Range eects on Emov physics in cold atoms

Similar documents
Pionless EFT for Few-Body Systems

Open Effective Field Theories and Universality

Universality in Few- and Many-Body Systems

Universality in Halo Systems

Efimov Physics and Universality

Fate of the neutron-deuteron virtual state as an Efimov level

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

Modern Theory of Nuclear Forces

Effective Field Theory for Cold Atoms IV

Nuclear physics around the unitarity limit

Universality in Four-Boson Systems

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

EFT Approaches to αα and Nα Systems

Effective Field Theory and. the Nuclear Many-Body Problem

Tritium β decay in pionless EFT

Hadronic parity-violation in pionless effective field theory

POWER COUNTING WHAT? WHERE?

Coulomb effects in pionless effective field theory

Electroweak Probes of Three-Nucleon Systems

From Halo EFT to Reaction EFT

Evidence for Efimov Quantum states

The NN system: why and how we iterate

NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD

Three-body forces: From cold atoms to nuclei

Pion-nucleon scattering around the delta-isobar resonance

Charming Nuclear Physics

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Quantum Monte Carlo calculations of two neutrons in finite volume

arxiv: v1 [nucl-th] 27 Sep 2016

Functional RG for few-body physics

C.A. Bertulani, Texas A&M University-Commerce

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

Effective Field Theories in Nuclear and Hadron Physics

Universality in few-body Systems: from few-atoms to few-nucleons

Three-particle scattering amplitudes from a finite volume formalism*

arxiv:nucl-th/ v4 6 Mar 2000

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

improve a reaction calculation

Effective Field Theory and. the Nuclear Many-Body Problem

Three-body recombination at vanishing scattering lengths

Charge State Breeding for the. at TRIUMF

(Universal Characteristic )

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Effective Field Theory and Ultracold Atoms

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

A path to lepton-nucleus reactions from first principles

Effective Field Theory for light nuclear systems

Lecture 4. Feshbach resonances Ultracold molecules

(Biased) Theory Overview: Few-Body Physics

The few-boson problem near unitarity: recent theory and experiments Chris Greene, Purdue University

Nuclear Reactions in Lattice EFT

Nucleon Nucleon Forces and Mesons

EFT as the bridge between Lattice QCD and Nuclear Physics

Effective Field Theory for Cold Atoms I

U. van Kolck. Institut de Physique Nucléaire d Orsay. and University of Arizona. Supported in part by CNRS, Université Paris Sud, and US DOE

Perfect screening of the Efimov effect by the dense Fermi sea

Ab initio alpha-alpha scattering using adiabatic projection method

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Chiral Nuclear Effective Field Theory

arxiv:nucl-th/ v1 22 Sep 2000

arxiv: v2 [cond-mat.quant-gas] 1 Sep 2010

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation

Few-nucleon contributions to π-nucleus scattering

Theory Group Plans and Highlights

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Efimov states with strong three-body losses

Overview of low energy NN interaction and few nucleon systems

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

Understanding the proton radius puzzle: Nuclear structure corrections in light muonic atoms

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Nucleon-nucleon interaction in covariant chiral effective field theory

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck

Lattice Simulations with Chiral Nuclear Forces

Modern Theory of Nuclear Forces

Photo Reactions in Few-Body Systems - From Nuclei to Cold-Atoms

Alpha particles in effective field theory

Recent results in lattice EFT for nuclei

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture

Neutron matter from chiral effective field theory interactions

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Experiments with an Ultracold Three-Component Fermi Gas

INTRODUCTION TO NUCLEAR EFFECTIVE FIELD THEORIES

Towards an Understanding of Clustering in Nuclei from First Principles

Carbon-12 in Nuclear Lattice EFT

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

Introduction to Quantum Chromodynamics (QCD)

Recirculating Electron Beam Photo-converter for Rare Isotope Production CYC2016

Effective Field Theory for Halo Nuclei

Constraints on neutron stars from nuclear forces

Universal van der Waals Physics for Three Ultracold Atoms

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

ENERGY, SCATTERING LENGTH, AND MASS DEPENDENCE

Effective field theory for halo nuclei: shallow p-wave states

Three-nucleon forces and neutron-rich nuclei

RG & EFT for nuclear forces

Transcription:

Range eects on Emov physics in cold atoms An Eective eld theory approach Chen Ji TRIUMF in collaboration with D. R. Phillips, L. Platter INT workshop, November 7 2012 Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Range eects on Emov physics in cold atoms 1 / 22

Universal features at low energies Separation of scales: a l 2-body S-wave universality: B d = 1/Ma 2 Range eects on Emov physics in cold atoms 2 / 22

Universal features at low energies Separation of scales: a l 2-body S-wave universality: B d = 1/Ma 2 Physics at large distance is insensitive to physics at short distance Large-distance physics is studied in l/a expansion Eects from SR-dynamics can be included in perturbation theory Range eects on Emov physics in cold atoms 2 / 22

Large-scattering-length physics Universal Physics exists in systems with l a Nuclear Physics Few-nucleon systems (NN, NNN): i.e., l t np 1.7 fm, a t np 5.4 fm Halo nuclei ( 6 He, 11 Li) E sep E core [www.theurbn.com [www.anl.gov Range eects on Emov physics in cold atoms 3 / 22

Large-scattering-length physics Universal Physics exists in systems with l a Nuclear Physics Few-nucleon systems (NN, NNN): i.e., l t np 1.7 fm, a t np 5.4 fm Halo nuclei ( 6 He, 11 Li) E sep E core Unit of a B 1000 500 0-500 -1000 a r 0 a 720 730 740 750 760 B (G) 7 Li atoms [Gross et al. '09 Atomic Physics Cold atomic gases ( 133 Cs, 7 Li, 39 K): r 0 and a varies near Feshbach resonance 4 He atoms (dimer, trimer, tetramer): l vdw 7Å, a 100Å 6 He tetramer [D. Blume Range eects on Emov physics in cold atoms 3 / 22

Eective eld theory An approach to systems with a separation of scales Systems with l a an EFT with contact interactions Few-nucleon systems pionless EFT Halo nuclei halo EFT Atomic systems short-range EFT Physical quantities are expanded in powers of r 0 /a Contact interactions at LO 2-body contact interaction (LO) introduce a dimer eld = ic 0 C 0 determined by a 2-body observable 3-body contact interaction (LO) = id 0 D 0 determined by a 3-body observable Bedaque, Hammer, van Kolck '99 Range eects on Emov physics in cold atoms 4 / 22

Eective eld theory An approach to systems with a separation of scales Systems with l a an EFT with contact interactions Few-nucleon systems pionless EFT Halo nuclei halo EFT Atomic systems short-range EFT Physical quantities are expanded in powers of r 0 /a Contact interactions at LO 2-body contact interaction (LO) introduce a dimer eld = ic C 0 = i 0 =g 2 / ============= 2g C 0 determined by a 2-body observable 3-body contact interaction (LO) = id D 0 0 =3hg 2 / ================= 2 = ih D 0 determined by a 3-body observable Bedaque, Hammer, van Kolck '99 Range eects on Emov physics in cold atoms 4 / 22

EFT for 3 identical bosons LO (r 0 /a) 0 EFT Lagrangian for 3 identical bosons ( ) ) L = ψ i 0 + 2 ψd (i 0 + 2 2m 4m d 2 g ( ) d ψψ + h.c +hd dψ ψ+ terms with more derivatives are at higher orders (r 0 /a) n Non-perturbative features at LO atom-atom (dimer) scattering (tune g) atom-dimer scattering (tune h) = + 1 1/a+ik t 0 = + + t 0 + t 0 Bedaque, Hammer, van Kolck '99 Range eects on Emov physics in cold atoms 5 / 22

LO renormalization 10 3 Without 3BF: 3-body spectrum: cuto dependent (Λ 1/l) Platter '09 B 3 [B 2 10 2 10 1 LO 3BF h: tune H(Λ) = Λ 2 h/2mg 2 : x one 3-body observable limit cycle: H(Λ) periodic for Λ Λ(22.7) n Bedaque et al. '00 scaling invariance Emov physics Emov '71 10 1 10 2 10 3 Λ [B 2 1/2 Range eects on Emov physics in cold atoms 6 / 22

Universal physics at LO Universal features in three-body systems (Emov eects) 3-body spectrum: a function of scattering length a geometric spectrum E n = (22.7) 2 E n1 in the limit a universal relation of recombination features a = a + /4.5 = a /21.3 i.e. a (n) = 22.7a (n1) Zaccanti et al. '09 Range eects on Emov physics in cold atoms 7 / 22

