Joint State and Parameter Estimation by Extended Kalman Filter (EKF) technique

Similar documents
State Observer Design

The Variance-Covariance Matrix

Conventional Hot-Wire Anemometer

CHAPTER-2. S.No Name of the Sub-Title No. 2.5 Use of Modified Heffron Phillip's model in Multi- Machine Systems 32

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

Consider a system of 2 simultaneous first order linear equations

PSS Tuning of the Combined Cycle Power Station by Neural Network

innovations shocks white noise

Frequency Response. Response of an LTI System to Eigenfunction

Chapter 7 Stead St y- ate Errors

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Advanced Queueing Theory. M/G/1 Queueing Systems

ELEN E4830 Digital Image Processing

t=0 t>0: + vr - i dvc Continuation

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Chapter 9 Transient Response

Chapter 13 Laplace Transform Analysis

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

A universal saturation controller design for mobile robots

Chapter 6: AC Circuits

Physics 160 Lecture 3. R. Johnson April 6, 2015

Boosting and Ensemble Methods

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel

9. Simple Rules for Monetary Policy

Generalized Half Linear Canonical Transform And Its Properties

CSE 245: Computer Aided Circuit Simulation and Verification

Charging of capacitor through inductor and resistor

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

Problem analysis in MW frequency control of an Interconnected Power system using sampled data technique

Enhanced DBCC for high-speed permanent magnet synchronous motor drives

The Mathematics of Harmonic Oscillators

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Improved Ratio Estimators for Population Mean Based on Median Using Linear Combination of Population Mean and Median of an Auxiliary Variable

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

NUMERICAL ALGORITHM FOR OPTIMAL MULTI-VARIABLE CONTROL OF AERO ENGINES

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Theoretical Seismology

Node Placement and Mobility Control in Mobile Wireless Sensor Networks

Chap 2: Reliability and Availability Models

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Adaptive Critic Designs for Optimal Control of Power Systems

Applying Software Reliability Techniques to Low Retail Demand Estimation

WiH Wei He

A L A BA M A L A W R E V IE W

Theoretical Output Current Spectra of Three Phase Current Source Converters

Mitigation of Inrush Current in Load Transformer for Series Voltage Sag Compensator

Relative controllability of nonlinear systems with delays in control

The Fourier Transform

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

EE"232"Lightwave"Devices Lecture"16:"p7i7n"Photodiodes"and" Photoconductors"

Double Slits in Space and Time

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

APPENDIX H CONSTANT VOLTAGE BEHIND TRANSIENT REACTANCE GENERATOR MODEL

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

Dynamic modeling, simulation and control of a hybrid driven press mechanism

2. The Laplace Transform

Fluctuation-Electromagnetic Interaction of Rotating Neutral Particle with the Surface: Relativistic Theory

Wave Phenomena Physics 15c

SIMEON BALL AND AART BLOKHUIS

FAULT TOLERANT SYSTEMS

P a g e 5 1 of R e p o r t P B 4 / 0 9

DYNAMICS and CONTROL

Chapter 5 Transient Analysis

Modified-Zero-Fourth-Order-Cumulant-Expansion Approximation Method for Investigation of Turbulence with Reacting and Mixing Chemical Elements

On the Speed of Heat Wave. Mihály Makai

EXERCISE - 01 CHECK YOUR GRASP

Lecture 2: Current in RC circuit D.K.Pandey

Mixture Ratio Estimators Using Multi-Auxiliary Variables and Attributes for Two-Phase Sampling

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Density Matrix Description of NMR BCMB/CHEM 8190

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

FI 3103 Quantum Physics

Grand Canonical Ensemble

Prediction of channel information in multi-user OFDM systems

Example: MOSFET Amplifier Distortion

EE105 Fall 2015 Microelectronic Devices and Circuits. LTI: Linear Time-Invariant System

Control System Engineering (EE301T) Assignment: 2

Midterm exam 2, April 7, 2009 (solutions)

Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-chip RLC Interconnect Load

10.5 Linear Viscoelasticity and the Laplace Transform

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Stochastic Reliability Analysis

EE 434 Lecture 22. Bipolar Device Models

Homework: Introduction to Motion

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Almost unbiased exponential estimator for the finite population mean

Implementation of the Extended Conjugate Gradient Method for the Two- Dimensional Energized Wave Equation

Control Systems (Lecture note #6)

Robust decentralized control with scalar output of multivariable structurally uncertain plants with state delay 1

Guo, James C.Y. (1998). "Overland Flow on a Pervious Surface," IWRA International J. of Water, Vol 23, No 2, June.

