Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009

Similar documents
Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

The Fomalhaut Debris Disk

Debris disk structure arising from planetary perturbations

Debris Disks from Spitzer to Herschel and Beyond. G. H. Rieke, K. Y. L. Su, et al. Steward Observatory The University of Arizona

The architecture of planetary systems revealed by debris disk imaging

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution]

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona)

Who was here? How can you tell? This is called indirect evidence!

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

Kuiper Belt Dynamics and Interactions

Kate Su (University of Arizona)

Astronomy 405 Solar System and ISM

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Mathematics tripos part III / part III Astrophysics

Exozodiacal discs with infrared interferometry

Astronomy 405 Solar System and ISM

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Beta Pictoris : Disk, comets, planet

Formation and Evolution of Planetary Systems

IRS SPECTRA OF SOLAR-TYPE STARS: A SEARCH FOR ASTEROID BELT ANALOGS

Spitzer Space Telescope Imaging of Spatially- Resolved Debris Disks. Karl Stapelfeldt Jet Propulsion Laboratory MSC d2p: Mar

Modeling interactions between a debris disc and planet: which initial conditions?

Signatures of Planets in Spatially Unresolved Debris Disks

Observations of exozodiacal disks. Jean-Charles Augereau LAOG, Grenoble, France. ISSI team: Exozodiacal dust diks and Darwin. Cambridge, August 2009

Light-scattering models applied to circumstellar dust properties

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Astronomy 405 Solar System and ISM

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

arxiv: v1 [astro-ph] 8 Jul 2008

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly):

The Formation of the Solar System

Origins of Stars and Planets in the VLT Era

Vagabonds of the Solar System

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids

Origin of the Solar System

The Outer Zodiacal Light. Bill Reach Caltech (now) USRA/SOFIA (June 2010)

1 Solar System Debris and Formation

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS

CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION

Which of the following statements best describes the general pattern of composition among the four jovian

Young Solar-like Systems

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Linking NEAs to their main-belt source regions

On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 ( ) 1642 planets candidates (

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Chapter 15: The Origin of the Solar System

Dynamical modeling of large scale asymmetries in the β Pictoris dust disk

Placing Our Solar System in Context with the Spitzer Space Telescope

DETAILED MODEL OF THE EXOZODIACAL DISK OF FOMALHAUT AND ITS ORIGIN

Giant Planet Formation

9. Formation of the Solar System

Hot Dust Around Young Stars and Evolved Stars

Chapter 15 The Formation of Planetary Systems

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Nature and Origin of Planetary Systems f p "

Formation of the Solar System Chapter 8

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

Data from: The Extrasolar Planet Encyclopaedia.

Science Olympiad Astronomy C Division Event National Exam

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

Extrasolar Planets: Molecules and Disks

SIGNATURES OF EXOSOLAR PLANETS IN DUST DEBRIS DISKS Leonid M. Ozernoy, 1,2 Nick N. Gorkavyi, 2 John C. Mather, 2 and Tanya A.

Astronomy 1140 Quiz 4 Review

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671

Definitions. Stars: M>0.07M s Burn H. Brown dwarfs: M<0.07M s No Burning. Planets No Burning. Dwarf planets. cosmic composition (H+He)

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Clicker Question: Clicker Question: Clicker Question:

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

arxiv:astro-ph/ v1 20 Jan 2006

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

Astronomy 1001/1005 Midterm (200 points) Name:

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

Our Planetary System & the Formation of the Solar System

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al.

There are 4 x stars in the Galaxy

A White Paper for the Astro2010 Decadal Survey Submitted to the Planetary and Star Formation Panel

Chapter 19 The Origin of the Solar System

Exoplanets: a dynamic field

Searching for Other Worlds

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Discovery of a Large Dust Disk Around the Nearby Star AU Microscopium

Initial Conditions: The temperature varies with distance from the protosun.

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

Chapter 06 Let s Make a Solar System

Transcription:

Debris Disks and the Evolution of Planetary Systems Christine Chen September 1, 2009

Why Study Circumstellar Disks? How common is the architecture of our solar system (terrestrial planets, asteroid belt, Jovian planets, and Kuiper Belt)? What were the physical conditions in the early solar system? How do the physical conditions of the disk impact the formation of planets and subsequent orbital evolution of planets and small bodies?

