Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

Similar documents
Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (1996), 966:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

Citation 数理解析研究所講究録 (2004), 1396:

Citation 数理解析研究所講究録 (2013), 1841:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Citation 数理解析研究所講究録 (1994), 886:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Citation 数理解析研究所講究録 (2016), 1995:

Citation 数理解析研究所講究録 (2001), 1191:

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Title free boundary problems (Free Bounda. Citation 数理解析研究所講究録 (2001), 1210:

Citation 数理解析研究所講究録 (2004), 1368:

Citation 数理解析研究所講究録 (2006), 1466:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2012), 1805:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2012), 1794:

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (2010), 1716:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

Citation 数理解析研究所講究録 (2005), 1440:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

Citation 数理解析研究所講究録 (1996), 941:

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (2000), 1123:

Citation 数理解析研究所講究録 (2007), 1570:

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

ON THE INTEGRATION OF EQUATIONS OF MOTION: FEM AND MOLECULAR DYNAMICS PROBLEMS

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

A norm-preserving self-adaptive moving mesh integrator

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425:

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Citation 数理解析研究所講究録 (2003), 1347:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:


Title Numerics(The 7th Workshop on Stocha. Citation 数理解析研究所講究録 (2006), 1462:

Wave and Dispersive Equations) Citation 数理解析研究所講究録 (2004), 1355:

Citation 数理解析研究所講究録 (2002), 1244:

SEVERAL REVERSE INEQUALITIES OF OPE. Citation 数理解析研究所講究録 (2005), 1452:

FIXED-WIDTH CONFIDENCE INTERVAL EST Title OF A FUNCTION OF TWO EXPONENTIAL SC. Author(s) Lim, Daisy Lou; Isogai, Eiichi; Uno

On Solving Semidefinite Programming Elimination. Citation 数理解析研究所講究録 (1998), 1038:

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

Citation 数理解析研究所講究録 (2008), 1588:

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

Citation 数理解析研究所講究録 (1997), 1014:

Citation 数理解析研究所講究録 (1999), 1099:

works must be obtained from the IEE

Citation 数理解析研究所講究録 (1994), 860:

Citation 数理解析研究所講究録 (2003), 1334:

Science and Their Applications) Citation 数理解析研究所講究録 (2008), 1614:

Citation 数理解析研究所講究録 (2017), 2014:

Title (Properties of Ideals on $P_\kappa\ Citation 数理解析研究所講究録 (1999), 1095:

Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2006), 1465:

Citation 数理解析研究所講究録 (2015), 1963:

Author(s) SAITO, Yoshihiro; MITSUI, Taketomo. Citation 数理解析研究所講究録 (1991), 746:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

Citation 数理解析研究所講究録 (2010), 1679:

Two dimensional exterior mixed problem for semilinear damped wave equations

An analogue of Rionero s functional for reaction-diffusion equations and an application thereof

Citation 数理解析研究所講究録 (2004), 1366:

Differential Equations and its Deve. Citation 数理解析研究所講究録 (2005), 1428:

Citation 数理解析研究所講究録 (2013), 1871:

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems)

TitleOccam Algorithms for Learning from. Citation 数理解析研究所講究録 (1990), 731:

Citation 数理解析研究所講究録 (2012), 1807:

Citation 数理解析研究所講究録 (2006), 1476:

Sogabe, Tomohiro; Hoshi, Takeo; Zha Fujiwara, Takeo. Citation 数理解析研究所講究録 (2010), 1719:

Citation 数理解析研究所講究録 (2010), 1716:

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

BIHARMONIC WAVE MAPS INTO SPHERES

CONSTRUCTING OF CONSTRAINT PRESERVING SCHEME FOR EINSTEIN EQUATIONS

SPECTRAL PROPERTIES OF DIRAC SYSTEM. and asymptotic analysis) Citation 数理解析研究所講究録 (2003), 1315:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

