Analysis of the decay B + l + νγ, l + = e +, µ +

Similar documents
SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

2016 SM H ττ Analysis 26th September 2016

Messung des differentiellen Wirkungsquerschnitts der Z-Boson Produktion im Elektron-Zerfallskanal mit dem CMS-Detektor bei s=8 TeV.

B D ( ) τν τ decays with hadronic and semileptonic tagging at Belle

KEKB collider and Belle detector

Searches for New Physics in quarkonium decays at BaBar/Belle

Searches for Leptonic Decays of the B-meson at BaBar

arxiv: v1 [hep-ex] 7 Jul 2016

New B D Result from. Thomas Kuhr LMU Munich FPCP

arxiv: v1 [hep-ex] 15 May 2017

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

PoS(ICHEP2012)238. Search for B 0 s µ + µ and other exclusive B decays with the ATLAS detector. Paolo Iengo

Search for Lepton Number Violation at LHCb

Measurement of Jet Energy Scale and Resolution at ATLAS and CMS at s = 8 TeV

Rare B Meson Decays at Tevatron

Combined Higgs Results

Discovery searches for light new physics with BaBar

Lepton Universality in ϒ(nS) Decays at CLEO

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

Machine learning in Higgs analyses

V ub measurements with the BaBar detector

b hadron properties and decays (ATLAS)

CP Violation sensitivity at the Belle II Experiment

Recent Results on Rare B Decays from BaBar and Belle

SEARCH FOR CP VIOLATION IN

* ) B s( * ) B s( - 2 -

Future Belle II experiment at the KEK laboratory

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

BSM at Belle: B K ℓ ℓ and search for leptonic B decays

Search for the very rare decays B s/d + - at LHCb

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Radiative Penguin decays at BaBar. Debbie Bard University of Edinburgh

KSETA-Course: Accelelerator-Based Particle Physics

Measurements of Leptonic B Decays from BaBar

Searches for Exotics in Upsilon Decays in BABAR

Recent Results on Radiative and Electroweak Penguin B Decays at Belle. Akimasa Ishikawa (Tohoku University)

Search for Dark Particles at Belle and Belle II

Rare B decay searches with BABAR using hadronic tag reconstruction

Higgs and Z τ + τ in CMS

Radiative penguins at hadron machines. Kevin Stenson! University of Colorado!

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

PoS(EPS-HEP2015)565. Study of the radiative tau decays τ γlνν with the BABAR detector. Roger Barlow

First data at Belle II and Dark Sector physics

Spectroscopy and Decay results from CDF

Alexander Leopold Felicitas Breibeck Christoph Schwanda. for the Belle Collaboration

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

Recent BaBar results on CP Violation in B decays

Measurements of R K and R K* at LHCb

Searches for New Phenomena in Events with Multiple Leptons with the ATLAS Detector

CDF. Michael Feindt, Michal Kreps, Thomas Kuhr, Felix Wick. October 6, Institut für Experimentelle Kernphysik

Abstract. To be published in the Proceedings of the 8th International Workshop On Tau Lepton Physics September 2004, Nara, Japan

Semileptonic B decays at BABAR

New Physics search in penguin B-decays

PoS(EPS-HEP2011)250. Search for Higgs to WW (lνlν, lνqq) with the ATLAS Detector. Jonas Strandberg

Hiroyuki Sagawa KEK OHO 1-1, Tsukuba, Ibaraki, Japan

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group

Rare Hadronic B Decays

New BaBar Results on Rare Leptonic B Decays

ATLAS-CONF October 15, 2010

Rare B Decays. Yee Bob Hsiung National Taiwan University and Belle Collaboration. Highlights from Belle and Babar