Recombination features of cold atoms loss rates of free atoms in ultracold atomic gases 39 K atoms Zaccanti et al. '09 7 Li atoms F = 1, m F = 0 Gross et al. '09 7 Li atoms F = 1, m F = 1 Pollack et al. '09 Pic. credit: Ferlaino, Grimm '10 Range eects on Emov physics in cold atoms 8 / 22

Beyond universality: range eects range eects on universal physics 2-body observable: k cot δ 0 = 1 a + r0 2 k2 + 3-body observables: in r 0 /a expansion Previous EFT calculations of r 0 /a corrections (xed a): Hammer, Mehen '01 (NLO) Bedaque, Rupak, Griesshammer, Hammer '03 (N 2 LO, partial iteration) Platter, Phillips '06 (N 2 LO, partial iteration) We perform a rigorous perturbative caluclation NLO (systems with variable a) ultracold atomic gases (r 0/a varies near Feshbach resonance) 3-body recombination N 2 LO (systems with a xed a) 4 He atoms (r 0/a 0.07) 4 He trimer (bound state), atom-dimer phase shift (scattering state) Range eects on Emov physics in cold atoms 9 / 22

NLO (r 0 /a) range eects Calculate r 0 /a correction to atom-dimer amplitude NLO correction to atom-atom propagator (dimer): = ir 2π 1/a+ik 0 mg 2 1/a+ik NLO correction to atom-dimer contact term (3BF): = i 2mg2 Λ 2 H 1 (a, Λ) Contribution in 1 st order perturbation theory: NLO dimer: t 0 t 0 NLO 3BF: t 0 t 0 t 0 t 0 NLO 3-body force: H 1 (Λ) = r 0 Λ h 10 (Λ) + r 0 /a h 11 (Λ) a xed: h 11 is absorbed (no additional 3-body input is needed) a varies: one additional 3-body input is needed Range eects on Emov physics in cold atoms 10 / 22

NLO three-body 3BF H 1 (Λ) = r 0 Λ h 10 (Λ) + r 0 /a h 11 (Λ) 1 / h 10 (Λ) 0-0.5-1 -1.5-2 1 / h 11 (Λ) 0-0.1-0.2-0.3-0.4-2.5 10 1 10 2 10 3 10 4 10 5 10 6 Λ/κ * -0.5 10 1 10 2 10 3 10 4 10 5 10 6 Λ/κ * 1/h 10 (Λ) 1/h 11 (Λ) Range eects on Emov physics in cold atoms 11 / 22

In ultracold atomic gases a and r 0 are functions of the magnetic eld 7 Li F = 1, m F = 0 > 7 Li F = 1, m F = 1 > Gross et al. '09 Range eects on Emov physics in cold atoms 12 / 22

Recombination of 7 Li Atoms F = 1, m F = 0 10 LO: rn to a NLO: rn to a & a + Gross et al. data 3-body recombination rate of 7 Li atoms NLO (r 0/a) range eects to recombination positions are not shifted by K 3 [1000 a B deep-dimer at LO [Braaten et al. '08 0.1 0.1 a [1000 a B 1 1 Experiment LO LO NLO 3A res a (-) [a B -264-264 -244-264 rec min a + [a B 1160 1254 1160 1160 Ad res a [a B 180 281 259 210(44) Gross et al. '09 Machtey et al. '12 Ji, Phillips, Platter '10 Range eects on Emov physics in cold atoms 13 / 22

Recombination of 7 Li Atoms F = 1, m F = 0 10 LO: rn to a NLO: rn to a & a + Gross et al. data 3-body recombination rate of 7 Li atoms NLO (r 0/a) range eects to recombination positions are not shifted by K 3 [1000 a B deep-dimer at LO [Braaten et al. '08 0.1 0.1 a [1000 a B 1 1 Experiment LO LO NLO 3A res a (-) [a B -264-264 -244-264 rec min a + [a B 1160 1254 1160 1160 Ad res a [a B 180 281 259 210(44) Gross et al. '09 Machtey et al. '12 Ji, Phillips, Platter '10 Range eects on Emov physics in cold atoms 13 / 22

