Design of crystal oscillators

Similar documents
Systematic Design of Operational Amplifiers

Amplifiers, Source followers & Cascodes

Stability of Operational amplifiers

Feedback Transimpedance & Current Amplifiers

Electronic Circuits EE359A

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Introduction to CMOS RF Integrated Circuits Design

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

Voltage-Controlled Oscillator (VCO)

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Lecture 37: Frequency response. Context

University of Toronto. Final Exam

Advanced Current Mirrors and Opamps

Bipolar junction transistors

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

55:041 Electronic Circuits The University of Iowa Fall Final Exam

Advantages of Using CMOS

Electronic Circuits Summary

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

ECEN 610 Mixed-Signal Interfaces

Homework Assignment 08

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

R-L-C Circuits and Resonant Circuits

Basic Principles of Sinusoidal Oscillators

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

DATA SHEET. PMBFJ308; PMBFJ309; PMBFJ310 N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

Circle the one best answer for each question. Five points per question.

Lecture 4: R-L-C Circuits and Resonant Circuits

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Lecture 16 Crystal oscillators

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

At point G V = = = = = = RB B B. IN RB f

EE 230 Lecture 24. Waveform Generators. - Sinusoidal Oscillators

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

IXBK55N300 IXBX55N300

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

IXBK55N300 IXBX55N300

EE221 Circuits II. Chapter 14 Frequency Response

DATA SHEET. HEF4067B MSI 16-channel analogue multiplexer/demultiplexer. For a complete data sheet, please also download: INTEGRATED CIRCUITS

Sinusoidal Steady-State Analysis

Q. 1 Q. 25 carry one mark each.

DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

IXBT12N300 IXBH12N300

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

University of Toronto. Final Exam

6.1 Introduction

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Chapter 13 Small-Signal Modeling and Linear Amplification

The current source. The Active Current Source

IXBT20N360HV IXBH20N360HV

The Wien Bridge Oscillator Family

Chapter 10 Feedback. PART C: Stability and Compensation

Lecture 04: Single Transistor Ampliers

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Dynamic operation 20

IXBT24N170 IXBH24N170

Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS

Exact Analysis of a Common-Source MOSFET Amplifier

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

Frequency Detection of CDRs (1)

Driven RLC Circuits Challenge Problem Solutions

AC Circuits Homework Set

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Charge Pump. Loop Filter. VCO Divider

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn

IXBX50N360HV. = 3600V = 50A V CE(sat) 2.9V. BiMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Frequency. Advance Technical Information

Radio Frequency Electronics

CHAPTER.4: Transistor at low frequencies

Lecture 21: Packaging, Power, & Clock

ECE 546 Lecture 11 MOS Amplifiers

Analog Design Challenges in below 65nm CMOS

Homework Assignment 11

Very Large Scale Integration (VLSI)

Type V DS I D R DS(on) Package Ordering Code BTS V 10 A 0.2 Ω TO-220AB C67078-A5008-A2

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Flavien Heu+er Sales & Applica+ons Engineer EFCC 2015

EECS 141: FALL 05 MIDTERM 1

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

EE221 Circuits II. Chapter 14 Frequency Response

Refinements to Incremental Transistor Model

6.012 Electronic Devices and Circuits Spring 2005

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

A1P50S65M2. ACEPACK 1 sixpack topology, 650 V, 50 A trench gate field-stop IGBT M series, soft diode and NTC. Datasheet. Features.

Transcription:

Design of crystal oscillators Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 22

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 222

The Barkhausen criterion F(jω) V f V in V ε A(jω) Σ V out V out = A(jω) V ε V f = F(jω) V out = F(jω) A(jω) V ε V f V ε = A(jω) F(jω) Oscillation if V in = 0 or if Ref. Barkhausen, Hirzel, Leipzig, 935 V f = A(jω) F(jω).0 V ε Positive FB! V f = Φ V A + Φ F = 0 o ε Willy Sansen 0-05 223

Split analysis Z resonator Z circuit Y res +Y circ Y res +Y circ = 0 Z res + Z cir = 0 Z circ +Z res Z res Z circ = 0 Oscillation if Re (Z circ +Z res ) = 0 sets the minimum gain! Im (Z circ +Z res ) = 0 sets the frequency! Willy Sansen 0-05 224