The Heat Equation John K. Hunter February 15, The heat equation on a circle

Citation 数理解析研究所講究録 (2014), 1898:

Nonexistence of Global Solutions to Generalized Boussinesq Equation with Arbitrary Energy

arxiv: v1 [math.ap] 31 May 2013

Transcription:

Remarks on the structure-preserving Title for the Falk model of shape memory the theory of evolution equations a analysis for nonlinear phenomena) Author(s) 吉川, 周二 Citation 数理解析研究所講究録 (2016), 1997: 156-164 Issue Date 2016-07 URL http://hdl.handle.net/2433/224732 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

are 1997 2016 156-164 156 Remarks on the structure-preserving finite difference scheme for the Falk model of shape memory alloys Shuji Yoshikawa Department of Engineering for Production and Environment, Graduate School of Science and Engineering, Ehime University Abstract In [6] and [8] the author studied the structure-preserving finite difference scheme for the Falk model which is a thermoelastic system describing the phase transition occurring in shape memory alloys, by using well-known transformation to first order system with respect to time variable. We give several scheme without the transformation for these results in order to apply the theory to multi-dimensional problems. Here we only give the basic idea and remarks. Precise proof and extended results will be given in [5]. 1 Introduction We study the following thermoelastic system: $\partial_{t}^{2}u+\partial_{x}^{4}u=\partial_{x}\{f_{2} (\partial_{x}u)+\theta F_{1} (\partial_{x}u)\}$, (1.1) $\partial_{t}\theta-\partial_{x}^{2}\theta=\theta F_{1} (\partial_{x}u)\partial_{x}\partial_{t}u,$ $x\in(o, L)$, $t\in(o, T])$ (1.2) $0)=u(t, L)=$ $0\rangle=\partial_{x}^{2}u(t, L)=\partial_{x}\theta(t,0)$ $=\partial_{x}\theta(t, L)=0, t\in[o, T]$, (1.3) $u(o, x)=u_{0}(x)$, $\partial_{t}u(0, x)=u_{1}(x)$, $\theta(0, x)=\theta_{0}(x)$, $x\in(o, L)$, (1.4) where and $u$ $\theta$ the displacement and absolute temperature respectively, and the $\theta_{c}$ positive constant represents a critical temperature of the phase transition. This model called the Falk model represents the phase transition on lattice structure of $\theta_{c}$ alloy. We normalize all physical parameters without by unity. For the physical background of the model we refer the reader to [1, Chapter 5]. If we set the energy

