Integrated Circuit Operational Amplifiers

Similar documents
Advanced Current Mirrors and Opamps

Lecture 37: Frequency response. Context

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

University of Toronto. Final Exam

ECEN 326 Electronic Circuits

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Design of Analog Integrated Circuits

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

CMOS Analog Circuits

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Electronic Circuits Summary

Lecture 4, Noise. Noise and distortion

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 546 Lecture 11 MOS Amplifiers

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Stability and Frequency Compensation

Sample-and-Holds David Johns and Ken Martin University of Toronto

Chapter 10 Feedback. PART C: Stability and Compensation

CE/CS Amplifier Response at High Frequencies

Pipelined multi step A/D converters

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Exact Analysis of a Common-Source MOSFET Amplifier

ECEN 610 Mixed-Signal Interfaces

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

ECEN 326 Electronic Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Homework Assignment 08

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

CHAPTER 6 CMOS OPERATIONAL AMPLIFIERS

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Homework 6 Solutions and Rubric

Lecture 17 Date:

Chapter 13 Small-Signal Modeling and Linear Amplification

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

MOS Transistor Theory

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Microelectronics Main CMOS design rules & basic circuits

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

ESE319 Introduction to Microelectronics. Feedback Basics

Chapter 2 Switched-Capacitor Circuits

ELEN 610 Data Converters

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

THE INVERTER. Inverter

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Electronics II. Final Examination

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

6.012 Electronic Devices and Circuits Spring 2005

The Miller Approximation

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

EE141Microelettronica. CMOS Logic

Chapter 4 Field-Effect Transistors

Nyquist-Rate D/A Converters. D/A Converter Basics.

Amplifiers, Source followers & Cascodes

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

EE 435. Lecture 23. Common Mode Feedback Data Converters

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Introduction to CMOS RF Integrated Circuits Design

Chapter 9 Frequency Response. PART C: High Frequency Response

Power Management Circuits and Systems. Basic Concepts: Amplifiers and Feedback. Jose Silva-Martinez

(Refer Slide Time: 1:49)

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 3: CMOS Transistor Theory

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Digital Integrated Circuits

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Lecture 04: Single Transistor Ampliers

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 06: Current Mirrors

Frequency Dependent Aspects of Op-amps

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

55:041 Electronic Circuits The University of Iowa Fall Final Exam

Biasing the CE Amplifier

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE315 / ECE515 Lecture 11 Date:

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Homework Assignment 09

ECE 546 Lecture 10 MOS Transistors

Stability of Operational amplifiers

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

I. Frequency Response of Voltage Amplifiers

Properties of CMOS Gates Snapshot

Multistage Amplifier Frequency Response

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

Electronics II. Midterm II

Transcription:

Analog Integrated Circuit Design A video course under the NPTEL Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India National Programme on Technology Enhanced Learning

Differential pair opamp V dd I ref M 3 M 4 out inp M 1 M 2 inn M 0 I 0

Cascode output resistance R out = g mc /g dsc G s + 1/G s + 1/g dsc R out = g mc /g dsc g ds1 + 1/g dsc + 1/g ds1 (negligible) R out = g mc /g dsc g m1 + 1/g dsc + 1/g m1 (negligible) R out = 1/g dsc (1+g mc /g m1 ) Vdd V biasc M c V biasc M c V biasc M c M 1 V bias1 G s V bias1 G s =g ds1 G s =g m1 M 1 differential pair: M c degenerated by M 1 s source impedance (g m1 ) Output resistance looking into one side of the differential pair is 2/g ds1 (g m 1 =g mc in the figure)

Opamp: dc small signal analysis Bias values in black Incremental values in red Impedances in blue Total quantity = Bias + increment

Differential pair: Quiescent condition V dd -V SG3 (by symmetry) M 3 M 4 V dd V dd M 3 M 4 I 0 /2 zero current I 0 /2 I 0 /2 I 0 /2 I 0 /2 + M 1 M 2 M 1 M 2 V dd -V SG3 V bias0 V bias0

