Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Similar documents
EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

First-Principles Calculation of Exchange Interactions

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

Ab Initio Calculation of Exchange Interactions, Adiabatic Spin-Waves, and Curie Temperature of Itinerant Ferromagnets

Fluctuating exchange theory of dynamical electron correlations and magnetism

WORLD JOURNAL OF ENGINEERING

Exchange interactions, spin waves, and transition temperatures in itinerant magnets

Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green s function methods

Temperature-dependence of magnetism of free Fe clusters

Antiferromagnetism in Ru2MnZ (Z=Sn, Sb, Ge, Si) full Heusler alloys: effects of magnetic frustration and chemical disorder

Luigi Paolasini

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling

Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: General considerations and applications to NiMnSb and MnAs

Self-compensating incorporation of Mn in Ga 1 x Mn x As

arxiv: v1 [cond-mat.mtrl-sci] 15 Jan 2008

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland

Theory of carbon-based magnetism

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 22 Mar 2001

Introduction to Heisenberg model. Javier Junquera

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4.

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Computational materials design and its application to spintronics

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

The Quantum Theory of Magnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Impact of magnetism upon chemical interactions in Fe alloys

Electronic structure of U 5 Ge 4

Intermediate valence in Yb Intermetallic compounds

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Unified approach to electronic, thermodynamical, and transport properties of Fe 3 Si and Fe 3 Al alloys

Institute of Physics ASCR, Na Slovance 2, Prague, Czech Republic

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Apr 2000

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

Electronic structure and ferromagnetic behavior in the Mn 1-x A x As 1-y B y alloys

Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces

Exchange interactions and Curie temperature in Ga,Mn As

Investigation of electronic and magnetic structure of advanced magnetic materials

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU

Electrical Resistance of Ferromagnetic Metals. 1. Introduction. Tadao KASUYA. Physical Institute, Nagoya University, Nagoya

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Jul 2006

Conductivity of a disordered ferromagnetic monoatomic film

Finite-temperature magnetism in bcc Fe under compression. Xianwei Sha* and R. E. Cohen

Study on Magnetic Properties of Vermiculite Intercalation compounds

Magnetic ordering of local moments

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

The Hubbard model for the hydrogen molecule

First principle calculations of plutonium and plutonium compounds: part 1

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany

From electronic structure to magnetism

Neutron and x-ray spectroscopy

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

Electronic, magnetic and spectroscopic properties of free Fe clusters

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

Theory of magnetic interactions in real materials. Mikhail Katsnelson

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

Exchange interactions

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

The Gutzwiller Density Functional Theory

Band calculations: Theory and Applications

Compositional trends in Ni-Mn-Ga Heusler alloys: first-principles approach

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002

Electron Correlation

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

introduction: what is spin-electronics?

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

Determination of long range antiferromagnetic order by powder neutron diffraction

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Interacting Spins. Chapter Weiss model of ferromagnetism

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

arxiv: v1 [cond-mat.mtrl-sci] 6 Aug 2009

Magnetism at finite temperature: molecular field, phase transitions

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse

Magnetism (FM, AFM, FSM)

Electronic correlations in models and materials. Jan Kuneš

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

Electronic and Magnetic properties of pure and doped manganese clusters

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

Magnetism and Superconductivity on Depleted Lattices

Dilute Magnetic Semiconductors

DFT calculations of NMR indirect spin spin coupling constants

7. FREE ELECTRON THEORY.

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Paramagnetism and Diamagnetism. Paramagnets (How do paramagnets differ fundamentally from ferromagnets?)

MAGNETIC ANISOTROPY IN TIGHT-BINDING

The Physics of Ferromagnetism

arxiv:cond-mat/ v1 7 Aug 1996

WORLD SCIENTIFIC (2014)

Transcription:

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 1 Pressure dependence of Curie temperature and resistivity of complex Heusler alloys Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration with Shyamal Bose, Josef Kudrnovský and Ilja Turek Czech Science Foundation Project P202/09/0775

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 2 STRUCTURE Heusler alloys (Ni x Cu 1 x ) 2 MnSn and (Ni x Pd 1 x ) 2 MnSn L2 1 structure fcc lattice A 1 = a ( 0, 1 2, ) 1 2 A 2 = a ( 1 2, 0, ) 1 2 A 3 = a ( 1 2, 1 2, 0) basis τ 1 = a(0, 0, 0)... (Cu, Ni) or (Pd,Ni) τ 2 = a ( 1 4, 1 4, 4) 1... Mn τ 3 = a ( 1 2, 1 2, 2) 1... (Cu, Ni) or (Pd,Ni) τ 4 = a ( 3 4, 3 4, 4) 3... Sn