and partial 157 $E$ and the entropy $S$ as follows: $E(u, \theta):=\frac{1}{2}\int_{0}^{l} \partial_{x}^{2}u ^{2}dx+\frac{1}{2}\int_{0}^{L} \partial_{t}u ^{2}dx+\int_{0}^{L}F_{2}(\partial_{x}u)dx+\int_{0}^{L}\theta dx,$ $S(u, \theta):=\int_{0}^{l}(\log\theta-f_{1}(\partial_{x}u))dx_{j}$ we can easily check that the smooth solution of the system $(1.1)-(1.3)$ satisfies the energy conservation law and the law of increasing entropy: $\frac{d}{dt}e(u(t), v(t), \theta(t))=0, \frac{d}{dt}s(u(t), \theta(t))=\int_{0}^{l} \frac{\partial_{x}\theta}{\theta} ^{2}\geq 0$. (1.5) where the latter one holds under the assumption $\theta>0.$ Recently in [6] the author proposes a new finite difference scheme which satisfies the discrete version of (1.5) and gives existence result of solution, and in [8] the error estimate and another existence result of solution are shown by applying the energy method given in [7], In these results ([6], [8]) the author use the well-known transformation (see e.g. [4]), namely he study the following 1st order system: $\partial_{t}w=\partial_{x}^{2}v,$ $\partial_{t}v=-\partial_{x}^{2}w+f_{2} (w)+\theta F_{1} (w)$, $\partial_{t}\theta=\partial_{x}^{2}\theta+\theta F_{1} (w)\partial_{x}v,$ for a shear strain $w$ $\partial_{x}u$ $v$ and velocity potential. However, when we consider the multi-dimensional case, it seems to be difficult to extend directly. Indeed, shear strain in 1-dimensional case is no longer scalar but tensor valued in multidimensional cases. Then we propose here the simple new schemes by applying the $w$ result in [2] to the scheme for the original second order system $(1.1)-(1.2)$. One of these schemes is enable to prove the existence of solution and error estimate in a similar manner to the previous result [8] though we need several modifications. Here we only give an idea of the proofs of existence and error estimate. We will introduce two new structure-preserving numerical $sc?\iota$emes for $(1.1)-(1.2)$ in Section 2. The idea of outline of of error estimate and existence of solution $P^{loofs}$ will be given in Sections 3. The precise explanation and their extended results including the results will be submitted to another journal as [5]. 2 Structure-Preserving Schemes $t$ $\partial_{t}$ $\partial_{x}$ We denote by differential operators with respect to variables and, respectively. We split space interval ] into K-th parts and time interval $[0, T]$ into N-th parts, and hence the following relations hold $L=K\Delta x$ and $x$ $ 0,$ $L$ $T=N\Delta t$. For $k=0$, 1,..., $K$ and $n=0$, 1,..., $N$ we write $u_{k}^{(n\rangle}=u(k\triangle x, n\triangle t)$,

$\delta_{n}^{\langle 1\rangle}$ $\delta_{n}^{\langle 2\rangle}$ 158 $v_{k}^{(n)}=v(k\delta x, n\delta t)$ and, for short. Let be $\theta_{k}^{(n)}=\theta(k\delta x, n\delta t)$ $(u_{k}^{(n)}, approximate solution corresponding to the solution difference operators by an Let us define $(U_{k}^{(n)}, V_{k}^{(n)}, \Theta_{k}^{(n)})$ v_{k}^{(n)}, \theta_{k}^{(n)})$. $\delta_{k}^{\langle 2\rangle}U_{k}^{(n)} \frac{u_{k+1}^{(n)}-2u_{k}^{(n)}+u_{k-1}^{(n)}}{\triangle x^{2}}, \delta_{k}^{\langle 1)}U_{k}^{(n)}:=\frac{U_{k+1}^{(n)}-U_{k-1}^{(n)}}{2\Delta x},$ $\delta_{k}^{+}u_{k}:=\frac{u_{k+1}-u_{k}}{\delta x}, \delta_{\overline{k}}u_{k}:=\frac{u_{k}-u_{k-1}}{\delta x},$ $\delta_{n}^{+},$ and $\Delta and x$ to $\delta_{n}^{-},$ and are defined the same manner by replacing space-variable $k$ time-variable and $n$ $\Delta t$. We will also use the following difference operator $\delta_{n}^{\langle 2+\rangle}U_{k}^{(n)}:=\frac{U_{k}^{\langle n+2)}-u_{k}^{(n+1)}-u_{k}^{(n)}+u_{k}^{(n-1)}}{2\delta t^{2}}$ We approximate an integral by the trapezoidal rule $\sum_{k=0}"u_{k}\delta x:=k(\frac{1}{2}u_{0}+\sum_{k=1}^{k-1}u_{k}+\frac{1}{2}u_{k})\triangle x.$ For these approximations the summation by parts formula: $\sum_{k=0}"^{k}(\delta_{k}^{\langle 2\rangle}U_{k})V_{k}\Delta x=-\sum_{k=0}"\frac{(\delta_{k}^{+}u_{k})(\delta_{k}^{+}v_{k})+(\delta_{k}^{-}u_{k})(\delta_{k}^{-}v_{k})}{2}\delta xk$ (2.1) $= \sum_{k=0}"u_{k}(\delta_{k}^{\langle 2\rangle}V_{k})\Delta xk$ plays an important role in DVDM, which holds under suitable boundary condition such as $U_{0}=\delta_{k}^{\langle 2\rangle}U_{0}=V_{K}=\delta_{k}^{\langle 2\rangle}V_{K}=0$. (2.2) Indeed, according to Proposition 3.3 in [3], we have $\sum_{k=0}"^{k}(\delta_{k}^{\langle 2\rangle}U_{k})V_{k}\Delta x+\sum_{k=0}"\frac{(\delta_{k}^{+}u_{k})(\delta_{k}^{+}v_{k})+(\delta_{k}^{-}u_{k})(\delta_{k}^{-}v_{k})}{2}\delta xk^{\cdot}$ $=[ \frac{\delta_{k}^{+}u_{k}\cdot\frac{v_{k+1}+v_{k}}{2}+\delta_{k}^{-}u_{k}\cdot\frac{v_{k-1}+v_{k}}{2}}{2}]_{0}^{k}$ From (2.2) we see several facts such as $U_{-1}=-U_{1}, U_{K-1}=U_{K+1}, V_{-1}=-V_{1}, V_{K-1}=V_{K+1}.$