New Limits on Heavy Neutrino from NA62

Charm Decays. Karl M. Ecklund

Measurement of Фs, ΔΓs and Lifetime in Bs J/ψ Φ at ATLAS and CMS

Dark matter searches and prospects at the ATLAS experiment

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

Search for the Higgs boson in the t th production mode using the ATLAS detector

Searching for the Higgs at the Tevatron

Collider Physics Analysis Procedures

B-physics with ATLAS and CMS

SUSY Search Strategies at Atlas and CMS

RESULTS FROM B-FACTORIES

CLEO Results From Υ Decays

Studies of D ( ) Production in B Decays and e + e c c Events

Study of e + e annihilation to hadrons at low energies at BABAR

Search for B + l + X with hadronic tagging method at Belle Experiment

Recent Results from CLEO

Lepton Flavour Violation

Belle results on Lepton Flavor Violation in tau decays. K. Inami (Nagoya Univ.) for Belle collaboration

Inclusive radiative electroweak penguin decays:

Calibration of the BABAR CsI (Tl) calorimeter

Results from B-Physics (LHCb, BELLE)

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

PoS(EPS-HEP2017)662. Charm physics prospects at Belle II

Experimental Search for the Decay

Preparations for the Spin and Parity Measurement of the Higgs Boson in the H ττ Channel

Tesi di Laurea Specialistica

Review of Standard Tau Decays from B Factories

Top Quark Production at the LHC. Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations

LFV in Tau Decays: Results and Prospects at the LHC. Tau th International Workshop on Tau Lepton Physics Beijing September 22th, 2016

Review of semileptonic b clν decays

W and Z boson production in p p collisions from Run II of the Tevatron Collider

Measurement of Observed Cross Sections for e + e hadrons non-d D. Charmonium Group Meeting

PoS(FPCP2009)013. Fabrizio Scuri I.N.F.N. - Sezione di Pisa - Italy

Searches for rare radiative Higgs boson decays to light mesons with ATLAS

b s Hadronic Decays at Belle

Study of Transitions and Decays of Bottomonia at Belle

Recent results on search for new physics at BaBar

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

New physics searches via FCNC b s ll decays at ATLAS

Transcription:

Analysis of the decay B l νγ, l = e, µ Bad Liebenzell 1 Andreas Heller, Michael Feindt, Martin Heck, Anže Zupanc, Thomas Kuhr, Pablo Goldenzweig INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP), KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

The Belle experiment The Belle experiment ran 1999-11 at KEKB accelerator at KEK in Tsukuba, Japan Asymmetric e e accelerator at Y (S) energy of 1.58 GeV B(Y (S) B- B) 96% (771.6 ± 1.6) 1 6 B- B pairs measured Andreas Heller Analysis of the decay B l νγ, l = e, µ /

Helicity suppression of B l ν Pure B l ν decay is helicity suppressed B meson has spin and decays into particle and antiparticle with opposite spin Both particles are almost exclusively right- or left-handed A heavier lepton has a lower momentum and thus a bigger coupling to the weak current SM prediction: B(B e (µ )ν) = 9. 1 1 (3.9 1 7 ) Measurement 1 : B(B τ ν) = (1.8 ±.5) 1 1 Belle: Phys. Rev. D 8 7111, BaBar: Phys.Rev. D88 (13) 311 Andreas Heller Analysis of the decay B l νγ, l = e, µ 3/

Theory of B l νγ B l νγ: Photon lifts helicity suppression but introduces additional electromagnetic coupling u γ W l SM expectation O(B(B l νγ)) 1 6 b νl Weak decay is precisely calculable Photon emission needs an approximation from heavy quark theory where E γ > 1GeV is required u b γ W l νl u l W γ b νl Beneke, Rohrwild: B meson distribution amplitude from B γl ν arxiv:111.38 (11) Andreas Heller Analysis of the decay B l νγ, l = e, µ /

Theory of B l νγ Branching fraction depends on λ B Describes the first moment of the quark distribution amplitude inside the B meson Theoretical calculation of the parameter unreliable Important parameter for several radiative B meson decays 3 Aubert et al.: Search for the radiative leptonic decay B γl ν, arxiv:7.178 (7) Beneke, Rohrwild: B meson distribution amplitude from B γl ν arxiv:111.38 (11) Andreas Heller Analysis of the decay B l νγ, l = e, µ 5/

