Synchronous Generator Modeling Using SimuLink

Similar documents
Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling

Parks Equations Generalised Machines. Represent ac machines in the simplest possible way.

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

About phases dependence in a switched reluctance generator

Cross-section section of DC motor. How does a DC Motor work? 2 Commutator Bars N X. DC Motors 26.1

4. UNBALANCED 3 FAULTS

LECTURE 23 SYNCHRONOUS MACHINES (3)

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

EECE 301 Signals & Systems Prof. Mark Fowler

GENERATING REFERENCE CURRENT AND VOLTAGE CONTROL OF STATIC COMPENSATOR DURING VOLTAGE SAGS

Lecture 7 Circuits Ch. 27

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

8 THREE PHASE A.C. CIRCUITS

Time constant τ = RC:

MEG 741 Energy and Variational Methods in Mechanics I

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

PHY3101 Modern Physics Lecture Notes Relativity 2. Relativity 2

Lec 3: Power System Components

Problem Free Expansion of Ideal Gas

Modeling and Simulation of Permanent Magnet Brushless Motor Drives using Simulink

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD

Absolutely no collaboration allowed in any form

Unified Torque Expressions of AC Machines. Qian Wu

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

SSSC circuit model for three-wire systems coupled with Delta-connected transformer

Hysteresis Band Controller Based Vector Control Of PMSG For Wind Power

SIMULATION OF ELECTROMAGNETIC PHENOMENA DUE TO INDIRECT LIGHTNING STRIKES ON WIND TURBINES

Torque Control of Switched Reluctance Motors

EDDY CURRENTS TORQUE MODEL FOR SPIN STABILIZED EARTH SPACECRAFT

PARAMETERS INFLUENCE ON THE CONTROL OF A PMSM

A Control Strategy for Unified Power Quality Conditioner

Section 4.2 Analysis of synchronous machines Part II

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

Examination Electrical Machines and Drives Et4-117 Thursday, October 30, 2003 from 9.00 to 12.00

Solution of Tutorial 5 Drive dynamics & control

ECEN 5807 Lecture 26

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

ECE Spring Prof. David R. Jackson ECE Dept.

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Decomposition of Boolean Function Sets for Boolean Neural Networks

Variable Structure Control ~ Motor Control

8. INVERSE Z-TRANSFORM

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Pyramid Algorithms for Barycentric Rational Interpolation

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

Manual Control. Class 11-3RV, SMF, MMS. Wiring Diagrams 8/130. Signaling Contact for Class 11-3RV. Typical Wiring Diagrams Class SMF.

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

TCCS (3VZ E) B R I A IGN 15A EFI IGNITION SW ST1 IG2 L L W R W R B G B Y B Y EB1 B G B G B G EB1 EFI MAIN RELAY 12 B G

Potential Formulation Lunch with UCR Engr 12:20 1:00

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Electrical Circuits II (ECE233b)

BASIC INDUCTION MOTOR CONCEPTS

Jacobians: Velocities and Static Force.

2. Work each problem on the exam booklet in the space provided.

Matrix Methods in Kinematics

Power System Stability Enhancement Under Three Phase Fault with FACTS Devices TCSC, STATCOM and UPFC

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

ECE470 EXAM #3 SOLUTIONS SPRING Work each problem on the exam booklet in the space provided.

v v at 1 2 d vit at v v 2a d

Electrical Machines. 1. Transformers 800 V. As the slope is uniform the induced voltage is a square wave. 01. Ans: (b) Sol: 400/200 V 50 Hz

CONTINUE ON LEADS PLACEMENT

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

CHAPTER 7 THREE-PHASE THREE-LEG THREE-LEVEL NEUTRAL POINT CLAMPED RECTIFIER. 7.1 Introduction

SPACE VECTOR PULSE- WIDTH-MODULATED (SV-PWM) INVERTERS

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015

Chapter 7: Conservation of Energy

An Adaptive Control Algorithm for Multiple-Input Multiple-Output Systems Using Neural Networks

The University of New South Wales FINAL EXAMINATION. Session ELEC4613 ELECTRIC DRIVE SYSTEMS. 1. Time allowed 3 hours

Chapter I Continuous Control Systems : A Review

IEEE PES Boston Chapter. Protection Engineering Course Series. Instructor: Dean V. Sorensen (National Grid)

MCA-205: Mathematics II (Discrete Mathematical Structures)

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Adaptive Control of Shunt Active Power Filter Using Interval Type-2 Fuzzy Logic Controller

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Industrial Electrical Engineering and Automation

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling

VECTORS, TENSORS, AND MATRICES. 2 + Az. A vector A can be defined by its length A and the direction of a unit

Analysis of Variance and Design of Experiments-II

Ch. 3: Forward and Inverse Kinematics

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Hadamard-Type Inequalities for s-convex Functions

Outline. Review Quadrilateral Equation. Review Linear φ i Quadrilateral. Review x and y Derivatives. Review φ Derivatives

III. Electromechanical Energy Conversion

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli

Power System Representation and Equations. A one-line diagram of a simple power system

ENGINEERING OF NUCLEAR REACTORS. Tuesday, October 9 th, 2014, 1:00 2:30 p.m.

