L L IL IL + L 3 3 3 j m 1 j 3 ma I L >> _L = -3*sqrt(3)+3*j; >> I_L = 1+j*sqrt(3); >> Z = _L / I_L Z = -0.0000 + 3.0000i >> abs(z) ans = 3.0000 >> angle(z)*180/pi ans = 90.0000 18

Example: Complex Division Determine the ratio of L to I L : I L L L L IL IL + L 3 3 3 j m 1 j 3 ma I L I L L 3 3 3 j m 1 j 3 ma 2 2 1 2 2 1 3 tan 1 3 3 3 3 tan 1 3 6150 2 60 390 >> _L = -3*sqrt(3)+3*j; >> I_L = 1+j*sqrt(3); >> Z = _L / I_L Z = -0.0000 + 3.0000i >> abs(z) ans = 3.0000 >> angle(z)*180/pi ans = 90.0000 19

Example: Complex Conjugate Write the quantity x I* in polar form, given 35 j I 6 7 j ma >> = 3-5*j; >> I = 6 + 7*j; >> S = * conj(i) S = -17.0000-51.0000i >> abs(s) ans = 53.7587 >> angle(s)*180/pi ans = -108.4349 20

Example: Complex Conjugate Write the quantity x I* in polar form, given I 3 5 j6 7 j 18 30 j 21j 35 17 51j mw I 17 51 tan 51 17 I 2 2 1 53.8 108 mw 34 59 85 49 35 j I 6 7 j ma >> = 3-5*j; >> I = 6 + 7*j; >> S = * conj(i) S = -17.0000-51.0000i >> abs(s) ans = 53.7587 >> angle(s)*180/pi ans = -108.4349 3485 59 49 53.8 108 mw 21

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(c) Sinusoids and Sinusoidal Steady-State THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Alternating Current (Sinusoidal) v t sin t, 0 m 0 0 + vt A A B B m = amplitude (in olts), 0 = phase (in radians) = frequency (in radians/second) T = period (in seconds) f = frequency (in cycles/second) = 1/T = / 2 sin t cos t 2 m 0 m 0 23

Review of Sinusoids sin, sin v t t v t t 1 m 2 m v 2 leads v 1 by v 1 lags v 2 by 24

Sinusoids & Exponential Form sin, sin v t t v t t 1 m 2 m e j cos jsin sin j t e cos t j t m m m Re jt me mcos t Im jt me msin t 25

RL Circuit with a Sinusoidal Source cos 0 t i d R i t i t 0 cos t dt L L -- oscillates forever -- never settles to a DC value (e.g. zero) It s possible that the solution is of the form i t I cos t 0 Substituting i(t) into the differential equation R I 0sin t I0cos t cos t L L 0 Solving for I 0 and substituting back into i(t) yields 0 1 cos t tan i t R L 2 2 2 L R amplitude scaling, phase shift 26

transient RL Circuit with a Sinusoidal Source v s i L v s L 400 μh 5t 5 5 1μs R 2kΩ The RL circuit s transient response is negligible after 5t. The remaining response is sinusoidal. i L 27

transient RC Circuit with a Sinusoidal Source v s + v C v s 5t 5 RC 5 2 kω 100 pf 1μs The RC circuit s transient response is negligible after 5t. The remaining response is sinusoidal. v C 28

transient RLC Circuit with a Sinusoidal Source + v C i s t cos sin v t e t t c 1 d 2 d 3 1 1 rad 3125 2RC 210 16 μf s t s 5 1.6 ms The RLC circuit s transient response is negligible after t s. The remaining response is sinusoidal. v C 29

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(d) Phasors THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Phasor Notation I cos m t 2 Im 2 cos m t 1 m 1 j t 1 j1 j1 cos t Re e Re e e e m 1 m m m m 1 jt jt j t 2 j2 j2 I cos t Re I e Re I e e I e I m 2 m m m m 2 Assume all voltages & currents oscillate with frequency = 2 f Pick off the amplitude & phase for each v/i ; write each in polar form. 31 phasor notation (longer derivation provided in textbook section 10.3)