159 Then the boundary term vanishes, namely, we complete the proof of (2.1). Simiiarly, it follows that under (2.2) $\sum_{k=0}"\frac{(\delta_{k}^{+}u_{k})(\delta_{k}^{+}v_{k})+(\delta_{k}^{-}u_{k})(\delta_{k}^{-}v_{k})}{2}\delta xk=\sum_{k=0}^{k-1}\delta_{k}^{+}u_{k}\delta_{k}^{+}v_{k}\triangle x.$ For a smooth function $F=F(U)$, the difference quotient $\partial F/\partial(U, V)$ of $F$ is defined by $\frac{\partial F}{\partial(U,V)}:=\{\begin{array}{ll}\frac{F(U)-F(V)}{U-V}, U\neq V,F (U), U=V.\end{array}$ For example in the case $F(U)= \frac{1}{p+1}u^{p+1}$ the difference quotient of $F$ is $\frac{\partial F}{\partial(U,V)}=\frac{1}{p+1}\sum_{j=0}^{p}U^{j}V^{p-j}$ from the easy calculation. For more precise information about the difference quotient we refer to. From now on, we give two schemes which are derived by applying $[7J$ the idea given in [2] easily. 2.1 Semi-Explicit Scheme The first scheme is so-called semi-explicit scheme: $\delta_{n}^{\langle 2+\rangle}U_{k}^{(n)}+(\delta_{k}^{\langle 2)})^{2}(\frac{U_{k}^{(n+1)}+U_{k}^{(n)}}{2})=N_{1,k}$, (2.3) $\delta_{n}^{+}\theta_{k}^{(n)}-\delta_{k}^{\langle 2\rangle}\Theta_{k}^{(n+1)}=N_{2,k},$ $k=0$, 1,..., $K$, (2.4) with the boundary conditions corresponding to (i.3): $U_{0}^{(n)}=U_{K}^{(n\rangle}=\delta_{k}^{\langle 2\rangle}U_{0}^{(n)}=\delta_{k}^{\langle 2\rangle}U_{K}^{(n)}=\delta_{k}^{\langle 1\rangle}\Theta_{0}^{(n)}=\delta_{k}^{\langle 1\rangle}\Theta_{K}^{(n)}=0$. (2.5) Here we define $N_{i,k}=N_{i,k}(U^{(n+1)}, U^{(n)}, \Theta^{(n+1)})(i=1,2)$ by $N_{1,k}:= \frac{\delta_{k}^{+}}{2}(\frac{\partial F_{2}}{\partial(\delta_{k}^{-}U_{k}^{(n+1\rangle},\delta_{k}^{-}U_{k}^{(n)})}+\Theta_{k}^{\langle n+1)}\frac{\partial F_{1}}{\partial(\delta_{k}^{-}U_{k}^{(n+1)},\delta_{k}^{-}U_{k}^{(r\iota)})})$ $+ \frac{\delta_{k}^{-}}{2}(\frac{\partial F_{2}}{\partial(\delta_{k}^{+}U_{k}^{(n+1)},\delta_{k}^{+}U_{k}^{(n)})}+\Theta_{k}^{(n+1)}\frac{\partial F_{1}}{\partial(\delta_{k}^{+}U_{k)}^{(n+1)}\delta_{k}^{+}U_{k}^{(n)})})$, $N_{2,k}:= \frac{\theta_{k}^{(n+1)}}{2}(\frac{\partial F_{1}}{\partial(\delta_{k}^{-}U_{k},\delta_{k}^{-}U_{k}^{(n)})}\delta_{n}^{+}\delta_{k}^{-}U_{k}^{\langle n)}+\frac{\partial P_{1}}{\partial(\delta_{k}^{+}U_{k}^{(n+1)},\delta_{k}^{+}U_{k}^{(n-X)})}\delta_{n}^{+}\delta_{k}^{+}U_{k}^{(n)})$,

