Design of a Low-Energy Chopper System for FRANZ

Similar documents
Design of a Fast Chopper System for High Intensity Applications

Buncher-System for FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ

Chopping High-Intensity Ion Beams at FRANZ

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Beam Dynamics and Emittance Growth

CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

Bunch Compressor for Intense Proton Beams

The SARAF 40 MeV Proton/Deuteron Accelerator

Proton LINAC for the Frankfurt Neutron Source FRANZ

Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

A high intensity p-linac and the FAIR Project

Notes on the HIE-ISOLDE HEBT

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

C. Wiesner, FRANZ and Small-Scale Accelerator-Driven Neutron Sources

Erzeugung intensiver Protonenpulse durch Kompression

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

arxiv: v2 [physics.acc-ph] 21 Jun 2017

The SARAF CW 40 MeV Proton/Deuteron Accelerator

Status Report of the RAL Photo Detachment Beam Profile Monitor

The Booster has three magnet systems for extraction: Kicker Ke, comprising two identical magnets and power supplies Septum Se

Beam dynamics studies of H-beam chopping in a LEBT for project X

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

Diagnostics Requirements for the ARIEL Low Energy Beam Transport

HITRAP Low Energy Diagnostics and Emittance Measurement

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

LIGHT. ...from laser ion acceleration to future applications. - project overview and lates experimental results -

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

Design Status of the PEFP RCS

CNGS proton beam. Malika Meddahi for SL/BT group CERN

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

Development of the UNILAC towards a Megawatt Beam Injector

In-Flight Fragment Separator and ISOL Cyclotron for RISP

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC

OVERVIEW OF RECENT RFQ PROJECTS *

Upgrade of the HIT Injector Linac-Frontend

Beam Diagnostics for Low Energy Proton and H - Accelerators. Vic Scarpine Fermilab 2012 BIW April 16-19, 2012

Heavy ion linac as a high current proton beam injector

The FAIR Accelerator Facility

Accelerators for the Advanced Exotic Beam Facility

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Spin-Filtering Studies at COSY

Muon Front-End without Cooling

Proposal to convert TLS Booster for hadron accelerator

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

PIP-II Injector Test Warm Front End: Commissioning Update

Developmental Studies of High Current Proton Linac for ADS Program

Diagnostics at SARAF

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS*

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY*

Status & Plans for the TRIUMF ISAC Facility

Institute of Modern Physics, China Academy of Science, Lanzhou , China

Preliminary design of proton and ion linacs for SPPC Injector

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU

Theory English (Official)

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Development and application of the RFQs for FAIR and GSI Projects

Dark current at the Euro-XFEL

Radiation Protection Considerations for the Cryogenic In-Vacuum Undulator of the EMIL Project at BESSY

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

Commissioning the Front End Test Stand High Performance H - Ion Source at RAL

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

BEAM DYNAMICS ISSUES IN THE SNS LINAC

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Refurbishment of the Electrostatic Accelerators of ithemba LABS

Recycling Ring. on behalf of the Recycling Ring Design Group (Quasar, Musashi & Ullrich groups) TCP 2010 Conference 12 April 2010

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CTF3 DRIVE BEAM INJECTOR OPTIMISATION

Accelerator Option for Neutron Sources & the

Commissioning of the SNS Beam Instrumentation

Linac4: From Initial Design to Final Commissioning

LHC operation in 2015 and prospects for the future

Tools of Particle Physics I Accelerators

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

A CYCLOTRON TEST SITE FOR NEUTRINO EXPERIMENTS

Design Note TRI-DN Low Energy Beam Transport Line for the CANREB Charge State Breeder

Developments of the RCNP cyclotron cascade

Study of Analyzing and Matching of Mixed High Intensity Highly Charged Heavy Ion Beams

STATUS OF THE TARN II PROJECT. T. Tanabe Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG

SPACE CHARGE NEUTRALIZATION AND ITS DYNAMIC EFFECTS

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16

Overview of Acceleration

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

HIGH POWER PROTON ACCELERATOR IN KOREA*

+ EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN PS DIVISION. The CERN Antiproton Decelerator (AD) Operation, Progress and Plans for the Future