Example: Phasor vs. Time Domain Let all phasors be referenced to a cosine (zero phase). Convert the following time-domain functions to the phasor domain : (a) 40cos(t + 30 ) m, = 100 rad/s (b) 25cos(t 75 ) A, = 400 rad/s (c) 70cos(2 f + 45 ), f = 20 MHz (d) 36sin(2 f + 110 ) ma, f = 8 MHz (a) (b) (c) (d) t t sin cos 2 32

Example: Phasor vs. Time Domain Let all phasors be referenced to a cosine (zero phase). Convert the following time-domain functions to the phasor domain : (a) 40cos(t + 30 ) m, = 100 rad/s (b) 25cos(t 75 ) A, = 400 rad/s (c) 70cos(2 f + 45 ), f = 20 MHz (d) 36sin(2 f + 110 ) ma, f = 8 MHz (a) 4030 m (b) 25 75 A (c) 7045 (d) 3620 ma t t sin cos 2 33

Example: Phasors and oltage/current Let = 2000 rad/s with phasors be referenced to a cosine (zero phase). Determine the instantaneous value, at t = 1 ms, of the current corresponding to this phasor: 20 + 10j A. omega = 2000; I = 20 + 10*j; T = 2*pi/omega; delta_t = T/1000; t = 0:delta_t:2*T; i_t = abs(i)*cos(omega*t + angle(i)); plot(t,i_t) grid axis([0 2*T -Inf Inf]) ylabel('current (A)') xlabel('time (s)') 34

Example: Phasors and oltage/current Let = 2000 rad/s with phasors be referenced to a cosine (zero phase). Determine the instantaneous value, at t = 1 ms, of the current corresponding to this phasor: 20 + 10j A. 20 10 j 20 10 tan 10 20 22.426.6 A 2 2 1 omega = 2000; I = 20 + 10*j; t 1 ms 22.4cos 2.464 i t i 22.4 cos 2000 0.464 A 17.5 A T = 2*pi/omega; delta_t = T/1000; t = 0:delta_t:2*T; i_t = abs(i)*cos(omega*t + angle(i)); plot(t,i_t) grid axis([0 2*T -Inf Inf]) ylabel('current (A)') xlabel('time (s)') 35

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(e) Phasors & Ohm s Law, KL/KCL THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Phasor oltage vs. Current: R, L, C it I t v t cos m t 1 m cos 2 v t Ri t For this equation to be true, I R and m m 1 2 d vlt L il t dt m Im 1 2 90, L 2 1 90, C I m d ict C vc t dt For this equation to be true, For this equation to be true, m v and i are v leads i in phase by 90 I = jc i leads v by 90 = R I = jl I 37

Example: KCL, Phasor Domain Determine v(t). 6 i t 8cos 2 10 t 30 ma s 70 10 mh 2 nf + vt 38

Example: KCL, Phasor Domain Determine v(t). 6 i t 8cos 2 10 t 30 ma s 70 10 mh 2 nf + vt Convert to phasor form I 8 s 30 ma Employ the appropriate Kirchhoff Law(s) I R I L I C 70 10 mh 2 nf + I s jc 0 R jl 6 9 830 j 2 10 210 0 70 j 2 10 10 10 6 6 39

Example: KCL, Phasor Domain Determine v(t). 6 i t 8cos 2 10 t 30 ma s 70 10 mh 2 nf + vt Convert between rectangular & polar forms as necessary 6 9 830 j 2 10 210 0 70 j 2 10 10 10 6 6 1 1 j 0.0126 830 70 j 62.8 0.0143 0.0159 j 0.0126 j 830 0.0143 0.0033 j 830 0.0147 13 830 40

Example: KCL, Phasor Domain Determine v(t). 6 i t 8cos 2 10 t 30 ma s 70 10 mh 2 nf + vt omega = 2*pi*10^6; I = 8*exp(j*30*pi/180); R = 70; L = 10e-6; C = 2e-9; Y = (1/R + 1/(j*omega*L) + j*omega*c); = I / Y; abs() angle()*180/pi ans = 545.2174 ans = 43.1941 41

Example: KCL, Phasor Domain Determine v(t). 6 i t 8cos 2 10 t 30 ma s 70 10 mh 2 nf + vt Convert between rectangular & polar forms as necessary 0.0147 13 830 830 ma 54443 m 0.0147 13 Convert from phasors to time domain 6 t v t 544cos 2 10 43 m omega = 2*pi*10^6; I = 8*exp(j*30*pi/180); R = 70; L = 10e-6; C = 2e-9; Y = (1/R + 1/(j*omega*L) + j*omega*c); = I / Y; abs() angle()*180/pi ans = 545.2174 ans = 43.1941 42