Theory of B l νγ Branching fraction depends on λ B Describes the first moment of the quark distribution amplitude inside the B meson Theoretical calculation of the parameter unreliable Important parameter for several radiative B meson decays From other measurements λ B can be constrained O(B(B l νγ)) 1 6 3 Aubert et al.: Search for the radiative leptonic decay B γl ν, arxiv:7.178 (7) Beneke, Rohrwild: B meson distribution amplitude from B γl ν arxiv:111.38 (11) Andreas Heller Analysis of the decay B l νγ, l = e, µ 5/

Theory of B l νγ Branching fraction depends on λ B Describes the first moment of the quark distribution amplitude inside the B meson Theoretical calculation of the parameter unreliable Important parameter for several radiative B meson decays From other measurements λ B can be constrained O(B(B l νγ)) 1 6 BaBar measurement of B(B l νγ) gives upper limits of < 17 1 6 (electron channel), < 1 6 (muon channel) 3 3 Aubert et al.: Search for the radiative leptonic decay B γl ν, arxiv:7.178 (7) Beneke, Rohrwild: B meson distribution amplitude from B γl ν arxiv:111.38 (11) Andreas Heller Analysis of the decay B l νγ, l = e, µ 5/

Full reconstruction Hadronic full reconstruction covers 1% of the B branching fraction The efficiency is in the range of.5% Feindt et al.: A Hierarchical NeuroBayes-based Algorithm for Full Reconstruction of B Mesons at B Factories Andreas Heller Analysis of the decay B l νγ, l = e, µ 6/

B l νγ analysis Full reconstruction of one B meson Impuls des zweiten B-Mesons p Bsig = (E Beam /, p Btag ) m miss = (p Bsig p lepton p γ ) Normalized Data. B e ν γ. Generic MC.18 B X u l ν.16 Rare MC.1.1.1.8.6... m miss (GeV ) Andreas Heller Analysis of the decay B l νγ, l = e, µ 7/

B l νγ analysis Full reconstruction of one B meson Impuls des zweiten B-Mesons p Bsig = (E Beam /, p Btag ) m miss = (p Bsig p lepton p γ ) Normalized Data. B e ν γ. Generic MC.18 B X u l ν.16 Rare MC.1.1.1.8.6.. Analysis is performed on MC (blind analysis). m miss (GeV ) Signal branching fraction is assumed to be 5 1 6 Background simulation consists of: generic MC with b c decays and semi-leptonic b ulν MC with B π /ηl γ processes Andreas Heller Analysis of the decay B l νγ, l = e, µ 7/

Pre-selection After full reconstruction only signal side particles are expected to be left in the detector Signal signature consists of a charged track and a high energetic photon Efficient signal selection Highest energetic photon in the event with an energy above 1 GeV No charged tracks left after selection Lepton selection based on compounded likelihood variable Little remaining energy deposition in the calorimeter Cut on the mass of the fully reconstructed B meson Andreas Heller Analysis of the decay B l νγ, l = e, µ 8/

Signal like background Dominant background after pre-selection: B π l ν and B ηl ν B(π γγ) 99%, B(η γγ) % Decays are similar to signal if only one photon is found Second photon originating from the meson is searched in the detector with specific variables Number of Expected Events 5 3 1 B µ ν γ Generic MC B X u l B X u l ν fixed decays ν free decays m miss (GeV ) Andreas Heller Analysis of the decay B l νγ, l = e, µ 9/