Our Solar System Terrestrial Planets Asteroid Belt Jovian Planets Kuiper Belt Ice Dwarf Planets Oort Cloud

The Zodiacal Light M dust = 2 10 20 g = 10-10 M planets = 10-4 M MAB L IR (dust) = 100 L IR (planets)

Asteroid Families Distribution of the proper sine of inclination vs. semimajor axis for the first 1500 numbered asteroids. The Hirayama families Themis (T), Eos (E), and Koronis (K) are marked. Kirkwood gaps are visible. The detached Phocaea region is at upper left. Chapman et al. (1989) In 1918 Hirayama discovered concentrations of asteroids in a-e-i space (osculatory orbital semi-major axis, eccentricity and inclination) he named families. It is widely believed that these families resulted from the break up of larger parent bodies.

Origin of Dust Bands in the Zodiacal Light he,, dust bands in the Zodiacal Light are believed to have been generated by mutual collisions within the Themis, Koronis, and Eos families. Other dust bands are not found in association with other major asteroid families with the possible exception of the Io family. The Koronis family has a greater dust population than the larger Themis family. The majority of dust bands were probably produced by large random collisions among individual asteroids.

Non Equilibrium Dust Band Formation Orbits of asteroids experience precession of of their apsides and nodes because of gravitational perturbations from Jupiter and other planets. Dust bands are formed when orbits of collisional debris precess at different rates, due to small difference in their orbital parameters, and collide with one another. Particles in a dust-band torus are destroyed through collisions with background IPDs, both cometary and asteroidal in origin.

The Kuiper Belt More than one thousand km-sized KBOs have now been discovered. Although, no dusty disk has yet been detected, one is believed to exist.

The Vega Phenomenon Routine calibration observations of Vega revealed 60 and 100 μm fluxes 10 times brighter than expected from the stellar photosphere alone. Subsequent coronagraphic images of Pic revealed an edge-on disk which extends beyond 1000 AU in radius. Infrared excess is well described by thermal emission from grains. Backman & Paresce 1993

A Circumstellar Disk Around Pictoris! Spectral Type: A5V Distance: 19.3 pc T dust : 85 K L IR /L * : 3 10-3 M dust : 0.094 M R dust : 1400 AU Inclination: 2-4º Age: 20 ± 10 Myr Mouillet et al. (1997)

A Possible Planet in the Pic Disk? D warp 2 2/ 7 ( M Pa tage) Observed D warp = 70 AU 48 M Jup brown dwarf at <3 AU Or 17.4 M Jup 0.17 M Jup planet at 5 150 AU STIS/CCD coronagraphic images of the Pic disk. The half-width of the occulted region is 15 AU. At the top is the disk at a logarithmic stretch. At bottom is the disk normalized to the maximum flux, with the vertical scale expanded by a factor of 4 (Heap et al. 2000)

Possible Direct Images of the Pic Planet Standard Star HR 2435 Pic Target/ Standard Target - Standard Lagrange et al. 2008

Gradual Disk Evolution? 1 Myr 10 Myr 100 Myr 500 Myr http://www.astronomy.com/content/dynamic/articles/000/000/000/086hzokr.asp

Stochastic Processes: Giant Planet Formation and Migration in Our Solar System The moon and terrestrial planets were resurfaced during a short period (20-200 Myr) of intense impact cratering 3.85 Ga called the Late Heavy Bombardment (LHB) Apollo collected lunar impact melts suggest that the planetary impactors had a composition similar to asteroids Size distribution of main belt asteroids is virtually identical to that inferred for lunar highlands Formation and subsequent migration of giant planets may have caused orbital instabilities of asteroids as gravitational resonances swept through the asteroid belt, scattering asteroids into the terrestrial planets. Strom et al. (2005)

Mid-Infrared Spectroscopy: Determine the Radial Distribution of Dust Fig. from Ilaria Pascucci If dust is located in a ring, then the spectral energy distribution should indicate dust of a single temperature (Single Temperature Black Body). If dust is located in a continuous disk, then dust at a variety of temperatures should be observed (Uniform Surface Density Disk).