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(f) Impedance THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Impedance Impedance, Z is the ratio of phasor voltage to phasor current for an electrical element or network. like resistance, but it is complex -- It is a measure of an element/network s ability to impede current flow. RI Z Z For a resistor, R I -- current and voltage are always in-phase -- there is no frequency dependence R For an inductor, jl I Z L jl -- voltage always leads current by 90 -- at higher frequencies, less current is passed (for constant ) For a capacitor, I jc Z 1 44 C jc j C -- current always leads voltage by 90 -- at higher frequencies, more current is passed (for constant )

Impedance vs. Frequency 2 f R = 100 Z Z R R R R Z 0 R Z L Z L jl Z 90 L L = 3 mh L Z C Z C Z 1 jc C 1 C C = 300 pf 90 45

Impedance vs. Frequency freq = 2e6:1e3:10e6; omega = 2*pi*freq; f 2 MHz 10 MHz, 2 f R = 100; Z_R = R*ones(1,length(omega)); R 100, ZR R L = 3e-6; Z_L = j*omega*l; L 3 μh, ZL jl C = 300e-12; Z_C = 1./(j*omega*C); C 300 pf, Z 1 C jc figure(1) subplot(2,1,1) plot(freq/10^6,abs(z_r)) axis([-inf Inf 0 300]) set(gca,'xtick',[2:1:10]) ylabel(' Z_R (ohms)') title('{\bf Resistor Impedance... vs. Frequency}') subplot(2,1,2) plot(freq/10^6,phase(z_r)*180/pi) axis([-inf Inf -180 180]) set(gca,'xtick',[2:1:10]) ylabel('phase[ Z_R ] (degrees)') xlabel('frequency (MHz)') figure(2) subplot(2,1,1) plot(freq/10^6,abs(z_l)) axis([-inf Inf 0 300]) set(gca,'xtick',[2:1:10]) ylabel(' Z_L (ohms)') title('{\bf Inductor Impedance... vs. Frequency}') subplot(2,1,2) plot(freq/10^6,phase(z_l)*180/pi) axis([-inf Inf -180 180]) set(gca,'xtick',[2:1:10]) ylabel('phase[ Z_L ] (degrees)') xlabel('frequency (MHz)') figure(3) subplot(2,1,1) plot(freq/10^6,abs(z_c)) axis([-inf Inf 0 300]) set(gca,'xtick',[2:1:10]) ylabel(' Z_C (ohms)') title('{\bf Capacitor Impedance... vs. Frequency}') subplot(2,1,2) plot(freq/10^6,phase(z_c)*180/pi) axis([-inf Inf -180 180]) set(gca,'xtick',[2:1:10]) ylabel('phase[ Z_C ] (degrees)') xlabel('frequency (MHz)') 46

Impedances in Series & Parallel I I N n1 s Z n s Z 1 Z 2 Z 3 1 2 3 Impedances in series are combined like resistors in series. R s N R n1 n N n1 I 1 s Z n Impedances in parallel are combined like resistors in parallel. Z N N Z s N Z n1 n N 1 1 R p n1 R n N 1 1 Z p n1 Z n 47

Example: Equivalent Impedance Determine the equivalent impedance of the network at terminals A B if = 5 rad/s. A 4 33.3 mf 1.6 H 2 100 mf B 48

Example: Equivalent Impedance Determine the equivalent impedance of the network at terminals A B if = 5 rad/s. A 4 33.3 mf 1.6 H 2 100 mf B Convert all resistances, inductances, capacitances into impedances A 6j 8j Z Z C Z L R j R jl C B 4 2 2j 49

Example: Equivalent Impedance Combine impedances in series & parallel, starting away from A B and working towards A B Z 1 2 2j 4 90 2 45 1 j 2 2j 8 45 Z2 Z1 8j 6j 1 j 8 j 6 j 1 j Z 1 50