Meson vetoes Meson masses of π, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter Meson candidate with mass closest to its nominal mass is kept Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Meson vetoes Meson masses of π, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter Meson candidate with mass closest to its nominal mass is kept High combinatorics can lead to the construction artificial peaks at the nominal mass Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Meson vetoes Meson masses of π, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter Meson candidate with mass closest to its nominal mass is kept High combinatorics can lead to the construction artificial peaks at the nominal mass Mass spectra are computed with different energy cuts on the background photons Leads to different mass distributions with complementary information Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Meson vetoes Meson masses of π, η are reconstructed from signal photon candidate an the remaining photons in the calorimeter Meson candidate with mass closest to its nominal mass is kept High combinatorics can lead to the construction artificial peaks at the nominal mass Mass spectra are computed with different energy cuts on the background photons Leads to different mass distributions with complementary information Meson mass spectra are gathered in neural network which is used for selection Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Meson vetoes Normalized Data.5..15.1.5 B µ ν γ B π µ ν B η µ ν Remaining B X u l ν Generic MC...5.1 m(π.15..5.3 ) (GeV) without cut on γ.35. bkg Normalized Data. B µ ν γ. B π µ ν B η µ ν.18 Remaining B X u l ν.16 Generic MC.1.1.1.8.6..... m(π..6.8 ) (GeV) with γ > 6 MeV 1. bkg Andreas Heller Analysis of the decay B l νγ, l = e, µ 11/

Network training Neural net is trained with NeuroBayes 5 Training: Signal-MC against X u lν MC and especially B π l γ Additional variables in the network are the remaining energy in the calorimeter and angles among the signal candidate particles Signal is measured with a fit of the missing mass in 6 bins of the network output Normalized Data.1.8.6... B µ ν γ Generic MC B X u l ν...6.8 Network output 5 Feindt: A Neural Bayesian Estimator for Conditional Probability Densities, arxiv:physics/93 () Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Network output data-mc comparison 35 3 B µ ν γ Exclusive X u l ν MC Background MC Data sample 5 35 B e ν γ Exclusive X u l ν MC Background MC Data sample 5 3 5 15 15 1 1 5 5....6.8 1. Network output Muon channel....6.8 1. Network output Electron channel Andreas Heller Analysis of the decay B l νγ, l = e, µ 13/

Network bin optimization Expected Significance B µ νγ.8.6... e νγ Expected Significance B.8.6... 1.8 1.8 1 3 5 6 7 8 Fit in no. of network bins Muon channel 1 3 5 6 7 8 Fit in no. of network bins Electron channel Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Fit shapes, muon channel Number of Expected Events.7.6.5..3..1 1..8.6.. 1. 1..8.6... Network Bin 1. Network Bin. Network Bin 3. 3. 9 Number of Expected Events. 1.8 1.6 1. 1. 1..8.6...5. 1.5 1..5 8 7 6 5 3 1. Network Bin. Network Bin 5 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 15/

Fit shapes, electron channel.8 1. 1. Number of Expected Events.7.6.5..3..1.8.6.. 1. 1..8.6... Network Bin 1. Network Bin. Network Bin 3 1.8 1.6.5 7 Number of Expected Events 1. 1. 1..8.6... 1.5 1..5 6 5 3 1. Network Bin. Network Bin 5 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 16/

Signal extraction Yield of the dominant B X u l ν backgrounds is fixed to MC prediction Two free fit parameters are the signal and one background yield Andreas Heller Analysis of the decay B l νγ, l = e, µ 17/

Signal extraction Yield of the dominant B X u l ν backgrounds is fixed to MC prediction Two free fit parameters are the signal and one background yield Electron and muon channel are fitted separately and simultaneously Andreas Heller Analysis of the decay B l νγ, l = e, µ 17/

Signal extraction Yield of the dominant B X u l ν backgrounds is fixed to MC prediction Two free fit parameters are the signal and one background yield Electron and muon channel are fitted separately and simultaneously Several tests are performed with toy MC studies: linearity test, confidence interval coverage, bootstrapped toy MC No bias is found for significant measurements Confidence interval coverage is too large Andreas Heller Analysis of the decay B l νγ, l = e, µ 17/