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Fourier Series: main points

Lecture 6: Learning for Control (Generalised Linear Regression)

Density Matrix Description of NMR BCMB/CHEM 8190

Transcription:

Inrnaonal Journal o Engnrng Rsarch an Dvlopmn -ISSN: 78-67 p-issn: 78-8 www.jr.com Volum Issu 8 (Augus 5.4-5 Jon Sa an aramr Esmaon by En alman Flr (EF chnu S. Damoharao.S.L.V. Ayyarao G Sun Dp. o EEE GMR Insu o chnology Rajam Anhra rash Ina Asssan rossor Dp. o EEE GMR Insu o chnology Rajam Anhra rash Ina Absrac:- In orr o ncras powr sysm sably an rlably urng an ar surbancs powr gr global an local conrollrs mus b vlop. SCADA sysm provs say an low samplng nsy. o rmov hs lmaon MUs ar bng raply aop worlw. Dynamc sas o powr sysm can b sma usng EF. hs rurs l caon as npu whch may no avalabl. As a rsul h EF wh unnown npus propos or nyng an smang h sas an h unnown npus o h synchronous machn. In rms:- Dynamc sa smaon n alman lr sa smaon synchronous gnraor. I. INRODUCION armonc njcon has bn a ncrasng powr ualy concrn ovr h yars. Wh h growng h us o powr lcronc vcs h mannanc o powr ualy has bcom a major problm or h lcrc uly compans [6]. Bu hgh-prormanc monorng an conrol schms can harly b bul on h sng SCADA sysm whch provs only say low-samplng nsy an non synchronous normaon abou h nwor. SCADA masurmns ar oo nrun an non synchronous o capur normaon abou h ynamc sysm. I s o rmov hs lmaons ha w ara masurmns an conrol sysms (WAMAC usng phasor masurmn uns MUs ar bng rarly aop worlw. h w ara masurmn sysm (WAMS vlop raply n mos o h yars. I has bn appl o h monorng an conrol o powr sysms. Bu as a n o masurmn sysm WAMS has h masurmn rror an no convnn aa unavoably []. h say masurmn rrors o WAMS hav bn prscrb n corrsponng IEEE sanar bu h ynamc masurmn rrors now bcom h ocus o scusson. I h ynamc raw aa s appl rcly h unprcabl consunc wll b rsul n whch wll amag o powr sysms. hror h ynamc sa smaon or h sa varabls urng lcromchancal ransn procss s h bacbon or ynamc applcaons an ral-m conrol. A numbr o paprs hav ocus on jus on ynamc sa o h powr sysm a a m ypcally h roor angl or sp whch was sma such as nural nwors an AI mhos. hs AI-bas mol-r smaors gnra h sma roor sp or roor angl sgnal whou rurng a mahmacal mol or any machn paramrs [-]. In h larg-scal powr sysm sably analyss s on prrabl o hav an ac mol or all lmns o h powr sysm nwor nclung ransmsson lns ransormrs Inucon moors an also synchronous machns. hror h physcal mol-bas sa smaor o h gnraor nclung volag sas n aon o roor angl an sp woul b mor nrsng n sysm monorng an conrol. Synchronz phasor masurmn uns (MUs wr nrouc an snc hn hav b-com a maur chnology s us wh many applcaons whch ar currnly unr vlopmn aroun h worl. h occurrnc o major problms n many major powr sysms aroun h worl has gvn a nw mpus or larg-scal mplmnaon o w-ara masurmn sysms (WAMS usng MUs an hasor aa concnraors (DCs [4]. Daa prov by h MUs ar vry accura an nabl sysm analyzng o rmn h ac sunc o vns whch hav l o h problms. As prnc wh WAMS s gan s naural ha ohr uss o phasor masurmns wll b oun. In parcular sgncan lraur alray ss whch als wh applcaon o phasor masurmns o sysm monorng procon an conrol. h mos common chnu or rmnng h phasor rprsnaon o an npu sgnal s o us aa sampls an rom h wavorm an apply h scr Fourr ransorm (DF o compu h phasor masurmn. Snc sampl aa ar us o rprsn h rrnc sgnal s ssnal ha an alasng lrs b appl o h rrnc sgnal bor aa sampls ar an. h an alasng lrs ar analog vcs whch lm h banwh o h pass ban o lss han hal h samplng runcy. 4