Example: Equivalent Impedance Combine impedances in series & parallel, starting away from A B and working towards A B Z AB Z Z 2 2 4 1 j 4 4 1 j 4 4 4 j 3245.0 5 j 2611.4 1.1 33.6 Z 2 If a test source were applied at terminals A B : Itest 10 A then the voltage across A B would be 51 test 10 1.133.6 1.133.6

Example: Equivalent Impedance Determine the equivalent impedance of the network at terminals A B if = 5 rad/s. A 4 33.3 mf 1.6 H 2 100 mf B omega = 5; C1 = 100e-3; C2 = 33.3e-3; R1 = 2; R2 = 4; L1 = 1.6; Z_C1 = 1/(j*omega*C1); Z_C2 = 1/(j*omega*C2); Z_R1 = R1; Z_R2 = R2; Z_L1 = j*omega*l1; Z_eq1 = Z_C1*Z_R1/(Z_C1 + Z_R1); Z_eq2 = Z_eq1 + Z_L1 + Z_C2; Z_ab = Z_R2*Z_eq2 / (Z_R2 + Z_eq2) Z_ab = 0.9217 + 0.6120i abs(z_ab) ans = 1.1063 phase(z_ab)*180/pi ans = 33.5837 52

Example: Phasor Analysis (a) Determine v C (t). (b) Plot v C (t) and the source versus time for 2 cycles. 3 cos(2 10 6 t + 20 ) 1 k + v C 1 nf 53

Example: Phasor Analysis (a) Determine v C (t). (b) Plot v C (t) and the source versus time for 2 cycles. 3 cos(2 10 6 t + 20 ) 1 k + v C 1 nf v S v C 54

Example: Phasor Analysis (a) Determine v C (t). (b) Plot v C (t) and the source versus time for 2 cycles. 3 cos(2 10 6 t + 20 ) 1 k + v C 1 nf Convert the circuit from the time domain to the phasor domain. ZC j C j j 6 9 2 10 10 160 Ω 320 I 1 k + C 160j Use KL/KCL to solve for /I in the phasor domain. I j 160 ji 320 I 1000 160 0 C 55

Example: Phasor Analysis (a) Determine v C (t). (b) Plot v C (t) and the source versus time for 2 cycles. 320 I 1 k + C 160j Perform complex algebra to find /I C 160 j 160 90 320 320 1000 160 j 1000 160 tan 160 1000 160 90 320 0.472 60.9 1013 9.1 2 2 1 Convert back to the time domain 56 6 v t 472cos 2 10 t 60.9 m C

Example: Plotting Sinusoids, Matlab (a) Determine v C (t). (b) Plot v C (t) and the source versus time for 2 cycles. 3 cos(2 10 6 t + 20 ) 1 k + v C 1 nf omega = 2*pi*10^6; T = 2*pi/omega; delta_t = T/100; t = 0 : delta_t : 2*T - delta_t ; v_s = 3.000 * cos( omega*t + 20.0*pi/180 ); v_c = 0.472 * cos( omega*t - 60.9*pi/180 ); figure(1) plot(t/10^-6, v_s, 'r--',... t/10^-6, v_c, 'b-', 'LineWidth', 2) ylabel('oltage ()') xlabel('time (\mus)') legend('v_s','v_c') grid 6 v t 472cos 2 10 t 60.9 m C 57

Example: Transient AC Circuit, PSpice Amplitude is 472 m as determined by written analysis. 6 v t 472cos 2 10 t 60.9 m C 58

Example: Frequency Response, Matlab Plot the amplitude of v C (t) versus f 0 for 500 khz < f 0 < 2 MHz. Z C 9 9 10 j j C j 10 Ω 3 cos(2 10 6 t + 20 ) 1 k + v C 1 nf C 9 ZC 10 j 320 320 9 1000 Z 1000 10 j C _s = 3 * exp( j*20*pi/180 ); R = 1000; C = 1e-9; f = 500e3 : 1e3 : 2e6 ; 6 6 for f 10 Hz ( 210 rad s)... 6 v t 472cos 2 10 t 60.9 m C omega = 2 * pi * f; Z_C = -j./ (omega * C); _C = _s * Z_C./ (R + Z_C); plot(f/10^3, abs(_c), 'LineWidth', 2) ylabel(' _C (volts)') xlabel('frequency (khz)') grid Frequency (khz) 59