160 Let the discrete energy $E_{d}=E_{d}(U^{(n+1)}, U^{(n)}, U^{(n-1)}, \Theta^{(n)})$ be defined by $E_{d}:= \frac{1}{2}\sum_{k=0}"\delta_{n}^{+}u_{k}^{(n)}\delta_{n}^{-}u_{k}^{(n)}\delta x+\sum_{k=0}"^{k}\overline{f}_{2,k}(du)\triangle x+\sum_{k=0}"^{k}\theta_{k}^{(n)}\delta xk,$ where for $i=1$, 2 we set $\overline{f}_{i,k}(du)=\frac{f;(\delta_{k}^{+}u_{k})+f_{i}(\delta_{k}^{-}u_{k})}{2}.$ Then the following conservation law $\delta_{n}^{+}e_{d}(u^{(n+1)}, U^{(n)}, U^{(n-1)}, \Theta^{(n)})=0$ holds. Let the discrete entropy $S_{d}(U, \Theta)$ be defined by $S_{d}(U, \Theta) :=\sum_{k=0}"^{k}\{\log\theta_{k}-\overline{f}_{1,k}(du)\}\delta x.$ Under the assumptions of positivity of temperature, the following increasing law: $\delta_{n}^{+}s_{d}(u^{(n)}, \Theta^{(n)})\geq 0$ holds. We can check these easily in the same fashion as the proofs in [6]. 2.2 Implicit Scheme The other is implicit scheme: $\delta_{n}^{\langle 2\rangle}U_{k}^{(n)}+(\delta_{k}^{\langle 2)})^{2}(\frac{U_{k}^{(n+1\rangle}+U_{k}^{(n-1)}}{2})=\tilde{N}_{1,k}$, (2.6) where $\delta_{n}^{+}\theta_{k}^{(n)}-\delta_{k}^{\langle 2\rangle}\Theta_{k}^{(n+1)}=\tilde{N}_{2,k},$ $k=0$, 1,..., $K$, (2.7) $\tilde{n}_{1,k}:=\frac{\delta_{k}^{+}}{2}(\frac{\partial F_{2}}{\partial(\delta_{k}^{-}U_{k}^{(n+1)},\delta_{k}^{-}U_{k}^{(n-1)}\rangle}+\Theta_{k}^{(n+1)}\frac{\partial F_{1}}{\partial(\delta_{k}^{-}U_{k}^{(n+1)},\delta_{k}^{-}U_{k}^{(n-1)})})$ $+ \frac{\delta_{k}^{-}}{2}(\frac{\partial F_{2}}{\partial(\delta_{k}^{+}U_{k}^{(n+1)},\delta_{k}^{+}U_{k}^{(n-1)})}+\Theta_{k}^{(n+1)}\frac{\partial F_{1}}{\partial(\delta_{k}^{+}U_{k}^{(n+1)},\delta_{k}^{+}U_{k}^{(n-1)})})$, $\tilde{n}_{2,k}:=\frac{\theta_{k}^{(n+1)}}{2}(\frac{\partial F_{1}}{\partial(\delta_{k}^{-}U_{k}^{(n+1)},\delta_{k}^{-}U_{k}^{(n-1)})}\delta_{n}^{\langle 1\rangle}\delta_{k}^{-}U_{k}^{(n)}+\frac{\partial F_{1}}{\partial(\delta_{k}^{+}U_{k}^{\langle n+1)},\delta_{k}^{+}u_{k}^{(n-1)})}\delta_{n}^{\langle 1\rangle}\delta_{k}^{+}U_{k}^{(n)})$, with the boundary conditions (2.5).