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 225

Crystal as resonator d f s =.66 d f s in MHz if d in mm quartz L s C s R s (series) C p = A ε 0 ε r d ω s 2 = Ls C s ε r 4.5 f s = 2π L s C s C p (package, parallel) L s ω s = Cs ω s L s Q ω s = Rs C s Q= Rs C s R s = Q Cs ωs Willy Sansen 0-05 226

Crystal parameters L s C s R s C p Xtal : f s = 0.000 MHz Q = 0 5 C s = 0.03 pf C p 6 pf ( 200 C s ) L s ω s = Cs ω s L s 8.4 mh R s = = 5.3 Ω QC s ω s f s L s C s R s C p Q 00.0 khz 52 H 49 ff 400 Ω 8 pf 0.8 0 5.000 MHz 2 H 6 ff 24 Ω 3.4 pf 5.3 0 5 0.00 MHz 0 mh 26 ff 5 Ω 8.5 pf.2 0 5 Willy Sansen 0-05 227

Series and parallel resonance L C R f r = 2π LC L C Z Cap. Ind. Z R R Ind. Cap. -90 o + 90 o + 90 o -90 o R f r f f r f Willy Sansen 0-05 228

Crystal impedance s 2 L s C s +sr s C s + Z s (s) = (s 2 L s C s C p R s C s C p s (C s +C p ) + s + ) C s +C p C s +C p Z s (s) R s f s f p C p s f Willy Sansen 0-05 229

Crystal impedance at resonance Z 00 kω f p f s =.998 MHz C s = 2.2 ff L s 0.52 H C p = 4.27 pf 00 Ω f s R s = 82 Ω Φ(Z) 00 o 0 o 90 o induct. Crystal operates in inductive region if circuit is capacitive! -00 o -90 o capac..97.98.99 2.00 2.0 2.02 MHz Willy Sansen 0-05 220

Series and parallel resonance Z s (ω) = -j ωc p ω 2 - ω s 2 ω 2 - ω p 2 ω s 2 = Ls C s ω p 2 = ( + ) L s C p C s Z s (ω) = R s +jωl s + jωc s series parallel Z s (ω) = R s + ( - ) j ω s C s 2p ω ω s ω s ω Frequency pulling factor p = ω - ω s ω s Z s (ω) R s + j ωcs Ref. Vittoz, JSSC June 88, 774-783 Willy Sansen 0-05 22

Series or parallel resonance? f s f p = 89.000 khz p p = 0.25 % C p f m = 88.850 khz p m = 0.25 % f s = 88.700 khz p s = 0 f m - f s C s p m = = = 0.25 % 4C p khz f p f s = + + p p = C s 2C p f s C s C p C s f p - f s 2C p = 0.25 % Willy Sansen 0-05 222

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 223

Single-transistor X-tal oscillator C 3 C 2 Basic three-point oscillator g m C C 2 C 2 C 3 C 3 C 3 C 2 g m g m g m C C C Pierce Colpitts : -pin X=D Santos : -pin X=G Willy Sansen 0-05 224

Single-transistor X-tal oscillator analysis C 3 = C p + C DG C 3 C 2 L s C s C 3 C g m R s g m C 2 Z s Z c C Barkhausen : Z s +Z c = 0 Z s = R s + j Re (Z c ) = -R s 2p Im (Z c ) = - ωc s yields g m yields f or p 2p ωc s Ref. Vittoz, JSSC June 88, 774-783 Willy Sansen 0-05 225

Complex plane for 3-pt oscillator : Design crit. g mmax g m A Im -R s 0 Re g m = 0 Im 0 - C C 2 ω(c 2p 3 + ) C Im A = - Im +C 2 0 ω s C s Ø = ωc3 + C C +C 2 3 C C 2 Small p : Large C,2 B g m = Im - ωc3 Large circle: Small C 3 Willy Sansen 0-05 226

Complex plane for 3-pt oscillator : Example -6 kω -80 Ω Im -R s 0 Re C = C 2 = 3 pf C 3 = 0.5 pf 20 MHz 80 Ω A g m = 0 Im 0-4 kω g mmax 3 ms 2p A Im A = - ωc s Ø = 2 kω p A = C s C 2(C 3 + C 2 ) C +C 2 g ma R s C C 2 ω s 2 g mb 450 ms B g m = Im - 6 kω µs Willy Sansen 0-05 227