Example: Frequency Response, PSpice Plot the amplitude of v C (t) versus f 0 for 500 khz < f 0 < 2 MHz. AC part, SOURCE library 60

Example: Frequency Response, PSpice Plot the amplitude of v C (t) versus f 0 for 500 khz < f 0 < 2 MHz. AC part, SOURCE library 6 6 for f 10 Hz ( 210 rad s)... 6 v t 472cos 2 10 t 60.9 m C 61

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(g) Nodal & Mesh Analysis in the Phasor Domain THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Nodal Analysis with Phasors v 1 v 2 v 3 1 2 3 0 0 Analysis Steps SAME as with DC circuits. Now use complex arithmetic. (1) Choose a reference node (usually ground or the bottom node) to have a voltage of zero. (2) Assign a unique voltage variable to each node that is not the reference (v 1, v 2, v 3, v N 1 ). (3) For independent & dependent voltage sources, identify a supernode and write the voltage across the supernode in terms of node voltages. Write a KCL equation at all N 1 nodes including the supernode (and not the reference, or a supernode which includes the reference). (4) Solve the N 1 node equations + source equations simultaneously. 63

Example: Nodal Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5i A + v(t) i A 64

Example: Nodal Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5i A v 2 Convert to phasor form L 3 2070 10 1.4 3 Z jl j j Z j C j 20 25010 0.2 j C v 1 v 3 v 4 i A + v(t) Identify supernode(s) 1 2 0.5I A Identify v sources next to the reference 9, 9 j 1 4 Write KCL equations 0.2 j 1.4 j 0.2 j 3 3 1 3 2 3 4 3 0 Write equations governing dep. src. ctrl I A 3 3 65 1 0.5I A 0 0.2 j 2 1.4 j 3 4 0.2 j I A 9 0 9 90 0 +

Example: Nodal Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5I A 2 0.2 j 1.4 j 0.2 j 3 3 1 3 2 3 4 3 0 9, 9 j 1 2 0.5I A 1 4 Rearrange into matrix form j j 1 5 j 1 2 5 j 5 j 3 5 j 4 0 1.4 1.4 3 I A 3 3 1 0.2 j 1.4 j 3 4 0.2 j I A 9 0 9 90 0 + 1 4 9 9j 1 2 0.5I A 0 3 0 3 I A 2 j 1 5 j 9.3 j 5 j 0 1 0 1.4 3 9 1 0 0 0 0 3 9 j 0 0 0 1 0 4 0 1 1 0 0 0.5 I A 0 0 0 1 3 0 1 66 8.35.5 t v t 8.3cos 20 5.5

Example: Nodal Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5I A 2 0.2 j 1.4 j 0.2 j 3 3 1 3 2 3 4 3 0 9, 9 j 1 4 I A I 1 2 0.5 A 3 3 1 0.2 j 1.4 j 3 4 0.2 j I A 9 0 9 90 0 + >> A = [ -5*j j/1.4 9.29*j+1/3-5*j 0 ; 1 0 0 0 0 ; 0 0 0 1 0 ; 1-1 0 0-0.5 ; 0 0-1/3 0 1 ]; >> B = [0 ; 9 ; -9*j ; 0 ; 0 ]; >> x = A^-1 * B >> = x(2); >> abs() >> angle() * 180/pi x = ans = ans = 9.0000-0.0000i 8.2703 + 0.7913i 4.3784-4.7477i 0.0000-9.0000i 1.4595-1.5826i 8.3080 5.4653 8.35.5 67

Mesh Analysis with Phasors Analysis Steps SAME as with DC circuits. Now use complex arithmetic. (1) Draw a mesh current for each mesh. (2) Identify supermeshes. i 1 i 2 (3) Write KL around each supermesh, then KL for each mesh that is not part of a supermesh. (4) Express additional unknowns (e.g. dependent-source /I) in terms of mesh currents. (5) Solve the simultaneous equations. I 1 I 2 68

Example: Mesh Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5i A + v(t) i A 69