Differential pair: Transconductance M 3 M 4 V dd g m v d /2 I 0 /2 I 0 /2 I 0 /2 g m v d /2 g m v d g m v d /2 + M 1 M 2 +v d /2 -v d /2 V dd -V SG3 v x ~ 0 V bias0

Differential pair: Output conductance M 3 M 4 V dd I 0 /2 v T g ds1 /2 + v T g ds3 v T g ds1 /2 I 0 /2 I 0 /2 v T g ds1 /2 + v T (g ds1 + g ds3 ) M 1 M 2 +v T V dd -V SG3 v T g ds1 /2 V bias0

Differential pair: Noise i n0 /2+i n1 /2-i n2 /2+i n3 i n0 /2+i n1 /2-i n2 /2+i n3 i n3 i n4 i n1 -i n2 +i n3 -i n4 i n0 /2+i n1 /2-i n2 /2 i n1 i n2 i n0 /2-i n1 /2+i n2 /2 + V dd -V GS3 i n0 /2+i n1 /2-i n2 /2 i i n0 /2-i n1 /2+i n2 /2 n0 i n0 Carry out small signal linear analysis with one noise source at a time Add up the results at the output (current in this case) Add up corresponding spectral densities Divide by gain squared to get input referred noise

Differential pair opamp G m G out g m1 g ds1 +g ds3 A o g m1 /(g ds1 +g ds3 ) A cm g ds0 /2g m3 C i C gs1 /2 ω u g m1 /C L p k,z k p 2 = g m3 /(C db1 +C db3 + 2C gs3 );z 1 = 2p 2 S vi 16kT/3g m1 (1 +g m3 /g m1 ) σvos 2 σvt1 2 + (g m3/g m1 ) 2 σvt3 2 V T 1 +V DSAT 1 +V DSAT 0 V dd V DSAT 3 V T 3 +V T 1 V out V T 1 V dd V DSAT 3 SR I supply ±I 0 /C L I 0 +I ref

Telescopic cascode: Quiescent condition M 3 M 4 V dd I 0 /2 V biasp2 M 7 M 8 zero current + V biasn2 M 5 M 6 V dd -V SG3 I 0 /2 I 0 /2 M 1 M 2 V bias0

Telescopic cascode: Transconductance M 3 M 4 V dd g m v d /2 V biasp2 M 7 M 8 g m v d /2 I 0 /2 g m v d g m v d /2 M 5 M 6 V biasn2 I 0 /2 I 0 /2 g m v d /2 g m v d /2 + V dd -V SG3 +v d /2 M 1 M 2 -v d /2 v x ~ 0 V bias0

Telescopic cascode: Output conductance M 3 M 4 V dd v T g ds5 g ds1 /2g m5 I 0 /2 V biasp2 M 7 M 8 v T g ds5 g ds1 /2g m5 + v T g ds7 g ds3 /g m7 V biasn2 M 5 M 6 v T g ds5 g ds1 /2g m5 I 0 /2 I 0 /2 v T g ds5 g ds1 /2g m5 + g ds5 g ds1 /2g m5 g ds1 /2 v T (g ds5 g ds1 /g m5 + g ds7 g ds3 /g m7 ) V dd -V SG3 +v T M 1 M 2 v T g ds5 g ds1 /2g m5 V bias0

Telescopic cascode opamp M 3 M 4 V dd V biasp2 M 7 M 8 out V biasn2 M 5 M 6 inp M 1 M 2 inn V bias0

Telescopic cascode opamp G m G out g m1 g ds1 g ds5 /g m5 +g ds3 g ds7 /g m7 A o g m1 /(g ds1 g ds5 /g m5 +g ds3 g ds7 /g m7 ) A cm g ds0 /2g m3 C i C gs1 /2 ω u g m1 /C L p k,z k p 2 = g m3 /(C db1 +C db3 + 2C gs3 ) p 3 = g m5 /C p5 p 4 = g m7 /C p7 p 2,4 appear for one half and cause mirrror zeros S vi 16kT/3g m1 (1 +g m3 /g m1 ) σ 2 Vos σ 2 VT1 + (g m3/g m1 ) 2 σ 2 VT3 V out V biasn1 V T 5 V biasp1 +V T 7 SR ±I 0 /C L I 0 +I ref I supply