Amplitude of oscillation i ds I ds I DSA t I ds V gs = = g ma 2 π I ds I DSA 2 I DSA g ma V GS -V T 2 kt V gs V GS -V T or 2n in wi q Large! I ds I DSA Nonlinear (Bessel) More spiked for higher C,2!!! Willy Sansen 0-05 228

Start-up of oscillation τ min occurs at g m g mmax τ min = L s Re (Z s ) + R s Re (Z s ) is half circle Ø Re (Z s ) = if C ω s C 3 <<C 2 3 R s << Re (Z s ) 2 C 3 400 τ min since C 3 200 C s ω s C s ωs or also τ min 2Q R s C 3 Willy Sansen 0-05 229

Power dissipation In MOST : g ma ω s 2 R s C C 2 R s (C ω s ) 2 I DSA g V GS -V T ma 2 µa 6 µw 2 V gs In X-tal : I c = = V gs C ω s V GS -V T C ω s Z C R s I 2 c R P c = = s V GS -V T 2 (C ω s ) 2 2 2 = V GS -V T 2 g ma 0.2 µw 2 Willy Sansen 0-05 2220

Design procedure for X-tal oscillators - X-tal : f s f p R s C p (or f s Q C s C p ) (Q = / ω s C s R s ). Take : C 3 > C p but as small as possible C s Pulling factor p = 2 C C 3 + C 2 2 C +C 2 C s C L C C L = = 2 C 2 2 C s If p < it is a series oscillator (best!) 4C p If p > it is a parallel oscillator (not stable!) Choose C L large (> C 3 ), subject to power dissipation! Willy Sansen 0-05 222

Design procedure for X-tal oscillators - 2 2. Calculate g ma R s C 2 ω L ω 2 s s ( C L C L ) C s Q and take g mstart 0 g ma 3. Choose V GS -V T, which gives the amplitude V gs g m (V GS -V T ) and current I DS = and W 2 L and power P = (V GS -V T ) 2 g m 2 4. Verify that biasing R B > / (R s C 3 2 ω s 2 ) Willy Sansen 0-05 2222

Single-transistor X-tal oscillator C 3 C 2 Basic three-point oscillator g m C C 2 C 2 C 3 C 3 C 3 C 2 g m g m g m C C C Pierce Colpitts : -pin X=D Santos : -pin X=G Willy Sansen 0-05 2223

Pierce X-tal oscillator I B V B R B C 3 C 2 g m C 32 khz.2 V 78 na Willy Sansen 0-05 2224

Colpitts X-tal oscillator I B C 2 v OUT v OUT V B g m C 3 C 2 C 3 C C Crystal grounded : single-pin : X = D Willy Sansen 0-05 2225

Santos X-tal oscillator i OUT I B (AGC) V B R B g m C v OUT C 3 C v OUT C 2 g m R B C 2 I B (AGC) C 3 Crystal grounded : single-pin : X = G Ref. Santos, JSSC April 84, 228-236 Ref. Redman-White, JSSC Feb.90, 282-288 Willy Sansen 0-05 2226

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 2227

Practical Pierce X-tal oscillator M5 M4 C C c M M6 00 MΩ C 2 C s = 0.5 ff C 3 = 0.6 pf C = C 2 = 2.8 pf 2 MHz M3 M2 g ma = 2 µs I DSA = 80 na I DS = 350 na V gs = 300 mv Ref. Vittoz, JSSC June 88, 774-783 Willy Sansen 0-05 2228

Full schematic Ref. Vittoz, JSSC June 88, 774-783 Willy Sansen 0-05 2229

Single-pin oscillator with crystal to Gate C C2 R B M OUT f s = 9.9956 MHz f p = 0.02 MHz C s = 24.3 ff C o = 7.4 pf L = 0.4 mh R = 7.2 Ω (?) p = 0.8 0-3 C = C 2 = 50 pf g ma = 350 µs I DSA = 90 µa (V GS -V T = 0.5 V) Willy Sansen 0-05 2230

Single-pin oscillator - g m + - g m g m2 2 3 + + - - C load C R B C 2 g m = R s (C s ω 0 ) 2 DC unstable! Positive FB dominant at crystal frequency! Ref. van den Homberg, JSSC July 99, 956-96 Willy Sansen 0-05 223