Example: Mesh Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5i A Convert to phasor form 3 3 Z j 20 7010 1.4 j L Z j 20 250 10 0.2 j C i 2 i 3 + v(t) Identify supermesh(es) i 1 i 4 i A Write KL equations 0.5I A j I1 I2 I1 I4 I A j I2 I3 j I2 I1 3 2 3 3 4 I I j I I j 9 0.2 3 0 0.5 1.4 0.2 0 1.4 j I I 5I 9 j 0.2 j I I 0 3 0.2 9 0 4 1 4 3 Write equations governing I A I1I4 dep. src. ctrl 9 0 I 2 1.4 j I 3 0.2 j 0.2 j I 1 I 4 I A 9j + 70

Example: Mesh Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5I A j I1 I2 I1 I4 I A j I2 I3 j I2 I1 3 2 3 3 4 I I j I I j 9 0.2 3 0 0.5 1.4 0.2 0 1.4 j I I 5I 9 j 0.2 j I I 0 3 0.2 9 0 4 1 4 3 I I I 5I A 1 4 3 9 0 0.2 j I 2 1.4 j I 3 0.2 j I 1 I 4 I A 9j + Rearrange into matrix form j I1 j I2 I4 1 2 3 A 2 3 4 0.2 3 0.2 3 9 0.2 j I 1.2 j I 1.4 j I 0.5 I 0 1.4 j I 1.2 j 5 I 0.2 j I 9 j 3 I 0.2 j I 3 0.2 j I 9 j 1 3 4 I I I 0 1 4 5I 0 3 A 0.2 j 3 0.2 j 0 3 0 0 I1 9 0.2 j 1.2 j 1.4 j 0 0.5 0 I 0 2 0 1.4 j 1.2 j 5 0.2 j 0 0 I 3 9 j 3 0 0.2 j 30.2 j 0 0 I4 9 j 1 0 0 1 1 0 I A 0 0 0 5 0 0 1 0 8.35.5 vt 8.3cos 20t 5.5 71

Example: Mesh Analysis, Phasors Write a valid matrix equation whose solution includes the phasor form of v(t). 0.5I A j I1 I2 I1 I4 I A j I2 I3 j I2 I1 3 2 3 3 4 I I j I I j 9 0.2 3 0 0.5 1.4 0.2 0 1.4 j I I 5I 9 j 0.2 j I I 0 3 0.2 9 0 4 1 4 3 I I I 5I A 1 4 3 9 0 0.2 j I 2 1.4 j I 3 0.2 j I 1 I 4 I A 9j + A = [ -0.2*j+3 0.2*j 0-3 0 0 ; 0.2*j 1.2*j -1.4*j 0 0.5 0 ; 0-1.4*j 1.2*j+5 0.2*j 0 0 ; -3 0 0.2*j 3-0.2*j 0 0 ; 1 0 0-1 -1 0 ; 0 0-5 0 0 1 ]; B = [ 9 ; 0 ; -9*j ; 9*j ; 0 ; 0 ]; x = A^-1 * B = x(6); abs() angle() * 180/pi 72 x = -18.1368 +20.4776i 5.6121-2.6198i 1.6540 + 0.1583i -19.5970 +22.0609i 1.4602-1.5833i 8.2699 + 0.7916i ans = ans = 8.3077 5.4679 8.35.5

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(h) Thevenin Equivalence in AC Circuits THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Review of Thevenin Equivalents allows us to replace a large, complicated circuit with a much simpler 2-element series/parallel circuit the simpler circuit allows for rapid calculations of, I, P that the original circuit can deliver to a load helps us to choose the best value of load resistance to maximize the power delivered (e.g. from an amplifier, to a speaker) 74

Review of Thevenin Equivalents To determine TH... YES only ind. src.? NO source transformation find TH = OC find TH = OC To determine Z TH... YES only ind. src.? NO deactivate src., find Z TH = Z eq source transformation find I SC, use Z TH = OC /I SC insert test source, find Z TH = test /I test NO TH = 0? YES find I SC, use Z TH = OC /I SC insert test source, find Z TH = test /I test insert test source, find Z TH = test /I test 75

Review of Thevenin Equivalents Determine the Thevenin equivalent of Network A using open-circuit voltage and short-circuit current. I SC + OC I Z SC OC TH 6 6 12 12 8 = 6 3 9 1 7 8 4 A 1 2 1 7 9 OC 9 I SC 76 8 89 TH