Jon Sa an aramr Esmaon by En alman lr (EF chnu Fg. compnsang or sgnal lay nrouc by h an alasng Flr Synchrophasor s a rm us o scrb a phasor whch has bn sma a an nsan. In orr o oban smulanous masurmn o phasors across a w ara masurmn o h powr sysm s ncssary o synchronz hs m ags so ha all hasor masurmns blongng o h sam m ag ar ruly. Consr h marr n Fg. s h m ag o h masurmn. h MU mus hn prov h phasor gvn by usng h sampl aa o h npu sgnal. Furhrmor hs lay wll b a uncon o h sgnal runcy [7]. h as o h MU s o compnsa or hs lay bcaus h sampl aa ar an ar h an alasng lay s nrouc by h alman lr. h synchronzaon s achv by usng a samplng cloc puls whch s phas-loc o h on-puls-pr-scon sgnal prov by a GS rcvr. h rcvr may b bul n h MU or may b nsall n h subsaon an h synchronzng puls srbu o h MU an o any ohr vc. h m ags ar a nrvals ha ar mulpls o a pro o h nomnal powr sysm runcy. II. SINGLE-MACINE INFINIE-BUS OWER SYSEM A gnral powr sysm can b smpl o an uvaln crcu sysm wh a sngl machn connc o an nn bus va ransmsson lns. h so-call sngl machn nn-bus (SMIB sysm shown n Fg. wll b h bass or vlopng an valang our gnraor sa smas. Assumng a classcal synchronous gnraor mol l n as h roor angl by whch h -as componn o h Fg.. Synchronous machn connc o an n n bus va ransmsson lns. Volag bhn ransn racanc las h rmnal bus. I h rmnal volag can b chosn as h rrnc phasor. h phas gnraor can gnra phas volags an currns can b connc o h nn bus hrough h ransormrs an ransmsson lns. h ransormrs can b spp up h volag. h roor angl an roor sp can b sma by h synchronous machn. h gnraor n Fg. can hn b rprsn n h o oman by h ollowng gh-orr nonlnar uaon: h sa varabls an sa vcors ar calcula as: [ ] [ 4 ] u ] [ m E ] [ u u Sa varabls ar scrb by uaons ar: w.. ( u D j. ( u ( ( ( ( (4 (5 4

Jon Sa an aramr Esmaon by En alman lr (EF chnu. 5 (7 (8 6 (9 7 ( 8 Whr w s h nomnal synchronous sp (lc.ra/s h roor sp (p.u oru (p.u ( ( 4 4 h ar-gap oru or lcrcal oupu powr (p.u E (6 m h mchancal npu h cr oupu volag or h l volag as sn rom h armaur (pu an h roor angl n (lc.ra. Ohr varabls an consans ar n. Bas on h phasor agram assoca o h nwor h ar-gap oru wll b ual o h rmnal lcrcal powr (or nglcng h saor rssanc s zro: R a whr h -an -as volags can b prss as E V sn V cos V ( ( Also h -as an -as currns ar I V cos V sn ( Usng ( an (4 n ( an ar som mahmacal smpl-caon h lcrcal oupu powr a rmnal bus wh h sa varabls an can b oban as: V V sn ( sn (4 h oupu powrs ( Q ar V V sn sn V cos sn (5 V Q Assumpons ar: V. D.5 J m.6 cos (6.8 E..9..7..7 44

Jon Sa an aramr Esmaon by En alman lr (EF chnu h say sa uaons a........ 4 5 6 7 8 o oun h valus o 4 4.6.98.998 (7 h abov assumpons o n h valus o.69.475 h ar gap oru (or lcrcal powr can b calcula as:.8 h oupu powrs can b calcula as:.8 Q.5 III. LINEAR AND NONLINEAR MODELS alman Flr En F Unscn F (UF ar mols popularly us or sa smaon procss. h raonal alman Flr s opmal only whn h mol s lnarz. SAE SACE MODELS A sa spac mol s a mahmacal mol o a procss whr sa o a procss s rprsn by a numrcal vcor. A. Non lnar Sa Spac Mol h mos gnral orm o h sa-spac mol s h Non lnar mol. hs mol ypcally consss o wo uncons an h: + = (uw (8 z = h(v (9 Fg: A gnral sa spac mol. 45

