Math 6A Practice Problems II

Similar documents
e x2 dxdy, e x2 da, e x2 x 3 dx = e

Solutions to the Final Exam, Math 53, Summer 2012

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Math 233. Practice Problems Chapter 15. i j k

Math Exam IV - Fall 2011

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

Math 212-Lecture Integration in cylindrical and spherical coordinates

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

One side of each sheet is blank and may be used as scratch paper.

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

( ) ( ) Math 17 Exam II Solutions

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

Math Review for Exam 3

D = 2(2) 3 2 = 4 9 = 5 < 0

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

Math 23b Practice Final Summer 2011

MATH 52 FINAL EXAM SOLUTIONS

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C.

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3 (f) 3/4 (g) 1 (h) 4/3

Answers and Solutions to Section 13.7 Homework Problems 1 19 (odd) S. F. Ellermeyer April 23, 2004

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

Math 265H: Calculus III Practice Midterm II: Fall 2014

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

Line and Surface Integrals. Stokes and Divergence Theorems

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Review for the Final Test

Problem Points S C O R E

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

HOMEWORK 8 SOLUTIONS

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Vector Calculus. Dr. D. Sukumar

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Review problems for the final exam Calculus III Fall 2003

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 53 Spring 2018 Practice Midterm 2

Without fully opening the exam, check that you have pages 1 through 12.

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Ma 227 Final Exam Solutions 12/13/11

Math Final Exam

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

Peter Alfeld Math , Fall 2005

e x3 dx dy. 0 y x 2, 0 x 1.

Math 31CH - Spring Final Exam

Mathematics 205 Solutions for HWK 23. e x2 +y 2 dxdy

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

v n ds where v = x z 2, 0,xz+1 and S is the surface that

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

MLC Practice Final Exam

Tufts University Math 13 Department of Mathematics April 2, 2012 Exam 2 12:00 pm to 1:20 pm

Solutions to old Exam 3 problems

1. (16 points) Write but do not evaluate the following integrals:

for 2 1/3 < t 3 1/3 parametrizes

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

4.4 Change of Variable in Integrals: The Jacobian

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

234 Review Sheet 2 Solutions

McGill University April 16, Advanced Calculus for Engineers

Math 20C Homework 2 Partial Solutions

Practice Final Solutions

Review for the Final Exam

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

MATH 332: Vector Analysis Summer 2005 Homework

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

Tom Robbins WW Prob Lib1 Math , Fall 2001

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar.

MATHS 267 Answers to Stokes Practice Dr. Jones

Math 32B Discussion Session Session 3 Notes August 14, 2018

Lecture Notes for MATH2230. Neil Ramsamooj

Practice problems **********************************************************

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Math 234 Exam 3 Review Sheet

Without fully opening the exam, check that you have pages 1 through 12.

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

Practice problems. m zδdv. In our case, we can cancel δ and have z =

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

MA 351 Fall 2007 Exam #1 Review Solutions 1

Calculus III 2004 Summer Practice Final 8/3/2004

Ma 1c Practical - Solutions to Homework Set 7

C 3 C 4. R k C 1. (x,y)

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar.

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2

Integral Vector Calculus

Vector Fields and Line Integrals The Fundamental Theorem for Line Integrals

Solutions to Sample Questions for Final Exam

Transcription:

Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following pages.. 5π. π. a) Not conservative b) onservative f x y + x ln y + 4. a) curlf b) f xy cos z + c) 5. a) 44 b) 88 c) 8 6. a) ln b) 8 5 ) 7. 8. ) 9. 4.. 6 4. 44. 4. 8 + 4 4 5 5. πe 6 e 5) 6.