Radiation Effects Radiation Pressure If F rad > F grav (or > 1), then small grain will be radiatively driven from the system 3L * Q pr (a) 16 GM * ca Artymowicz (1988) Poynting-Robertson Drag Dust particles slowly spiral into the orbit center due to the Poynting-Robertson effect. The lifetime of grains in a circular orbit is given by t PR 4 a grc 2 D 2 (Burns et al. 1979). 3L *

Solar Wind Drag The solar wind is a stream of protons, electrons, and heavier ions that are produced in the solar corona and stream off the sun at 400 km/sec Typically, F sw << F grav ; therefore, stellar wind does not effectively drive dust out of the system radially. However, they do produce a drag force completely analogous to the Poynting- Robertson effect t sw 4 a gr D2 3Q sw Ý M sw (Plavchan et al. 2005)

Poynting-Robertson Drag Dominated Disks? Morales et al. (2009) The flux from a radially extended disk is expected to have a wavelength dependence, 3 2q 0.5 pq 0.5p F (Jura et al. 1998) where the dust emissivity, -p, and the dust density, n D -q Objects discovered thus far appear to be Poynting-Robertson drag dominated at 15 m

Mid-Infrared Spectra of Debris Disks Spectra reveal no composition information SED modeling suggests that the dust is located in a thin ring which can be modeled assuming a single temperature distribution Chen et al. (2006)

Multiple Parent Body Belts? Marois et al. (2008) The SED of HR 8799 is best fit using two single temperature black bodies with temperatures, T gr = 160 K and 40 K These temperatures correspond to distances of 8 AU and 110 AU, respectively.

What Could Create Central Clearings in Disks? Grain/Disk Properties? Planets? Radiation pressure if the grains are small (disk is collisionally dominated) Sublimation if the grains are icy Gas-grain interactions in disks with gas:dust ratios 0.1 10 (Takeuchi & Artymowicz) Gravitational scattering of dust grains out of the system Trapping grains into mean motion resonances (Liou & Zook; Quillen & Thorndike 2002)

Dust in Pericenter Alignment with a Planet Around Fomalhaut? The Fomalhaut disk ansa possess a brightness asymmetry which may be caused by secular perturbations of dust grain orbits by a planet with a = 40 AU and e = 0.15 which forces grains into an elliptical orbit with the star at one focus (Stapelfeldt et al. 2005) Kalas et al. (2005)

Dust in Mean Motion Resonances Around Eri? Greaves et al. (2005) Quillen & Thorndike (2002) model of dust captured into 5:3 and 3:2 exterior mean motion resonances of a 30 M planet with e = 0.3 and a = 40 AU.

Mid-Infrared Spectroscopy: Characterizing Silicates The shape of the 10 μm Si-O and 20 μm O-Si-O bending mode features can be used to diagnose grain size The peak and the width of the features are dependent on the vacuum volume fraction Kessler-Silacci et al. (2006)

Silicate Emission Features Pic Predominantly associated with intermediate-age disks with ages <50 Myr 80% of the systems observed may possess crystalline silicates Warm Dust Component (T gr = 290 K 600 K): silicate emission features that are well-fit using large grains (radii above the blow-out limit) HR 7012 Cool Dust Component T gr = 80 K 200 K): single temperature black bodies (required to fit the remaining continuum Multiple parent body belts may exist around these objects Tel

Period of Late Heavy Bombardment Lisse et al. (2007) HD 69830 is a 2 Gyr K0V star, located at a distance of 12.6 pc, with a L IR /L * =2 10-4 and three radial velocity planets Best fit temperatures T gr = 340-410 K, corresponding to a distance of ~1 AU Lacks carbonaceous and ferrous materials found in comets but similar to disrupted P- or D-type asteroid

Exo-Kuiper Belt Disks Chen et al. (2008) Schneider et al. (2006) Models that reproduce scattered light, thermal emission, and spectral energy distribution provide a hollistic view of the disk (density, temperature, composition) For example, HD 181327 may possess density enhancements that impact asymmetric scattering coefficient inferred from scattered light. This imaging and SED data for this disk has been reproduced using a size distribution of amorphous silicate and crystalline water ice grains.

Organics in Debris Disks? ACS, STIS and NICMOS spectro-photometry can be used to constrain grain composition via scattered light. Inferred dust scattering coefficients for HR 4796A (using STIS and NICMOS coronagraphic images) can be reproduced using Tholins (Debes, Weinberger & Schneider 2008) Silicates may also be consistent with the current data (Li et al. 2008).

Conclusions Debris disks are dusty (gas-poor) disks around main sequence stars Our solar system possesses a debris disk (Asteroid and Kuiper Belts) and underwent period of high dust production (epoch of terrestrial planet formation and period of Late Heavy Bombardment) Debris disks are common around young stars and may indicate the presence of planets The composition of the dust grains is similar to that found in our Solar System