Jon Sa an aramr Esmaon by En alman lr (EF chnu B. Sa smaon Fg 4: Mahmacal vw o sa smaon h mos gnral orm o an sa smaon s nown as Rcursv Baysan Esmaon. hs s h opmal way o analyzng a sa p or any procss gvn a sysm an a masurmn mol. IV. ALMAN BASED FILERS A. alman an En alman lr h problm o sa smaon can b ma manpulabl. I w pu cran consrans on h procss mol by rurng boh an h o b lnar uncons an h Gaussan an wh nos rms w an v o b uncorrla wh zro man. u n mahmacal noaon w hn hav h ollowng consrans: ( u w = F +Bu +w ( h ( v = +v ( h consrans scrb abov ruc h sa mol o: + = F +Bu +w ( z = +v ( Whr F B an ar m pnn marcs. Fg: 5 alman lr loop h rcursv Baysan smaon chnu s hn ruc o h alman lr whr an h s rplac by h marcs F B an. h alman lr s jus as h Baysan smaor compos no wo sps: prc an upa. h acual calculaons rur ar: rc n sa bor masurmns ar an: = F +Bu (4 = F F +Q (5 h alman lr s u asy o calcula u o h ac ha s mosly lnar cp or a mar nvrson. I can also b prov ha h alman lr s an opmal smaor o procss sa gvn a uarac rror mrc. 46

Jon Sa an aramr Esmaon by En alman lr (EF chnu 47 B. EF Algorhm Dscrpon o rv h scr-m EF algorhm w sar rom h basc non o m rvaon o a varabl : (6 whr s h m sp an nca h m a.an or rspcvly. (7 (8 Whr s h sysm sa vcor s h nown npu vcor o h sysm s hr h procss (ranom sa nos or rprsns naccuracs n h sysm mol s h nosy obsrvaon or masur varabl (oupu vcor an s h masurmn nos. Sps o mprovng h sa smaon:. Inalz sa vcor an sa covaranc mar = [; ; ; ;.9;.4; 8;.]; =ag ([^ ^^.99.97^^]; (9 Q=ag ([.8^.8^.8^.9^.8^.8^.9^.9^]; R= ([.^ ;.^ ;.^];. Compu h paral rvav marcs: (. rc sa vcor an sa covaranc ( 4. Upa rror covaranc ( 5. rorm h gan marcs an upa h sa vcor ( DISCUSSION: F = w u (4 F 8 7 6 5 4 (5 w u ( (. (. ( ( w u (. w u p F h ( Q F F ] [ ] [ h y

Jon Sa an aramr Esmaon by En alman lr (EF chnu F F 4 (4 u w u w 5 6 F F F F6 F7 F F F5 4 4 u w 4 4 F 4 F44 F48 u w 5 5 5 5 F5 F55 (8 6 u w 6 6 6 F6 F66 u w 7 7 7 7 (4 F7 F77 8 u w 8 8 8 F8 F88 F= F w F V F sn 7 F6 7 V 7 V cos 7 48 8 V cos (6 (7 (9 (4 6 7 F m sn V V sn F7 sn 6 7 F 5 F 5 V cos F5 E V cos F4 5 F 44 F48 8 F55= F66= F77= F88= For calculang h y h u v V sn 4 F mar w sam as h h oupu uaon o h sysm s

Jon Sa an aramr Esmaon by En alman lr (EF chnu An or calculang h h h = V V cos sn V cos V = D.MAAB/SIMULIN MODEL FOR EF mho sn V sn cos V cos (4 Fg 6: MALAB/SIMULIN or EF E. EF Mho Smulaon Rsuls h EF algorhm was vlop n Smuln usng hn mb uncon bloc jus as w or h EF mho. In h lar cas was h only masurabl oupu sgnal an wr h hr npu sgnals. Bu n h EF mho an ar h hr oupu masurmns an h npu sgnals an ar sll ncssary. h npu s now assum o b accssbl or nown. h nal valus vcor or sas s an or h gan acor mar s. h nal valus rla o h unnown npu ar: an []. [ ^^^^] Also h man an covaranc o h sa an oupu nos marcs ar as: o br rlc ral sysm conons wh nos was a o h sa wh (man covaranc an o h masur oupu wh (man covaranc unr hs assumpons h rsuls o h EF algorhm or onln sa smaon o h ourh orr nonlnar mol o h synchronous gnraor subjc o a sp on ar prsn n Fg. 4(a. h sma oupu sgnals an h unnown npu sma ar also shown n Fg. 4(b an (c rspcvly.. 49