Single-pin oscillator - 2 2 3 0 MHz, 3.3 V, 0.35 ma Ref. van den Homberg, JSSC July 99, 956-96 Willy Sansen 0-05 2232

X-tal oscillators with CMOS inverters = Large current peaks! Bad PSRR!! Willy Sansen 0-05 2233

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 2234

Pierce X-tal oscillator I B R 2 C 3 C C 2 R L vout C 3 C 2 V B R B g m R C Willy Sansen 0-05 2235

Colpitts X-tal oscillator I B C 2 v OUT v OUT V B g m C 3 C 2 C 3 C C Crystal grounded : single-pin : X = D Willy Sansen 0-05 2236

Santos X-tal oscillator V B R B g m C 3 C C 2 v OUT I B (AGC) Crystal grounded : single-pin : X = G Buffered output Ref. Santos, JSSC April 84, 228-236 Ref. Redman-White, JSSC Feb.90, 282-288 Willy Sansen 0-05 2237

98 GHz VCO in SiGe Bipolar technology Colpitts 0.55 x 0.45 mm 2 ma at - 5 V -97 dbc/hz at MHz Ref. Prendl BCTM Toulouse 03 Willy Sansen 0-05 2238

Positive feedback circuits - R L Q Q 2 v OUT T=g m R L R L >R s Ref. Nordholt, CAS 90, 75-82 Willy Sansen 0-05 2239

Positive feedback circuits - 2 600 Ω 200 v OUT Buffered ouput! - 250 Ω 500 µa 250 Ref. Nordholt, CAS 90, 75-82 Willy Sansen 0-05 2240

Positive feedback circuits - 3 g ma = 8 ms 00 MHz Ref. Nordholt, CAS 90, 75-82 Willy Sansen 0-05 224

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 2242

Voltage Controlled Oscillator I B R L L L R L ω s = LC D C D V c C D g ma R L (C D ω s )2 v OUT v OUT dv 2 out { ω}= 4 ω s 4kTR L ( + ) ( ) 2 df 3 ω Ref. Craninckx, ACD Kluwer 96, 383-400 ; JSSC May 97, 736-744 Willy Sansen 0-05 2243

Differential crystal Oscillator R R v OUT v OUT C I B I B Willy Sansen 0-05 2244

Relaxation Oscillator R R v OUT v OUT C I B I B Ref. Grebene, JSSC, Aug.69, 0-22; Gray, Meyer, Wiley, 984. Willy Sansen 0-05 2245

RC Oscillators : 3 x 60 o = 80 o C R C R C R f c = φ 0-45 o -90 o -60 o at.73 f c 2π RC f c f - + V out Willy Sansen 0-05 2246

Wien Oscillator : 3 x Gain required C R V ε + 2τ s + τ = 2 s 2 V out 3 + 3τ s + τ 2 s 2 C R V ε + - 2R V out φ τ = RC f osc = 2π τ R 0 f Willy Sansen 0-05 2247

Voltage-controlled X-tal oscillator ± C Res. Resonator 457 khz Tuning ± 5 khz Wien bridge : R 2 = 2 R Ref. Huang, JSSC June 88, 784-793 Willy Sansen 0-05 2248

Variable capacitance ± C G m block ± C I 2 Y in = sc d G m R d 25 R d C d block ± G m with I 2 Ref. Huang JSSC June 88, 784-793 Willy Sansen 0-05 2249

G m block to generate ± G m I = 90 µa I 2 = 0 80 µa G m = B [(2βI ) /2 -(2βI 2 ) /2 ] Willy Sansen 0-05 2250

R d C d block as differentiator C d = 4 pf R d = 40 kω Ref. Huang JSSC June 88, 784-793 Willy Sansen 0-05 225

Table of contents Oscillation principles Crystals Single-transistor oscillator MOST oscillator circuits Bipolar-transistor oscillator circuits Other oscillators Willy Sansen 0-05 2252