Systematic error Sample muon channel electron channel Meson veto network -.58 -.66.75.6 Fit shapes 1.3 1.6 Fixing of B X u l ν ±.18 ±. B l νγ model -.1 -.5 Tag side efficiency ±.35 ±.3 Continuum suppression -.13 -. Tracking efficiency -.1 -.1 Lepton ID ±. ±.18 N B B ±.11 ±.11 Sum Sum 1.1 1.59 Simultaneous fit 1.81.9 1.1 1.39 Andreas Heller Analysis of the decay B l νγ, l = e, µ 18/

Measurement on data, muon channel Number of Events 3..5. 1.5 1..5.5. 3.5 3..5. 1.5 1..5 7 6 5 3 1. Network Bin 1. Network Bin Network Bin 3 Number of Events 1 8 6 1 1 8 6 18 16 1 1 1 8 6 Network Bin Network Bin 5 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 19/

Measurement on data, electron channel.5..5. 6 5 Number of Events 3.5 3..5. 1.5 3.5 3..5. 1.5 3 1..5. Network Bin 1 1..5. Network Bin 1 Network Bin 3 8 1 Number of Events 7 6 5 3 8 6 18 16 1 1 1 8 1 Network Bin Network Bin 5 6 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ /

Fit results on data one bin B µ ν γ Exclusive X u l ν MC 35 Background MC 3 Data sample 5 3 5 15 B e ν γ Exclusive X u l ν MC Background MC Data sample 15 1 5 1 5 m miss (GeV ) Muon channel m miss (GeV ) Electron channel Andreas Heller Analysis of the decay B l νγ, l = e, µ 1/

Measurement on data Default analysis E(γ sig ) > 1 GeV Sample Yield significance in σ BR limit 1 6 (9% CL) B e νγ 6.1.91.1 3.9 1. 1. 13. B νγ.9 3.61.1.6 1.6. 7.1 B l νγ 6.6 5.71.8.7.3 1. 7.3 Secondary analysis with E(γ sig ) > MeV Sample Yield significance in σ BR limit 1 6 (9% CL) B e νγ 11.9 7.1.9 6... 1. B µ νγ.1 5.1.9.1.3-6.3 B l νγ 11.3 8.3.1 7. 3.6 1.5 7.6 For the yields the first error is statistical, the second error is systematic. Significances and upper limits contain systematic errors. Andreas Heller Analysis of the decay B l νγ, l = e, µ /

Backup Slides Andreas Heller Analysis of the decay B l νγ, l = e, µ 3/

Measurement on data, muon channel, secondary analysis 6 7 6 5 6 5 Number of Events 3 5 3 3 1 1 1 Network Bin 1 Network Bin Network Bin 3 1 5 Number of Events 1 8 6 15 1 5 3 1 Network Bin Network Bin 5 Network Bin 6 Muon channel with E(γ sig ) > MeV. Andreas Heller Analysis of the decay B l νγ, l = e, µ /

Measurement on data, electron channel, secondary analysis 7.5 6 6. 5 Number of Events 5 3 1 3.5 3..5. 1.5 1..5 3 1 Network Bin 1. Network Bin Network Bin 3 16 Number of Events 8 7 6 5 3 1 1 1 8 6 5 3 1 1 Network Bin Network Bin 5 Network Bin 6 Electron channel with E(γ sig ) > MeV. Andreas Heller Analysis of the decay B l νγ, l = e, µ 5/

Hierarchische Ansatz der vollständigen Rekonstruktion Andreas Heller Analysis of the decay B l νγ, l = e, µ 6/

Netwerkvariablen Extraenergie im ECL Winkel zwischen Signal γ und ν m(π ) mit E(γ rem ) > MeV m(π ) ohne Schnitt auf E(γ rem ) m(η) mit E(γ rem ) > 3 MeV Winkel zwischen Signal γ und Lepton m(η) mit E(γ rem ) > 1 MeV m(π ) mit E(γ rem ) > 6 MeV m(π ) mit ECL-Schnitten skaliert um.6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 7/

Fitformen: Myonkanal für Sekundäranalyse E(γ sig ) > MeV Number of Expected Events.6. 1...5 1.8 1. 1.6. 1..8 1..3.6 1..8...6.1.... Network Bin 1. Network Bin. Network Bin 3 Number of Expected Events 3..5. 1.5 1..5. Network Bin 7 6 5 3 1 Network Bin 5 18 16 1 1 1 8 6 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 8/