Review of Thevenin Equivalents Determine the Thevenin equivalent of Network A by using a test source. + OC 8 TH I test 2 I test test test I test test 2 7 I test test 9 Z TH 77

Example: Thevenin & Sinusoids Determine the phasor voltage difference 1 2 (with j10 ). Use the Thevenin equivalent at 1, 2 (without j10 ). 78

Example: Thevenin & Sinusoids Determine the phasor voltage difference 1 2 (with j10 ). Use the Thevenin equivalent at 1, 2 (without j10 ). A B j j 4 2 j 0.5 j2 4 j 4 2 j j 2 6 3 j TH OC A B 10 4 2 0.5 90 2 4 ZTH 4 2 j 2 4 j 6 2 j 1 2 6 3j 10 j 6 2 j10 j 3 6 j 6.7 63.4 79

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(i) Phasors & Superposition THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Linearity 1 x t linear network N y t x t network y t 1 2 linear N 2 x = input or source or stimulus x t t N y t t 1 1 1 1 y = output or response A x t 1 1 1 t N A y t t N 1 1 1 A x t t A x t t 1 1 1 2 2 2 N A y t t A y t t 1 1 1 2 2 2 81

Superposition: oltage Sources Determine the current i using superposition. deactivate all but 1 solve sum 16 32 2 k 4 2 k i 16 4 4 ma i 32 4 8 ma 8 i i i i i 4 8 2 1 15 ma 60 i 8 4 2 ma i 4 4 1mA 82 i 60 4 15 ma

Superposition: Current Sources Determine the voltage v using superposition. 6 A 3 12 A 6 24 A deactivate all but 1 solve sum v v 6 0 3 6 v 12 v v 12 0 3 6 v 24 v v 24 0 3 6 v 48 83 v 12 24 48 60

Example: Superposition & Sinusoids Determine the phasor voltage difference 1 2. Use superposition. 84

Example: Superposition & Sinusoids Determine the phasor voltage difference 1 2. Use superposition. 1 2 1 2 1 2 1 2 1 2 4 2j 1 2 1 10 j 2 4 j 4 2 j 2 6 j 2 4j 1 2 0.5 j 10 j 1 2 j 2 4 j 4 12 j 1 2 3 6 j 9 36 tan 2 6.7 63.4 1 85

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(x,1) Thevenin Equivalent Example THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Example: Thevenin & Sinusoids, #2 Determine the Thevenin equivalent circuit with respect to terminals a b. 87

Example: Thevenin & Sinusoids, #2 Determine the Thevenin equivalent circuit with respect to terminals a b. Z TH 5 j10 5 j 5 j 10 5 j Zeq 5 j 10 5 j 25 50 j 2.5 5 j 10 Y I Z TH RL OC s YRL YC 1 10 5 j j j j 330 10 5 1 10 5 1 5 13.0 10.6 j RL 88

Example: Thevenin & Sinusoids, #2 Determine the Thevenin equivalent circuit with respect to terminals a b. Z I TH OC SC 13.0 10.6 3 30 2.5 5 j 2.5 5 j 13.0 10.6 j 89

Example: Thevenin & Sinusoids, #2 Determine the Thevenin equivalent impedance with respect to terminals a b. ZTH 2.5 5 j 90

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(j) Phasors & Source Transformation THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Review of Source Transformation If these two circuits provide the same v/i characteristics at their outputs (v L, i L ), the two circuits are equivalent. s I s Imax s Rs max s R s R p 92 I condition for equivalence s s I max I I R s max s p

Source Transformation & Phasors If these two circuits provide the same /I characteristics at their outputs ( L, I L ), the two circuits are equivalent. Zs I L I L s L ZL I s Z p L ZL I Z max s s max s Z s Z p 93 I condition for equivalence s s I max I I Z s max s p

Example: Src. Transform. & Sinusoids Determine the phasor voltage difference 1 2. Use source transformation(s). 94

Example: Src. Transform. & Sinusoids Determine the phasor voltage difference 1 2. Use source transformation(s). S1 Z 1 Z 2 S2 1 2 S1 S2 10 j 10 j Z Z 1 2 Z Z 1 2 4 2j 2 4j j S1 10 4 2 4 2 j j j j j S1 0.5 90 2 4 0.5 2 4 2 1 2 4 2 j j 2 10 j 10 j 4 2 j 2 4 j 10 j 6 3 j 3 6 j 8j 6 6.7 63.4 95