Jon Sa an aramr Esmaon by En alman lr (EF chnu A. Roor angl n ra smaon In EF h acual valu o la s.6.obsrvrng rom h sma valu s.59.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.598. I s o b g h sysm b sablz. h gur s rawn bwn h roor angl acual o h sma valu. B. Roor Sp ra/sc smaon In EF h acual valu o chang n sp s..obsrvrng rom h sma valu s.8.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.8. I s o b g h sysm b sablz. h gur s rawn bwn h roor sp acual o h sma valu. C. E n p.u smaon 5

Jon Sa an aramr Esmaon by En alman lr (EF chnu In EF h acual valu o E n p.u s.. obsrv rng rom h sma valu s.7.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.7. I s o b g h sysm b sablz. h gur s rawn bwn h E acual o h sma valu D. ED IN.U ESIMAION FIG 7:EF SAE ESIMAION WI RESULS (A ROOR ANGEL (B ROOR SEED (C EQ ESIMAION(D ED ESIMAION In EF h acual valu o E n p.u s.4. obsrv rng rom h sma valu s.99.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.99. I s o b g h sysm b sablz. h gur s rawn bwn h E acual o h sma valu. F.JOIN SAE AND ARAMEER ESIMAION: (8.a D n p.u smaon In EF h acual valu o D n p.u s.5. obsrv rng rom h sma valu s.49.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.4. I s o b g h sysm b sablz. h gur s rawn bwn h D acual o h sma valu. h sas ar obsrv by h scop o b jon o h n alman lr. h subsysm whch consss o h SMIB o h alman lr. h rrors o D J an o can b obsrv. 5

Jon Sa an aramr Esmaon by En alman lr (EF chnu (8.bo n p.u smaon Fg 8: Jon sa an paramr smaon rsuls(a(b In EF h acual valu o o n p.u s.. obsrv rng rom h sma valu s.44.h ynamc sa o powr sysm a h say sa valu ar applyng h non-lnar sa smaor o g h say sa valu s.4. I s o b g h sysm b sablz. h gur s rawn bwn h D acual o h sma valu. h sas ar obsrv by h scop o b jon o h n alman lr. h subsysm whch consss o h SMIB o h alman lr. h rrors o D J an o can b obsrv V. CONCLUSION In hs papr ynamc sa smaon o a powr sysm nclung h synchronous gnraor roor angl an roor sp. h approach was h raonal nonlnar sa smaor h EF mho whch nclus lnarzaon sps n s algorhm. Smulaon rsuls o h EF smaor show appropra accuracy n smang h ynamc sas o a saura ourh-orr gnraor connc o an nn bus unr nosy procsss. h vlop EF-bas smaors wr cv as wll unr nwor aul conons wh procss an masurmn nos nclu. h jon sa an paramr smaon rsuls wr som nos. REFERENCES []. Esmal Ghahrman an Innocn amwa Dynamc Sa Esmaon n owr Sysm by Applyng h En alman Flr Wh Unnown Inpus o hasor Masurmns IEEE ransacon on S VOL.6Fb. [].. unur owr Sysm Sably an Conrol []. aohu Qn Bang L an Nan Lu owr Sysm Dparmn Chna Elcrc owr Rsarch Insu Dynamc Sa Esmaor Bas on W Ara Masurmn Sysm Durng owr Sysm Elcromchancal ransn rocss IEEE Nural Nwor Con. (IJCNN 4. [4]. Jam D La R Vrglo Cnno Jams S. horp an A. G. ha Synchronz hasor Masurmn Applcaons n owr Sysms IEEE rans. owr App. Sys. vol.4 pp. 67 678. [5]. ngyangzhaoan IEEE Am Wsl Mmbr owr Sysm Sa Esmaon Usng MUs Wh Imprc Synchronzaon [6]. n. C. Yu N. R. Wason an J. Arrllaga An Aapv alman Flr or Dynamc armonc Sa Esmaon an armonc Injcon racng roc. 9 owr & Enrgy Socy Mng (ES9MAY 995. [7]. G. Valr an V. rzja Unscn alman lr or powr sysm ynamc sa smaon IE Gn. ransm. Dsrb. vol. 5 no. pp. 9 7. [8]. J. Chang G. N. arano an J. Chow Dynamc sa smaon n powr sysm usng ganschul nonlnar obsrvr n roc. 995 IEEE Conrol Applcaon Con pp. 6. [9]. S. Gllan s an B. D Moor Unbas mnmum-varanc npu an sa smaon or lnar scr-m sysms Auomaca vol. no. 4 pp. 6 7. []. Y. Chng. Y Y. Wang an D. Zhou Unbas mnmum-varanc sa smaon or lnar sysms wh unnown npu Auomac vol. 45 no. pp. 485 49 9. 5