Dr. Martin Droba Darmstadt

Bernhard Holzer, CERN-LHC

Capacitive Pick-Up Type DB 040

Status of the EBIT in the ReA3 reaccelerator at NSCL

Operational Experience in PIAVI-ALPI Complex. E. Fagotti INFN-LNL

Emittance Growth and Tune Spectra at PETRA III

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Physics 610. Adv Particle Physics. April 7, 2014

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

Transcription:

05.03.2007 Design of a Low-Energy System for FRANZ Christoph Wiesner

Contents Introduction Design and Layout of the Multi-Particle Simulation LEBT Outlook

Function of the Input: 150 ma cw proton beam, 120 kev Output: 50-100 ns bunches, repetition rate f = 250 khz LEBT- 150 kv Terminal W b = 120 kev 4 P = 2.4 x 10 W b W b = 1 MeV 4 P b,max = 1 x 10 W Steerer W b = 1.87-2.1 MeV 4 P b,max = 2.1 x 10 W Rebuncher Strahlstopper Detektor- und Komponententeststand Dipolmagnet Ionenquelle t = 50-100ns f = 250kHz RFQ Rebuncher CH f = 5-10MHz Bunchkompressor 7 Li Target

Possible s Types Disc Electrical Magnetic with Helmholtz Coils Dipole System

Functional Principle of the Dipole System Beam Diagnostics Dipole Magnet f = 250 khz τ= 50-100 ns Resonant Circuit High Current Proton Storage Ring

Functional Principle of the Dipole System Aperture time 1,0 Varying the aperture leads to different bunch lengths and intensities. Transmission / % 0,8 0,6 0,4 0,2 0-100 -75-50 -25 0 25 50 75 100 t / ns

Layout Dipole System Beam Diagnostics Parameter Setting: Dipole Magnet B max = 0.3 T Dipole Length = 0.3 m f = 250 khz τ= 50-100 ns Total System Length = 0.6 m Resonant Circuit 0.3m High Current Proton Storage Ring Gap Height = 0.06 m 0.6m B( t) = Bmax sin( ωt + Φn)

Layout LEBT Beam Diagnostics Dipole Magnet f = 250 khz τ= 50-100 ns Resonant Circuit High Current Proton Storage Ring LEBT Solenoid 1: Aperture 150mm 150 kv Terminal W b = 120 kev 4 P = 2.4 x 10 W b W b = 1 MeV 4 P b,max = 1 x 10 W Steerer W b = 1.87-2.1 MeV 4 P b,max = 2.1 x 10 W Rebuncher Solenoid 2-4: Aperture 100mm Strahlstopper Detektor- und Komponententeststand Dipolmagnet Ionenquelle t = 50-100ns f = 250kHz RFQ Rebuncher CH f = 5-10MHz Bunchkompressor 7 Li Target

Schematic View of LEBT

Schematic View of LEBT Beam Envelope

Schematic View of LEBT Simulation Programs used: Lintrafive (Sek1, Sek3) DipMag (Dipole)

Input Distribution 60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 Start Parameters Ion Source Beam Radius: 6 mm Divergence Angle: 80 mrad Homogeneous Distribution (Assumed) 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

Phase Distribution in front of Dipole 60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

Simulation Dipole System 60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

Phase Distribution behind Slit B max (Dipole)= 0.2 T 60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

creates different beam distribution (depending on direction of Magnetic Field). Spatial Distribution in front of RFQ 60 Solenoid 1 Solenoid 2 Solenoid 3 Solenoid 4 50 Strahlradius r [mm] 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 Dipol ausgeschaltet Dipol eingeschaltet

Phase Distribution in front of RFQ

Phase Distribution in front of RFQ - 3d 1,0 Transmission / % 0,8 0,6 0,4 0,2 0-100 -75-50 -25 0 25 50 75 100 t / ns

Outlook: To Do? Multi-Particle Simulations Beam Dynamics in LEBT Variation of Parameters Beam Dynamics in Variation of Parameters Emittance Growth Estimations Simulations for H 2+ and H 3 + Layout Fix Geometry of Begin Construction Vacuum Chamber Technical Implementation Choose Type of Dipole Choose Magnetic Material Design Electronic Control