Recombination of 7 Li Atoms F = 1, m F = 0 10 LO: rn to a NLO: rn to a & a + Gross et al. data 3-body recombination rate of 7 Li atoms NLO (r 0/a) range eects to recombination positions are not shifted by K 3 [1000 a B deep-dimer at LO [Braaten et al. '08 0.1 0.1 a [1000 a B 1 1 Experiment LO LO NLO 3A res a (-) [a B -264-264 -244-264 rec min a + [a B 1160 1254 1160 1160 Ad res a [a B 180 281 259 210(44) Gross et al. '09 Machtey et al. '12 Ji, Phillips, Platter '10 Range eects on Emov physics in cold atoms 13 / 22

Recombination of 7 Li Atoms F = 1, m F = 0 10 LO: rn to a NLO: rn to a & a + Gross et al. data 3-body recombination rate of 7 Li atoms NLO (r 0/a) range eects to recombination positions are not shifted by K 3 [1000 a B deep-dimer at LO [Braaten et al. '08 0.1 0.1 a [1000 a B 1 1 Experiment LO LO NLO 3A res a (-) [a B -264-264 -244-264 rec min a + [a B 1160 1254 1160 1160 Ad res a [a B 180 281 259 210(44) Gross et al. '09 Machtey et al. '12 Ji, Phillips, Platter '10 Range eects on Emov physics in cold atoms 13 / 22

Recombination of 7 Li Atoms 10 2 F = 1, m F = 1 7 Li(mF = 1) recombination [Pollack et al. '09 data disagree with universality by a factor of 2 EFT analysis at NLO agrees with universality K 3 [1000 a B 10 1 10 0 10-1 10-2 LO: rn to a 1 NLO: rn to a 1 & a 2 10-1 10 0 10 1 a [1000 a B Experiment LO LO NLO [Pollack et al. '09 [Ji et al. '10 3A res a (-) [a B -298-298 -278-298 3A res a [a B -6301-6763 -6301-6301 rec min a + [a B 2676 1415 1319 1348(151) Ad res a [a B 608 317 295 356(55) Range eects on Emov physics in cold atoms 14 / 22

Recombination of 7 Li Atoms 10 2 F = 1, m F = 1 7 Li(mF = 1) recombination [Pollack et al. '09 data disagree with universality by a factor of 2 EFT analysis at NLO agrees with universality K 3 [1000 a B 10 1 10 0 10-1 10-2 LO: rn to a 1 NLO: rn to a 1 & a 2 10-1 10 0 10 1 a [1000 a B Experiment LO LO NLO [Pollack et al. '09 [Ji et al. '10 3A res a (-) [a B -298-298 -278-298 3A res a [a B -6301-6763 -6301-6301 rec min a + [a B 2676 1415 1319 1348(151) Ad res a [a B 608 317 295 356(55) Range eects on Emov physics in cold atoms 14 / 22

Recombination of 7 Li Atoms 10 2 F = 1, m F = 1 7 Li(mF = 1) recombination [Pollack et al. '09 data disagree with universality by a factor of 2 EFT analysis at NLO agrees with universality K 3 [1000 a B 10 1 10 0 10-1 10-2 LO: rn to a 1 NLO: rn to a 1 & a 2 10-1 10 0 10 1 a [1000 a B Experiment LO LO NLO [Pollack et al. '09 [Ji et al. '10 3A res a (-) [a B -298-298 -278-298 3A res a [a B -6301-6763 -6301-6301 rec min a + [a B 2676 1415 1319 1348(151) Ad res a [a B 608 317 295 356(55) Range eects on Emov physics in cold atoms 14 / 22

Recombination of 7 Li Atoms 10 2 F = 1, m F = 1 7 Li(mF = 1) recombination [Pollack et al. '09 data disagree with universality by a factor of 2 EFT analysis at NLO agrees with universality K 3 [1000 a B 10 1 10 0 10-1 10-2 LO: rn to a 1 NLO: rn to a 1 & a 2 10-1 10 0 10 1 a [1000 a B Experiment LO LO NLO [Pollack et al. '09 [Ji et al. '10 3A res a (-) [a B -298-298 -278-298 3A res a [a B -6301-6763 -6301-6301 rec min a + [a B 2676 1415 1319 1348(151) Ad res a [a B 608 317 295 356(55) Range eects on Emov physics in cold atoms 14 / 22

Universal relations at NLO 1 a = γ 1 2 r 0γ 2 Ji, Phillips, Platter '12 Range eects on Emov physics in cold atoms 15 / 22