Fitformen: Elektronkanal für Sekundäranalyse E(γ sig ) > MeV Number of Expected Events.8 1. 1.8 1.6.7 1. 1..6.8 1..5 1...6.8.3..6....1.. Network Bin 1. Network Bin. Network Bin 3 Number of Expected Events.5. 1.5 1..5. Network Bin 5 3 1 Network Bin 5 18 16 1 1 1 8 6 Network Bin 6 Andreas Heller Analysis of the decay B l νγ, l = e, µ 9/

Übergroßes Konfidenzintervall für oberes Limit Relative number of values above the 9% boundary.1.8.6... 1 3 5 6 7-6 BR(B l ν γ) 1 Relative number of values above the 9% boundary.8.6... 1 3 5 6 7-6 BR(B l ν γ) 1 Muon channel Electron channel Andreas Heller Analysis of the decay B l νγ, l = e, µ 3/

Übergroßes Konfidenzintervall für oberes Limit Relative number of values above the 9% boundary.1.8.6... 1 3 5 6 7-6 BR(B l ν γ) 1 Simultaneous fit Andreas Heller Analysis of the decay B l νγ, l = e, µ 31/

Systematische Fehler für die Sekunäranalyse mit E(γ sig ) > MeV Datensatz Myonkanal Elektronkanal Mesonveto Netzwerk -.91-1.8 1.18 1.7 Fitformen 1.69 1.9 B X u l ν Normierung ±.31 ±.1 B l νγ Modell.8. Tagseiteneffizienz ±.5 ±.51 Kontinuumsunterdrückung.19 -.8 Trackingeffizienz -. -. Lepton ID ±.6 ±.7 N B B ±.17 ±.17 Summe Summe 1.9.7 Simultanfit 3.5 3.58 1.9.39 Andreas Heller Analysis of the decay B l νγ, l = e, µ 3/

Faltung eines signifkanten Likelihoods.35.3 Likelihood Arbitrary Scale.5..15.1 Convoluted Likelihood.5. 5 1 15 5 3 35 Signal Yield Electron channel Likelihood für den Elektronkanal Andreas Heller Analysis of the decay B l νγ, l = e, µ 33/

Faltung eines signifkanten Likelihoods.5 Likelihood. Convoluted Likelihood Arbitrary Scale.3..1. 5 1 15 Signal Yield Electron channel Likelihood für den Elektronkanal Andreas Heller Analysis of the decay B l νγ, l = e, µ 3/

Erwartete Signifikanz Primäranalyse mit E(γ sig ) > 1 GeV Datensatz Erwartete Messung Signifikanz in σ Erwartetes Limit 1 6 (9% CL) Elektron 8. ±.5 1.1 1.. (.1) 7. (7.6) Myon 8.7 ±.6 1.1 1.6.5 (.) 6.5 (6.93) Simultanfit 16.5 ± 6.5 1.8.3 3.6 (.9).35 (.76) Sekundäranalyse mit E(γ sig ) > MeV Datensatz Erwartete Messung Signifikanz in σ Erwartetes Limit 1 6 (9% CL) Elektron 1. ± 6. 1.9.. (.1) 6.5 (6.78) Myon 11.9 ± 6. 1.9.3.5 (.) 5.98 (6.3) Simultanfit.9 ± 8.7 3.1 3.6 3. (.9).8 (.3) Erwartete Messung und Signifikanz für Signal mit BR = 5 1 6 und erwartetes oberes Limit ohne Signal. Werte in Klammern beinhalten systematische Fehler. Signifikanzen werden durch eine Likelihoodverhältnis bestimmt Obergrenzen werden durch Integration eines Likelihoods bestimmt, wobei nur der positive Teil berücksichtigt wird Andreas Heller Analysis of the decay B l νγ, l = e, µ 35/