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(k,1) PSpice for AC Circuits THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

Example #1: Written Analysis Solve for v(t). 0.5i A From nodal analysis 0.2 j 1.4 j 0.2 j 3 3 1 3 3 4 3 0 9, 9 j 1 2 0.5I A 1 4 I A 3 3 i A + v(t) j 1 5 j 9.3 j 5 j 0 1 0 1.4 3 9 1 0 0 0 0 3 9 j 0 0 0 1 0 4 0 1 1 0 0 0.5 I A 0 0 0 1 3 0 1 8.35.5 t v t 8.3cos 20 5.5 97 1 0.5I A 0.2 j 2 1.4 j 3 4 0.2 j I A 9 0 9 90 0 +

Example #1: Matlab Solve for v(t). 0.5I A 2 0.2 j 1.4 j 0.2 j 3 3 1 3 2 3 4 3 0 9, 9 j 1 4 Rearrange into matrix form I A I 1 2 0.5 A 3 3 1 0.2 j 1.4 j 3 4 0.2 j I A 9 0 9 90 + >> A = [ -5*j j/1.4 9.29*j+1/3-5*j 0 ; 1 0 0 0 0 ; 0 0 0 1 0 ; 1-1 0 0-0.5 ; 0 0-1/3 0 1 ]; >> B = [0 ; 9 ; -9*j ; 0 ; 0 ]; >> x = A^-1 * B >> = x(2); >> abs() >> angle() * 180/pi 98 x = ans = ans = 9.0000-0.0000i 8.2703 + 0.7913i 4.3784-4.7477i 0.0000-9.0000i 1.4595-1.5826i 8.3080 5.4653 8.35.5 t v t 8.3cos 20 5.5

Example #1: PSpice Plot v(t) using PSpice. Amplitude is 8.4 as determined by written analysis. 99 8.35.5 t v t 8.3cos 20 5.5

Example #2: Written Analysis Determine the phasor voltage difference 1 2. Confirm this answer using PSpice. + Z 1 S1 Z 2 S2 + 1 2 S1 S2 10 j 10 j Z Z 1 2 Z Z 1 2 4 2j 2 4j j S1 10 4 2 4 2 j j j j j S1 0.5 90 2 4 0.5 2 4 2 1 2 4 2 j j 2 10 j 10 j 4 2 j 2 4 j 10 j 6 3 j 3 6 j 8j 6 6.7 63.4 100

Example #2: PSpice Determine the phasor voltage difference 1 2. Confirm this answer using PSpice. IAC part, SOURCE library 1 2 6.7 63.4 101

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(k,2) Op Amps in AC Circuits THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

103 Example #3: Phasors & Op Amps Sketch out / in vs. for 1 rad/s < < 100 krad/s. Determine v out (t) for v in (t) = cos(4x10 4 t). 125 nf 2k 200

104 Example #3: Phasors & Op Amps Sketch out / in vs. for 1 rad/s < < 100 krad/s. Determine v out (t) for v in (t) = cos(4x10 4 t). 125 nf 2k out in Z f Rf 1 jc f Rf 1 jc f Z R R R 1 jc i i i f f Rf 1 Rf C f 4000 10 R j1 R C j4000 i f f 200 out in 10 4000 4000 2 2 out 4 4 410 10 4 10 3 in 7.1 135 j410 4000 j1 4 vout t 7.1cos 4 10 t 135 4000

Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(k,3) AC Thevenin Equivalent w/ a Dependent Source THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409

106 Example #4: Thevenin, Dependent Src Determine the Thevenin equivalent of this circuit at terminals A B. A B

107 Example #4: Thevenin, Dependent Src Determine the Thevenin equivalent of this circuit at terminals A B. A j j25ia OC 1030 30I 5I 25 I 0 a a a B I a 1030 0.2875 25 j25 OC j 25 0.2875 7.07 15 SC j j I 1030 30 I I 5I 25 I 0 a a a 25 50I 0 a SC Z TH 7.07 15 0.106 2 66.7 13 A 25 j25 30 Ia 1030 j25 50 SC 0 ISC 106 2 ma I 7.0715 B