Detailed Solutions. Evaluate the line integral xyzds where is the curve parametrized by x sin t, y t, z cos t, t π. Solution. Since rt) sin t, t, cos t, r t) cos t,, sin t and r t) cos t) + + sin t) 5. Then xyzds sin t)t) cos t) r t) dt 4 5 5 t cos t + ) 4 sin t π 5π. We used integration by parts to evaluate the integral. t sin t cos tdt 5 t sin tdt. Evaluate the line integral F dr where is given by the vector function rt) ti + sin tj + cos tk, t π and F zi + yj xk. Solution. Frt)) cos t, sin t, t and rt), cos t, sin t. Therefore F dr Frt)) r t)dt cos t, sin t, t, cos t, sin t dt cos t + sin t cos t + t sin t) dt cos t + ) sin t + t sin t dt sin t 4 cos t t cos t + sin t π π. We used integrating by parts to evaluate the integral t sin tdt.. Determine whether or not F is a conservative vector field. If it is, find a function f such that F f. a) Fx, y) e x cos yi + e x sin yj Solution. P e x cos y and Q e x sin y. Then Since Q x P b) Fx, y) ln y + xy )i + P ex sin y, F is not conservative. x y + x ) j y and Q x ex sin y.

Solution. P ln y + xy and Q x y + x y. Then P y + 6xy, and Q x 6xy + y. Since Q x P, F is conservative and there exists an f such that f F. We wish to find a function f such that f x, f y ln y + xy, x y + x y : f x ln y + xy f x ln y + x y + gy) f y x y + x y f x y + x ln y + hx). Therefore f x y + x ln y +. 4. Let Fx, y, z) y cos zi + xy cos zj xy sin zk, be the curve parametrized by rt) t i + sin tj + tk, t π. a) Show that F is conservative. Hint: use curl) Solution. We need to show curlf) : i j k curlf) x z y cos z xy cos z xy sin z i z xy cos z xy sin z j x z y cos z xy sin z + k x y cos z xy cos z i xy sin z) ) xy cos z) j z x xy sin z) ) z y cos z) + k x xy cos z) ) y cos z) xy sin z + xy sin z)i y sin z + y sin z)j + y cos z y cos z)k. Therefore F is conservative. b) Find a function f such that F f. Solution. We need to find an f such that f x, f y, f z y cos z, xy cos z, xy sin z : Therefore f xy cos z +. f x y cos z f xy cos z + gy, z) f y xy cos z f xy cos z + hx, z) f z xy sin z f xy cos z + lx, y) c) Use b) to calculate F dr along the given curve.

Solution. F dr f dr frπ)) fr) fπ,, π) f,, ). 5. a) Estimate the volume of the solid that lies below the surface z x + y and above the rectangle R [, ] [, 4]. Use a Riemann sum with m n and choose the sample points to be the lower right corners. Solution. x and y 4, therefore A x y. The lower righthand corners of each rectangle are, ),, ),, ),, ). Let z fx, y). Then fx, y)da f, ) + f, ) + f, ) + f, )) A + 9 + + ) 44. b) Use the midpoint rule to estimate the volume in a). Solution. We did not change the division of our rectangles, so A. The midpoints of each rectangle are, ),, ),, ),, ). Then ) ) ) )) fx, y)da f, + f, + f, + f, A + + + 8 + + + ) + 8 88. c) alculate the exact volumes of the solid. Solution. 4 x + y )dydx xy + y ) 4 dx 4x + 8 ) dx x + 8 x 8 6. Evaluate the following integrals: 4 x a) y + y ) dydx x Solution. 4 x y + y ) dydx x 4 ) x ln y + y x dx y 4 x ln + ln x ln x 4 ln x ln + x ) dx x ln 4 ln 4

b) Solution. s + t dsdt + t) / t /) dt s + t) / dsdt s + t)/ dt 5 + t)5/ ) 5 t5/ 8 5 ) 7. Evaluate D x + y) da where D is bounded by y x, y x. Solution. The region described is D {x, y) : x, x y x}. D x x + y)da x + y)dydx x 5 x5/ + x 4 x4 4 x5 5 ) xy + y x dx x x / + x ) x x4 dx 8. Evaluate the integral by reversing the order of integration: / arcsin y cos x + cos x dxdy. Solution. The region described in the integral above is equivalent to x π, y sin x: / sin x cos x + cos x dydx / / cos x + cos x y sin x sin x cos x + cos xdx, udu u/ dx let u + cos x ) 9. Evaluate x + y) da where R is the region that lies to the left of the y-axis between the R circles x + y, x + y 4. 5