161 Let the discrete energy and the discrete entropy be defined by $E_{d}(U^{(n)}, U^{(n-1)}, \Theta^{(n)}):=\frac{1}{2}\sum_{k=0}" \delta_{r\iota}^{-}u^{(n)} ^{2}\Delta x+\frac{1}{2}\sum_{k=0}"^{k} \delta_{k}^{\langle 2\rangle}U^{(n)} ^{2}\triangle x+\sum_{k=0}"^{k}\theta_{k}^{(n)}\delta xk$ $+ \sum_{k=0}^{k}\prime\prime^{\simeq}f_{2,k}(du^{(n)}, DU^{(n-1)}\rangle\Delta x,$ $S_{d}(U^{(n)}, U^{(n-1)}, \Theta^{(n)}):=\sum_{k=0}"(\log\Theta_{k}^{(n)}-\simeq F_{1,k}(DU^{(n)}, DU^{(n-1)}))\Delta xx,$ where for $i=1$, 2 $\simeq F_{i,k}(DU, DV)=\frac{F_{i}(\delta_{k}^{+}U_{k})+F_{i}(\delta_{k}^{-}U_{k})+F_{i}(\delta_{k}^{+}V_{k})+F_{i}(\delta_{k}^{-}V_{k})}{4}.$ Then it is easily seen that for any $n\in N$ conservation law: $\delta_{n}^{+}e_{d}(u^{(n)}, U^{(n-1)}, \Theta^{(n)})=0,$ and under the assumptions of positivity of temperature, the increasing law: $\delta_{n}^{+}s_{d}(u^{(n)}, U^{(n-1)}, \Theta^{(n)})\geq 0$ hold. 3 Existence and Error Estimate The semi-explicit scheme is uncoupled scheme. Then when we solve (2.3), $U^{(n+2)}$ can be obtained explicitly. However for the scheme the bounded-from below of the first term in the energy (kinetic energy term) is not assured. Then the energy method given in [7] and [8] can not be applied directly. On the other hand, we can easily $\langle apply the method to the implicit scheme 2.6$)$-(2.7)$. Here we only give a remark $Bef_{01}\cdot e$ about the fact. stating the mathematical results we give some definition and notation. We have used the expression in bold print to denote vectors such as $\Theta$ $U$ $:=(U_{k}\rangle_{k=0}^{K}, V :=(V_{k})_{k=0}^{K}$ $:=(\Theta_{k})_{k=0}^{K}$ and. Let us give a definition of several norms by $\Vert U\Vert_{L_{d}^{p}}:=\{\begin{array}{ll}(\prime p\in[1, \infty),nax_{k=0,1,\ldots,k} U_{k} ) p=\infty,\end{array}$ Moreover we define the discrete Sobolev norm by $\Vert U\Vert_{H_{d}^{1}}:=\sqrt{\Vert U\Vert_{L_{d}^{2}}^{2}+\Vert DU\Vert^{2}}.$ We obtain the following results. The first theorem is related with the existence of the implicit scheme $(2.6)-(2.7)$.