Folded cascode: Quiescent condition M 9 M 10 V dd I 0 /2+I 1 I 0 /2+I 1 V biasp1 M 5 M 6 I 1 I 1 V biasp2 I 0 /2 I 0 /2 zero current M 1 M 2 M 7 M 8 + V biasn2 V GS3 V bias0 I 1 I 1 M 3 M 4

Folded cascode: Transconductance M 9 M 10 V dd I 0 /2+I 1 I 0 /2+I 1 V biasp1 g m v d /2 M 5 M 6 g m v d /2 V biasp2 g m v d /2 +v d /2 I 0 /2 I 0 /2 M 1 M 2 g m v d /2 -v d /2 I 1 I 1 g m v d M 7 M 8 g m v d /2 V biasn2 + V GS3 v x ~ 0 V bias0 g m v d /2 g I 1 I m v d /2 1 M 3 M 4

Folded cascode: Output conductance M 9 M 10 V dd I 0 /2+I 1 I 0 /2+I 1 V biasp1 v T g ds5 g ds1 /2g m5 v T g ds5 g ds1 /2g m5 I 0 /2 I 0 /2 M 1 M 2 g ds1 /2 M 5 M 6 V biasp2 I 1 I 1 v T g ds5 (g ds1 /2+gds 9 )/g m5 zero current M 7 M 8 V biasn2 V GS3 + v T (g ds5 (g ds1 +g ds9 )/g m5 + g ds7 g ds3 /g m7 ) +v T V bias0 v T g ds5 g ds1 /2g m5 I 1 I 1 v T g ds5 g ds1 /2g m5 + v T g ds7 g ds3 /g m7 M 3 M 4

Folded cascode opamp M 9 M 10 V dd V biasp1 M 5 M 6 V biasp2 out inp M 1 M 2 inn M 7 M 8 V biasn2 V bias0 M 3 M 4

Folded cascode opamp G m G out g m1 (g ds1 +g ds9 )g ds5 /g m5 +g ds3 g ds7 /g m7 A o g m1 /((g ds1 +g ds9 )g ds5 /g m5 +g ds3 g ds7 /g m7 ) A cm g ds0 /2g m3 C i C gs1 /2 ω u g m1 /C L p k,z k p 2 = g m3 /(C db1 +C db3 + 2C gs3 ) p 3 = g m5 /C p5 p 4 = g m7 /C p7 p 2,4 appear for one half and cause mirrror zeros S vi 16kT/3g m1 (1 +g m3 /g m1 +g m9 /g m1 ) σ 2 Vos σvt1 2 + (g m3/g m1 ) 2 σvt3 2 + (g m9/g m1 ) 2 σvt9 2 V out V biasn1 V T 5 V biasp1 +V T 7 SR ± min{i 0,I 1 }/C L I 0 +I 1 +I ref I supply

Body effect All nmos bulk terminals to ground All pmos bulk terminals tov dd A cm has an additional factorg m1 /(g m1 +g mb1 ) g m5 +g mb5 instead ofg m5 in cascode opamp results g m7 +g mb7 instead ofg m7 in cascode opamp results

Two stage opamp bias stage 1 stage 2 V dd M 3 M 4 I ref M 11 R c R L inn M 1 M 2 inp V outbias C c C L M 0 I 0 M 12

Two stage opamp inp inn + g m1 single stage opamp Vdd M 11 out R c C c I 1 First stage can be Differential pair, Telescopic cascode, or Folded cascode; Idealg m1 assumed in the analysis Second stage: Common source amplifier Frequency response is the product of frequency responses of the first stageg m and a common source amplifier driven from a current source