Solution. The region described in polar coordinates is R {r, θ) : r, π θ π }. / / x + y)da r cos θ + r sin θ)rdrdθ cos θ + sin θ)r drdθ R π/ / π/ cos θ + sin θ) r 7 sin θ cos θ) π/ 4 π/ dθ 7 π/ / π/ cos θ + sin θ)dθ. Verify Green s Theorem for x4 dx + xydy where is the triangular curve consisting of line segments from, ) to, ),, ), to, ), and, ) to, ) traversed in that order. Solution. We need to verify F dr ) Q D x P da. We need to calculate both the left integral and the right integral and show they are equal. For the left integral: We need to break up our triangle into three different sections. Let be the side of the triangle from, ) to, ), be the side of the triangle from, ) to, ), and be the side of the triangle from, ) to, ). Then + +. is parametrized by rt) t,, t. Then F dr F rt)) r t)dt t 4 dt + t dt is parametrized by rt) t, t, t. Then F dr F rt)) r t)dt t) 4 dt) + t)tdt 5 t)5 + t t 5 t 4 dt 5 t5 5. is parametrized by rt), t, t. Then F dr F rt)) r t)dt dt) + t) dt). Therefore F dr 5 + 5 + 6. t) 4 + t t ) dt learly this method is tedious. Now we will apply Green s Theorem. The triangle can be described as D {x, y) : x, y x}. Then Q D x P ) x da x xy) ) x x4 ) dydx ydydx y x x) x) dx dx 6 6. Our two calculations are equal to each other, thus the theorem is verified. 6

. Evaluate y dx + xydy, where is the boundary of the semiannular region D in the upper half plane between the circles x + y and x + y 4. You may assume that is positively oriented.) Solution. D is the region {x, y) : x + y 4} {r, θ) : r, θ π}. Using Green s Theorem, we have y dx + xydy x xy) ) y ) da y y)) da yda D 4 r sin θ rdrdθ sin θdθ D r dr cos θ) π D r. Use a triple integral to find the volume of the solid bounded by the cylinder y x and the planes z, z 4, and y 9. Solution. The solid can be described as E {x, y, z) : x, x x 9, z 4}. Therefore 9 4 9 V dv dzdydx z 4 9 4 dydx 4 y E x x dydx 9 dx x x ) 4 9 x )dx 4 9x x 44. Evaluate E xydv where E is bounded by the parabolic cylinders y x and x y, and the planes z and z x + y. Solution. The solid can be described as E {x, y, z) : x, x y x, z x + y}. Then E xydv x x+y x x y + xy x4 8 + x7/ x7 xydzdydx ) x dx x 4 x8 4 x x x xyz x+y z + x5/ 8 + 4 4 dydx x x6 x7 x ) dx x y + xy )dydx 4. Evaluate E x + xy )dv where E is the solid in the first octant that lies beneath the paraboloid z x y. 7

Solution. The solid can be described in cylindrical coordinates as E {r, θ, z) : r, θ π, z r }. Since x + xy xx + y ) r cos θ r, then E x + xy )dv / r / / r 5 r cos θ rdzdrdθ r 4 r ) cos θdrdθ 5 r7 7 ) / / cos θdθ 5 sin θ π/ 5 r 4 cos θ z r r 4 r 6 ) cos θdrdθ drdθ 5. Evaluate E ez dv where E is enclosed by the paraboloid z + x + y, the cylinder x + y 5, and the xy-plane. Solution. The solid can be described in cylindrical coordinates as E {r, θ, z) : r 5, θ π, z + r }. E e z dv 5 +r 5 π 6 e z rdzdrdθ re +r )drdθ π e u du r 5 ) 5 ) π e u 6 5 re z +r z drdθ re +r dr πe 6 e 5) ) rdr, let u + r 6. Evaluate E xyzdv where E lies between the spheres ρ and ρ 4 and the cone φ π. Solution. The solid can be described in polar coordinates as E {ρ, θ, φ) : ρ 4, θ π, φ π }. Then E xyzdv 4 / 4 6 ρ6 4 ρ 5 dρ sin θ ρ cos θ sin φ)ρ sin θ sin φ)ρ cos φ) ρ sin φdρdθdφ sin θ cos θdθ π 4 sin4 φ / π/ sin φ cos φdφ 8