162 Theorem 3.1 (Existence of solution). Suppose that for t$ there exists a unique global solution $\Theta_{k}^{(0)}\geq 0$ $\Delta For suficient small $1$, 2,..., $N)$ for the scheme (2.6) $-(2.7)$ with (2.5) satisfying for $0$, 1,..., $K.$ We can also show the error estimate. Let us denote $k=0$, 1,..., $K.$ $(U^{(n)}\}V^{(n)}, \Theta^{(n)})(n=$ $\Theta_{k}^{(n)}\geq 0$ $k=$ $e_{u,k}^{(n)}=u_{k}^{(n)}-u_{k}^{(n)}, e_{v,k}^{(n)}=v_{k}^{(n)}-v_{k}^{(n)}, e_{\theta,k}^{(n)}=\theta_{k}^{(n)}-\theta_{k}^{(n)}.$ Theorem 3.2 (Error estimate). Assume that $(u, v, \theta)$ is a smooth solution for $(1.1)-(1.4)$ satisfying $(u, v, \theta)\in L^{\infty}([O, T], H^{3}\cross H^{3}\cross H^{3})$ $(\partial_{t}u, \partial_{t}v, \partial_{t}\theta)\in$ and $L^{\infty}([O, T], H^{3}\cross H^{3}\cross H^{1})_{f}$ and denote the bounds by $\Vert U^{(n)}\Vert_{H_{d}^{1}}, \Vert V^{(n)}\Vert_{H_{d}^{1}}, \Vert u^{(n)}\vert_{h_{d}^{1}}, \Vert v^{(n)}\vert_{h_{d}^{1})}\vert\theta^{(n)}\vert_{h_{d}^{1}}\leq C_{1}.$ Then there exists a constant $C_{err}=C_{err}(C_{1})$ such that for $\Delta t<1/c_{err}$ $\Vert e_{u}^{(n)}\vert_{h_{d}^{1}}+\vert e_{v}^{(n)}\vert_{h_{d}^{1}}+\vert e_{\theta}^{(n)}\vert_{l_{d}^{2}}\leq C(\Delta t+\delta x^{2})$. We prove these theorems in similar manner to the proofs of [8] with small modification. The key estimate of the modification is the following type of Sobolev inequality which is well-known in the continuous case. More precisely we will give exact proofs in [5]. Proposition 3.3 (Sobolev inequality). Assume that It holds that $U_{k}=\delta_{k}^{\langle 2\rangle}U_{k}=0$ on $k=0,$ $K.$ $\Vert\delta_{k}^{\pm}U^{(n)}\Vert_{L_{d}^{\infty}}^{2}\leq(\frac{1}{2L}+\frac{2^{3/4}}{2})(\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}^{2}+\Vert U\Vert_{L_{d}^{2}}^{2})$. Proof We only show the case of sign $+$ since the other case of sign can be shown by the same fashion. From the boundary condition, $\delta_{k}^{+}u_{-i}=\delta_{k}^{+}u_{0}$ $P$ hold. We obtain for any $m$ and satisfying $0\leq\ell<m\leq K-1$ and $\delta_{k}^{+}u_{k}=\delta_{k}^{+}u_{k-1}$ $ \delta_{k}^{+}u_{m} ^{2}- \delta_{k}^{+}u_{\ell} ^{2}=2\sum_{k=\ell}^{m-1}\delta_{k}^{\langle 2\rangle}U_{k+1}\cdot\frac{\delta_{k}^{+}U_{k+1}+\delta_{k}^{+}U_{k}}{2}\Delta x.$ Then for any $0\leq l,$ $m\leq K-1$ $ \delta_{k}^{+}u_{m} ^{2}\leq \delta_{k}^{+}u_{\ell} ^{2}+\sum_{k=0}^{K-1} \delta_{k}^{\langle 2\rangle}U_{k} \cdot \delta_{k}^{+}u_{k} \Delta x+\sum_{k=0}^{k-1} \delta_{k}^{\langle 2\rangle}U_{k+1} \cdot \delta_{k}^{+}u_{k} \Delta x$ $\leq \delta_{k}^{+}u_{\ell} ^{2}+(\sum_{k=0}^{K-1} \delta_{k}^{\langle 2\rangle}U_{k} ^{2}\Delta x)^{1/2}(\sum_{k=0}^{k-1} \delta_{k}^{+}u_{k} ^{2}\Delta x)^{1/2}$ $+( \sum_{k=0}^{k-1} \delta_{k}^{\langle 2\rangle}U_{k+1} ^{2}\Delta x)^{1/2}(\sum_{k=0}^{k-1} \delta_{k}^{+}u_{k} ^{2}\Delta x)^{l/2}$ $\leq \delta_{k}^{+}u_{\ell} ^{2}+2\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}\Vert DU\Vert$