References X-tal oscillators - A.Abidi, "Low-noise oscillators, PLL s and synthesizers", in R. van de Plassche, W.Sansen, H. Huijsing, "Analog Circuit Design", Kluwer Academic Publishers, 997. J. Craninckx, M. Steyaert, "Low-phase-noise gigahertz voltage-controlled oscillators in CMOS", in H. Huijsing, R. van de Plassche, W.Sansen, "Analog Circuit Design", Kluwer Academic Publishers, 996, pp. 383-400. Q.T. Huang, W. Sansen, M. Steyaert, P.Van Peteghem, "Design and implementation of a CMOS VCXO for FM stereo decoders", IEEE Journal Solid-State Circuits Vol. 23, No.3, June 988, pp. 784-793. E. Nordholt, C. Boon, "Single-pin crystal oscillators" IEEE Trans. Circuits. Syst. Vol.37, No.2, Feb.990, pp.75-82. D. Pederson, K.Mayaram, Analog integrated circuits for communications, Kluwer Academic Publishers, 99. Willy Sansen 0-05 2253

References X-tal oscillators - 2 W. Redman-White, R. Dunn, R. Lucas, P. Smithers, "A radiation hard AGC stabilised SOS crystal oscillator", IEEE Journal Solid-State Circuits Vol. 25, No., Feb. 990, pp. 282-288. J. Santos, R. Meyer, "A one pin crystal oscillator for VLSI circuits", IEEE Journal Solid-State Circuits Vol. 9, No.2, April 984, pp. 228-236. M. Soyer, "Design considerations for high-frequency crystal oscillators", IEEE Journal Solid-State Circuits Vol. 26, No.9, June 99, pp. 889-893. E. Vittoz, M. Degrauwe, S. Bitz, "High-performance crystal oscillator circuits: Theory and application", IEEE Journal Solid-State Circuits Vol. 23, No.3, June 988, pp. 774-783. V. von Kaenel, E. Vittoz, D. Aebischer, " Crystal oscillators", in H. Huijsing, R. van de Plassche, W.Sansen, "Analog Circuit Design", Kluwer Academic Publishers, 996, pp. 369-382. Willy Sansen 0-05 2254

Appendix: Polar diagrams Willy Sansen willy.sansen@esat.kuleuven.be Willy Sansen 0-05 2255

Amplitude, phase, Real & Imaginary Im φ Re = Re 2 + Im 2 tg(φ) = Im Re Re = cos (φ) Im = sin (φ) Willy Sansen 0-05 2256

Polar diagram of RC network - Z R Im Z Z C C R 0 Im 0 ω = ω = 0 Cω R Z = R + ω = Cjω Re Re ω = 0 ω = RC Willy Sansen 0-05 2257

Polar diagram of RC network - 2 Z C Z = R + Cjω R Im 0 Im 0 R ω = 0 R = ω = ω = ω C RC R = Re Re R = 0 Willy Sansen 0-05 2258

Polar diagram of RC network - 3 Z Im 0 R ω = ω = 0 Re R Z = R + RCjω C Im 0 R = 0 ω = R = RC ωc Re - ωc R = Willy Sansen 0-05 2259

Polar diagram of RC network - 4 Z R C Im 0 R ω = ω = 0 Re Z r R Z = R + RCjω C 0 r ω = ω = 0 R+r Re Z = r + R + RCjω ω = RC Ref. Sansen, JSSC Dec.72, 492-498 Willy Sansen 0-05 2260

Polar diagram of RC network - 5 Z R C Im 0 R = 0 Re Im 0 Re Z C 2 Z = R + RCjω - ωc 2 R = 0 R = Z = + jωc 2 R C R + RC jω - ωc R = C +C 2 - ωc C 2 R = ωc Willy Sansen 0-05 226

Circuit input impedance Zc Z c g m + 2 jωc C jωc 3 (g m + jωc ) C 3 C 3 C 2 if C 3 << C = C 2 g m = C Z c C For g m 0 Z c0 2 /ωc For g m Z c /ωc 3 Willy Sansen 0-05 2262

Complex plane for 3-point oscillator g mmax g m A Im -R s 0 Re g m = 0 Im 0 - C C 2 ω(c 2p 3 + ) C Im A = - Im +C 2 0 ω s C s C 3 C 2 C B Ø = ωc3 g m = + C 3 C +C 2 C C 2 Im - ωc3 - + C 3 Willy Sansen 0-05 2263

Calculation of g ma Z c C 3 = R S Z c = g ma C 2 = C C 3 s g m + (C +C 2 )s C C 2 g m + (C +C 2 + )s C 3 C Re (Z c ) = R s For small g m : g ma R s (C eff ω s ) 2 2C 3 C eff = C ( + ) C C Maximum negative resistance is / 2ωC 3 at g mmax = ωc C C 3 Willy Sansen 0-05 2264