Common source amplifier: Frequency response V o (s) V d (s) = ( gm 1 g m11 G 1 G L a 3 = R cc 1 C L C c G 1 G L ) scc (R c 1/g m 11 ) + 1 a 3 s 3 +a 2 s 2 +a 1 s + 1 a 2 = C 1C c +C c C L +C L C 1 +R c C c (G 1 C L +C 1 G L ) G 1 G L a 1 = C c(g m 11 +G 1 +G L +G 1 G L R c ) +C 1 G L +G 1 C L G 1 G L G 1 : Total conductive load at the input G L : Total conductive load at the output C 1 : Total capacitive load at the input C L : Total capacitive load at the output

Common source amplifier: Poles and zeros p 1 G 1 C c ( g m 11 G L + 1 + G 1 G L +G 1 R c ) +C 1 (1 + G 1 G L ) C c p 2 g C m11c 1 +C c +G L +G c+c L C 1 C 1 +C C +G1G L R c c C 1 C c C 1 +C c +C L + RcCc(G 1C L +G L C 1 ) C ( ( c+c L 1 1 p 3 + 1 + 1 ) + G 1 + G ) L R c C L C c C 1 C 1 C L 1 z 1 = (1/g m 11 R c)c c Unity gain frequency C 1 +C c ω u g m 1 ) ( ) C c (1 + G L g m11 + G 1 g m11 + G 1G L R c g m11 +C GL 1 g m11 + G 1 g m11

Common source amplifier: Frequency response Pole splitting using compensation capacitorc c p 1 moves to a lower frequency p 2 moves to a higher frequency (For largec c, p 2 =g m 11 /C L) Zero cancelling resistorr c movesz 1 towards the left halfs plane and results in a third polep 3 z 1 can be moved to withr c = 1/g m 11 z 1 can be moved to cancelp 2 withr c > 1/g m 11 (needs to be verified against process variations) Third polep 3 at a high frequency Poles and zeros from the first stage will appear in the frequency response Y m1 (s) instead ofg m 1 inv o/v i above Mirror pole and zero Poles due to cascode amplifiers

Compensation cap sizing p 2 g m11 C c C 1 +C c C 1 C c C 1 +C C +C L ω u g m1 C c Phase margin (Ignoringp 3,z 1,...) g m11 g m1 ( Cc φ M = tan 1 p 2 ω u p 2 = tan φ M ω u C L ) 2 = C c C L ( 1 + C 1 C L ) tan φ M + C 1 C L tan φ M For a given φ M, solve the quadratic to obtainc c /C L IfC 1 is very small,p 2 g m2 /C L ; further simplifies calculations

Two stage opamp A o g m1 g m11 /(g ds1 +g ds3 )(g ds11 +g ds12 ) A cm g ds0 g m11 /2g m3 (g ds11 +g ds12 ) C i C gs1 /2 ω u g m1 /C c p k,z k See previous pages S vi 16kT/3g m1 (1 +g m3 /g m1 ) σvos 2 σvt1 2 + (g m3/g m1 ) 2 σvt3 2 V T 1 +V DSAT 1 +V DSAT 0 V dd V DSAT 3 V T 3 +V T 1 V out V DSAT 12 V dd V DSAT 11 SR+ I 0 /C c SR- min{i 0 /C c,i 1 /(C L +C c )} I supply I 0 +I 1 +I ref

Opamp comparison Differential Telescopic Folded Two pair cascode cascode stage Gain ++ + ++ Noise = = high = Offset = = high = Swing + ++ Speed ++ + +

Differential pair V dd I ref M 3 M 4 out inp M 1 M 2 inn M 0 I 0 Low accuracy (low gain) applications Voltage follower (capacitive load) Voltage follower with source follower (resistive load) In bias stabilization loops (effectively two stages in feedback)