Universal relations at NLO 1 a = γ 1 2 r 0γ 2 NLO corrections γ 0 = γ = 0.210γ () 0.939γ () + r 0 (a 0 ) I () 0 γ () + r 0 (a ) I () γ () 2 2 Ji, Phillips, Platter '12 Range eects on Emov physics in cold atoms 15 / 22

Universal relations at NLO 1 a = γ 1 2 r 0γ 2 NLO corrections γ 0 = γ = 0.210γ () 0.939γ () + r 0 (a 0 ) I () 0 γ () + r 0 (a ) I () γ () 2 2 Linear correlation at NLO I () = 0.309 + 7.17 I () 0 Ji, Phillips, Platter '12 Range eects on Emov physics in cold atoms 15 / 22

Universal relations at NLO 1 a = γ 1 2 r 0γ 2 NLO corrections γ 0 = γ = 0.210γ () 0.939γ () + r 0 (a 0 ) I () 0 γ () + r 0 (a ) I () γ () 2 2 Linear correlation at NLO I () = 0.309 + 7.17 I () 0 Universal relation at NLO γ = 0.939γ () 0.309 r 0 (a )γ () 2 ( + 7.17 r 0(a ) r 0(a 0) γ 0 ) + 0.210γ () Ji, Phillips, Platter '12 Range eects on Emov physics in cold atoms 15 / 22

Universal relations at NLO 1 a = γ 1 2 r 0γ 2 NLO corrections γ 0 = γ = 0.210γ () 0.939γ () + r 0 (a 0 ) I () 0 γ () + r 0 (a ) I () γ () 2 2 Linear correlation at NLO I () = 0.309 + 7.17 I () 0 Universal relation at NLO γ = 0.939γ () 0.309 r 0 (a )γ () 2 ( + 7.17 r 0(a ) r 0(a 0) γ 0 ( ) γ = 4.47γ 0 7.02 r 0 (a )γ0 2 + 0.566 r0(a ) γ () r 0(a () ) + 4.76γ 0 ) + 0.210γ () Ji, Phillips, Platter '12 Range eects on Emov physics in cold atoms 15 / 22

N 2 LO (r 0 /a) 2 range eects N 2 LO corrections to atom-dimer scattering amplitude: in 2 nd order perturbation theory ( r 2 0/a 2 ): N 2 LO dimer: t 0 t 0 N 2 LO 3BF: t 0 t 0 t 0 t 0 two NLO terms: t 0 t 0 t 0 t 0 t 0 t 0 + t 0 t 0 t 0 + N 2 LO 3-body force: H 2 (E, Λ) = r 2 0 Λ2 h 20 (Λ) + r 2 0 me 3 h 22 (Λ) one additional 3-body input is needed (even when a is xed) c.f. Bedaque et al. '03 & Platter, Phillips '06 Range eects on Emov physics in cold atoms 16 / 22

N 2 LO renormalization H 2 = r 2 0 Λ2 h 20 H 2 = r 2 0 Λ2 h 20 + r 2 0 me t h 22 B n (1) [γ n B d 1.5 1 0.5 0 (1) B 0-0.5 (1) B 1 (1) B 2-1 10 2 10 3 Λ [γ 10 4 10 5 B n (0) [γ n B d 100 0-100 -200 B 0 (0) B 1 (0) 0.1B 2 (0) 10 2 10 3 10 4 10 5 Λ [γ a ad LO/NLO/N 2 LO B (1) t = B (1) 0 + r 0 B (1) 1 + r 2 0B (1) 2 a ad LO/NLO/N 2 LO B (1) t N 2 LO B (0) t = B (0) 0 + r 0 B (0) 1 + r 2 0B (0) 2 Range eects on Emov physics in cold atoms 17 / 22

NLO three-body 3BF H 2 (Λ) = r 2 0 Λ2 h 20 (Λ) + r 2 0 me t h 22 (Λ) 1 / h 20 (Λ) 40 20 0-20 -40 10 1 10 2 10 3 10 4 10 5 Λ [γ 1 / h 22 (Λ) 0.8 0.6 0.4 0.2 0 10 1 10 2 10 3 10 4 10 5 Λ [γ 1/h 20 (Λ) 1/h 22 (Λ) [partial version Range eects on Emov physics in cold atoms 18 / 22