I 3 2 = I I 4 = 2A

ELE B7 Power Systems Engineering. Power System Components Modeling

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1. Filling an initially porous tube under a constant head imposed at x =0

Chapter 5 Three phase induction machine (1) Shengnan Li

Overview Electrical Machines and Drives

A, Electromagnetic Fields Final Exam December 14, 2001 Solution

Transcription:

ynhronou Genertor Moelng Ung mun

Outlne ner Moel Ung Eulent Crut ner Moel Ung Emee Mt Nonlner Moel

Eulent Crut on Ax From we get m m l m t t m l r ) ( t t m l ) ( t t m l ) (

Eulent Crut on Ax From we get m m l m t t m l r ) ( t t m l ) (

Eulent Crut on Ax x t Th rut not neery or Y onnete wnng ne =.

Genertor Moel Ung Eulent Crut

Outlne ner Moel Ung Eulent Crut ner Moel Ung Emee Mt Nonlner Moel

Dynml Euton n Frme () t t t t t t t t t t t l m m l m m l m m l m m l r m m l r where m m

Dynml Euton n Frme () The euton n e wrtten n mtrx orm : V I t where m l m m l m m m m l m l m m l m m m l I r r V V I t or

Genertor Blo Detl

Emee Mt Funton

Intlzton o Genertor Blo

Outlne ner Moel Ung Eulent Crut ner Moel Ung Emee Mt Nonlner Moel

Dynm Euton t to trnormton t Ung lux tte rle

How to Get Current rom Flux? In FEM otwre, we nput urrent n extrt lux lnge. In muln multon, we nee to nput lux lnge n get urrent. The reltonhp etween lux lnge n urrent moele ung neurl networ or ure t. FEM

Neurl Networ We n hooe erent rhteture or lgorthm

ynhronou Genertor ytem Moelng

Generl Blo Dgrm ()

Generl Blo Dgrm () Eery W lo nee.6 mf

Genertor Controller

ngle Pole PF ()

ngle Pole PF ()

Mn Mhne Output Voltge n Current

Mn Mhne ne to ne Voltge

Mn Mhne ne Current

Mn Mhne Fel Voltge n Current

Exter ne to ne Voltge

Exter ne Current

Exter Fel Voltge n Current

Inuton Mhne Moelng

elene to Inuton Mhne x m x me P m

Artrry eerene Frme () ttor untte () o urrent, oltge, or lux n e onerte to untte () reerene to the rotor. Th oneron ome through the K mtrx. where K K o K n 3 / K o o o / 3 o / 3 n / 3 n / 3 / / o n / 3 n / 3 / 3 n / 3 (MIT notton)

Artrry eerene Frme () otor untte ( ) o urrent, oltge, or lux n e onerte to untte ( ) reerene to the rotor. Th oneron ome through the K mtrx. K K 3 / n 3 / o 3 / n 3 / o n o / / / 3 / n 3 / n n 3 / o 3 / o o 3 K K where (MIT notton) me

Voltge Euton () Uner motor reerene onenton or urrent (.e. the pote reerene reton or urrent nto the mhne): For ttor wnng K λ t K K K λ t K K K K K λ t K K KK λ K K λ t t λ t K K t λ

Voltge Euton () We ere the erte o K - : Then, we get t K K t t t / 3 o 3 / n / 3 o / 3 n o n t K t An or oltge, we get

Voltge Euton (3) t λ r For rotor wnng t t t r r r me t me

Dynml Euton or Flux nge t r r r The erton o r re l or oth lner n nonlner moel. DQ λ r r r V et we he V λ t DQ

Flux nge. Current () The next tep to relte urrent to lux lnge through nutne. For roun rotor, the nutne n e pproxmtely expree A l T ABC A A lr A

Flux nge. Current () m m m o o o me me me 3 3 Moreoer: m A N N e e A A N N e e e:. A. E. Ftzgerl, C. Kngley, Jr., n. D. Umn, Eletr Mhnery, 6 th Eton, pge 664-667.. P. C. Krue, O. Wynzu, n. D. uho, Anly o Eletr Mhnery n Dre ytem, n Eton, pge 4-45.

Flux nge. Current (3) Th mtrx n e trnorme nto orm n ue to n lux lnge. λ From λ ABC ABC ABC wthλ ABC ABC T ABC λ λ K λ K K λ T λ K K K K T K λ K K λ DQ DQ DQ λ T K K K K where λ DQ λ λ DQ K K T K K K K K K DQ

Inutne Mtrx n Frme m m m m DQ where 3 3 3 m m A lr A l n DQ DQ DQ λ From m m Through erton, we he T DQ K K K K K K K K lr l m m

Dynml Euton n Term o Current V λ t DQ For lner moel rom V DQ DQ t ynml euton n term o urrent DQ DQ DQ λ n where r r r V m m m m

Power Eletrl ntntneou Input Power on ttor n lo e expree through theory. ) ( T T T n p K K 3 p n 3 ) ( K K T

Torue 3 p n t t t r r From we he ) ( 3 3 3 m n P t t t p Copper o Mehnl Power Mgnet Power n Wnng Thereore, eletromgnet torue on rotor ) ( 3 m meh e P p T p meh

Three Commonly Ue eerene Frme ttonry eerene Frme otor eerene Frme me ynhronouly ottng eerene Frme e