163 holds. For fixed $rn$, adding these through $P=0$, 1,..., $K-1$ yields $K \delta_{k}^{+}u_{m} ^{2}\leq\sum_{k=0}^{K-1} \delta_{k}^{+}u_{k} ^{2}+2K\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}\Vert DU\Vert.$ Then it holds that Since we have $\max_{m=0,1,\ldots,k-1} \delta_{k}^{+}u_{m} ^{2}\leq\frac{1}{L}\Vert DU\Vert^{2}+2\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}\Vert DU\Vert$. (3.1) $\sum_{k=0}^{j/}\delta_{k}^{\langle 2\rangle}U_{k}\cdot U_{k}\Delta xk=\sum_{k=0}"\frac{ \delta_{k}^{+}u_{k} ^{2}+ \delta_{k}^{-}u_{k} ^{2}}{2}\Delta xk=\vert DU\Vert^{2},$ we see that $\Vert DU\Vert^{2}\leq\Vert\delta_{k}^{\langle 2)}U\Vert_{L_{d}^{2}}\Vert U\Vert_{L_{ti}^{2}}.$ $Therefore_{\}}$ by the Young inequality, the right hand side of (3.1) is estimated by $\frac{1}{l}\vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}\Vert U\Vert_{L_{d}^{2}}+2\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}^{3/2}\Vert U\Vert_{L_{d}^{2}}^{1/2}$ $\leq\frac{1}{2l}(\vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}^{2}+\Vert U\Vert_{I_{d}^{2}}^{2}J)+\frac{3^{3/4}}{2}(\Vert\delta_{k}^{\langle 2\rangle}U\Vert_{L_{d}^{2}}^{2}+\Vert U\Vert_{li_{d}^{2}}^{2})$, which implies the result. $\square$ Acknowledgments. This work was partially supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), No.25400172. References [1] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. [2] D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math., 134 (2001), 37-57. [3] D. Furihata and M. Matsuo, Discrete Variational Derivative Method, Numerical Analysis and Scientific Computing series, CRC Press/Taylor & Francis, 2010. [4] S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Chapman & Hall/CRC Monographs and Surveys in Pure and $A_{\{)}$plied Mathematics 112, Chapman & Hall/CRC, Boca Raton, FL, 2000. [5] K. Yano and S. Yoshikawa, in preparation.

164 [6] S. Yoshikawa, A conservative finite difference scheme for the Falk model system of shape memory alloys, ZAMM-Zeitschrift f\"ur Angewandte Mathematik und Mechanik, 95(12)(2015), 1393-1410. [7] S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, submitted. [8] S. Yoshikawa, An error estimate for structure-preserving finite difference scheme for the Falk model system of shape memory alloys, to appear in IMA Journal of Numerical Analysis. Department of Engineering for Production and Environment Graduate School of Science and Engineering Ehime University Ehime 790-8577 JAPAN E mail address: yoshikawa@ehime-u.ac.jp