4 He trimer Input B (1) t [B d B (0) t [B d a ad [γ 1 r ad [γ 1 TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad, B (1) t N 2 LO 1.738 116.9 1.205 0.9132 B (1) t LO 1.738 99.37 1.178 0.8752 B (1) t NLO 1.738 89.77 1.201 0.9130 B (1) t, a ad N 2 LO 1.738 115.9 1.205 0.9135 Range eects on Emov physics in cold atoms 19 / 22

4 He trimer Input B (1) t [B d B (0) t [B d a ad [γ 1 r ad [γ 1 TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad, B (1) t N 2 LO 1.738 116.9 1.205 0.9132 B (1) t LO 1.738 99.37 1.178 0.8752 B (1) t NLO 1.738 89.77 1.201 0.9130 B (1) t, a ad N 2 LO 1.738 115.9 1.205 0.9135 Range eects on Emov physics in cold atoms 19 / 22

4 He trimer Input B (1) t [B d B (0) t [B d a ad [γ 1 r ad [γ 1 TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad, B (1) t N 2 LO 1.738 116.9 1.205 0.9132 B (1) t LO 1.738 99.37 1.178 0.8752 B (1) t NLO 1.738 89.77 1.201 0.9130 B (1) t, a ad N 2 LO 1.738 115.9 1.205 0.9135 Range eects on Emov physics in cold atoms 19 / 22

4 He trimer Input B (1) t [B d B (0) t [B d a ad [γ 1 r ad [γ 1 TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad, B (1) t N 2 LO 1.738 116.9 1.205 0.9132 B (1) t LO 1.738 99.37 1.178 0.8752 B (1) t NLO 1.738 89.77 1.201 0.9130 B (1) t, a ad N 2 LO 1.738 115.9 1.205 0.9135 Dierence in 2 renormalization schemes (LO NLO N 2 LO): atom-dimer eective range r ad : 5% 0.9% 0.02% ground-state trimer B (0) t : 2% 0.07% 0.9% Range eects on Emov physics in cold atoms 19 / 22

4 He trimer Input B (1) t [B d B (0) t [B d a ad [γ 1 r ad [γ 1 TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad, B (1) t N 2 LO 1.738 116.9 1.205 0.9132 B (1) t LO 1.738 99.37 1.178 0.8752 B (1) t NLO 1.738 89.77 1.201 0.9130 B (1) t, a ad N 2 LO 1.738 115.9 1.205 0.9135 Dierence in 2 renormalization schemes (LO NLO N 2 LO): atom-dimer eective range r ad : 5% 0.9% 0.02% ground-state trimer B (0) t : 2% 0.07% 0.9% Compare with TTY: B (0) t 20% r0b 2 (0) t 0.5 EFT expansion needs to be corrected for deep trimer with U vdw [Gao '98 Range eects on Emov physics in cold atoms 19 / 22

He-4 trimer phase shift at N 2 LO a ad B (1) t LO/NLO/N 2 LO N 2 LO B (1) t a ad LO/NLO/N 2 LO N 2 LO kcotδ ad [γ -0.4-0.5-0.6-0.7 LO (a ad ) NLO (a ad ) N 2 LO (a ad, B t (1) ) kcotδ ad [γ -0.4-0.5-0.6-0.7 LO (B t (1) ) NLO (B t (1) ) N 2 LO (B t (1), a ad ) -0.8-0.8 0 0.2 0.4 0.6 0.8 1 k [γ 0 0.2 0.4 0.6 0.8 1 k [γ Range eects on Emov physics in cold atoms 20 / 22

Dierence btw 2 renormalization LO NLO N 2 LO kcotδ ad [γ 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 0 0.2 0.4 0.6 0.8 1 k [γ Range eects on Emov physics in cold atoms 21 / 22

Conclusion We studied eective-range corrections on Emov physics in perturbation theory NLO for varying a: recombination in cold atoms H 1 (Λ) = r 0 Λ h 10 (Λ) + r 0 /a h 11 (Λ) one additional 3-body input is needed for NLO renormalization N 2 LO for xed a: He-4 trimer H 2 (E, Λ) = r 2 0Λ 2 h 20 (Λ) + r 2 0mE 3 h 22 (Λ) one additional 3-body data is needed for N 2 LO renormalization Range corrections are also important in nuclear physics Range eects on Emov physics in cold atoms 22 / 22