Telescopic cascode M 3 M 4 V dd V biasp2 M 7 M 8 out V biasn2 M 5 M 6 inp M 1 M 2 inn V bias0 Low swing circuits Switched capacitor circuits Capacitive load Different input and output common mode voltages First stage of a two stage opamp Only way to get high gain in fine line processes

Folded cascode M 9 M 10 V dd V biasp1 M 5 M 6 V biasp2 out inp M 1 M 2 inn M 7 M 8 V biasn2 V bias0 M 3 M 4 Higher swing circuits Higher noise and offset Lower speed than telescopic cascode Low frequency pole at the drain of the input pair Switched capacitor circuits (Capacitive load) First stage of a two stage class AB opamp

Two stage opamp bias stage 1 stage 2 V dd M 3 M 4 I ref M 11 R c R L inn M 1 M 2 inp V outbias C c C L M 0 I 0 M 12 Highest possible swing Resistive loads Capacitive loads at high speed Standard opamp: Miller compensated two stage opamp Class AB opamp: Always two (or more) stages

Opamps: pmos versus nmos input stage nmos input stage Higherg m for the same current Suitable for large bandwidths Higher flicker noise (usually) pmos input stage Lowerg m for the same current Lower flicker noise (usually) Suitable for low noise low frequency applications

Fully differential circuits bias M 3 M 4 v om v op v ip v op v ip v im M 1 M 2 v im v om bias M 0 half circuits Two identical half circuits with some common nodes Two arms of the differential input applied to each half Two arms of the differential output taken from each half

Differential half circuit Line of symmetry M 3 M 4 M 3 -v o /2 v o /2 -v o /2 +v d /2 M 1 M 2 -v d /2 v d /2 M 1 M 0 zero increment due to symmetry and linearity Differential half circuit Symmetrical linear (or small signal linear) circuit under fully differential (antisymmmetric) excitation Nodes along the line of symmetry at 0 V (symmetry, linearity) Analyze only the half circuit to find the transfer function

Common mode half circuit pbias M 3 M 4 M 3,4 pbias v ocm v ocm v ocm M 1 M2 M 1,2 nbias M 0 nbias M 0 Symmetrical circuit (maybe nonlinear) under common mode (symmmetric) excitation Nodes in each half at identical voltages (symmetry) Fold over the circuit and analyze the half circuit

Common mode feedback pbias M 3 M 4 v om v op v op v ip M 1 M 2 v im common mode detector v op +v om 2 + v om V o,cm nbias M 0 Fully differential opamp Common mode feedback circuit Common mode feedback circuit for setting the bias Detect the output common mode and force it to bev o,cm via feedback

Common mode feedback loop pbias break the loop for analyzing cmfb loop gain M 3 M 4 C gs3,4 v om common mode detector v op v op +v om 2 + v ip v im M 1 M 2 V o,cm nbias M 0 Common mode feedback loop has to be stable Analyze it by breaking the loop and computing the loop gain with appropriate loading at the broken point Apply a common mode step/pulse in closed loop and ensure stability

Fully differential circuits: Noise i n3 M 3 CMFB - + vn,full M 4 i n4 i n3 M 3 v n,half M 1 M 2 M 1 i n1 i n2 i n1 half circuit(small signal) M 0 S n,full = 2S n,half Calculate noise spectral density of the half circuit Multiply by 2

Fully differential circuits: Offset V dd M 3 + + M 4 M 3 + V T3 V T4 V T3 V T1 v off,full V T1 + + - + V T2 v off,half M 1 M 2 + M 1 M 0 half circuit(small signal) v 2 off,full = 2v 2 off,half Calculate mean squared offset of the half circuit Multiply by 2 if mismatch (e.g. V T ) wrt ideal device is used

Fully differential circuits: Offset V dd M 3 + M 4 M 3 + V T34 V T34 V T12 v off,full V T12 + + - + v off,half M 1 M 2 M 1 M 0 half circuit(small signal) v 2 off,full = v 2 off,half Calculate mean squared offset of the half circuit Multiply by 1 if mismatch between two real devices is used