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 3 MOTIVATION Heusler alloys have interesting physical properties and promising technological applications magnetic shape memory magnetocaloric effects spintronics effects of high pressure: increased electron kinetic energy increased overlap of orbitals and band broadening modification of Coulomb interactions changes of Fermi surface changes of magnetic moments and exchange interactions changes of transport properties high pressure brings new information on the system new degree of freedom independent probe into physical properties serves as a test of theory

OUTLINE ELECTRONIC STRUCTURE EXCHANGE INTERACTIONS CURIE TEMPERATURES TRANSPORT PROPERTIES DISCUSSION CONLUSIONS ab initio study of Curie temperature under pressure for nonrandom Ni 2 MnSn: Sasioglu et al. Phys. Rev. B 71 214412 (2005) properties at ambient pressure: Bose et al. Phys. Rev. B 82 174402 (2010), J. Kudrnovský at DPG Dresden 2011 properties at high pressure: Bose et al. Phys. Rev. B 84 174422 (2011) and present contribution DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 4

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 5 TB-LMTO-CPA ELECTRONIC STRUCTURE xc: Vosko-Wilk-Nusair, experimental lattice constants pressure is simulated by the reduction of lattice constant 3 % reduction corresponds approx. to 16 GPa in Ni 2 MnSn

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 6 classical Heisenberg Hamiltonian EXCHANGE INTERACTIONS 1 H Heis = X ij J ij e i e j e i = M i M i... unit vectors exchange interactions... J ij J ij > 0 ferromagnetic coupling J ij < 0 antiferromagnetic coupling magnetic force theorem: Liechtenstein formula: Liechtenstein et al. JMMM 67 65 (1987), Turek et al. Phil. Mag. 86 1713 (2006) J ij = 1 Z 4π Im C tr L h i (z) ḡ ij (z) j(z) ḡ ji (z) i dz i (z) = P i (z) P i (z), ḡσ ij (z)... intersite block of the Green function

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 7 EXCHANGE INTERACTIONS 2 exchange interactions between Mn atoms are calculated in the DLM state, then induced moments vanish 0.2 Ni 2 MnSn ambient (a) effects of high pressure: diminished moments increased overlaps and thus exchange interactions are stronger J Mn,Mn (D) (mry) 0.15 0.1 0.05 0-0.05-0.1 pressure (-3%) -0.15 bare interactions J bare ij = J ij /(M i M j ) H Heis = X ij J bare ij M i M j J Mn,Mn (D)/(M) 2 (mry/(µ B ) 2 ) 0.02 0.015 0.01 0.005 0-0.005-0.01 (b) ambient M(ambient)= 3.585 µ B pressure (-3%) M(pressure)= 3.343 µ B -0.015 0.5 1 1.5 2 2.5 3 Relative distance D=(d/a)

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 8 GROUND STATE the ground state of systems with one sublattice is given by a single q-vector wave which corresponds to the maximum of the Fourier transform of exchange interactions: J(q) = X j e iq R j J 0,j DLM-Ni 2 MnSn red line: ambient pressure green line: high pressure ( 3% a) the ground state character is not changed maximum at Γ-point: ferromagnet J Mn,Mn (q) (mry) 5 4 3 2 1 0-1 -2-3 L Γ X W K Γ

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 9 CURIE TEMPERATURE 1 k B T MFA C = 2 3 X J 0i, i 1 k B T RPA C = 3 2 1 N X q 1 J(0) J(q) 500 (Ni 1-x Pd x ) 2 MnSn U Ni = 2.0 ev 600 (Ni 1-x Cu x ) 2 MnSn U Ni = 2 ev T c (K) 450 400 350 ambient pressure 3% reduction of a T c (K) 550 500 450 400 Lattice constant reduction: 0% (ambient pressure) 0.75% 1.5% 2.25% 3% 300 350 250 0 0.2 0.4 0.6 0.8 1 Pd concentration (x) 300 0 0.2 0.4 0.6 0.8 1 Cu concentration (x) Curie temperature increases with pressure in (Ni x Pd 1 x ) 2 MnSn for all x and in (Ni x Cu 1 x ) 2 MnSn for x < 0.7 while it decreases in (Ni x Cu 1 x ) 2 MnSn for x > 0.7

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 10 comparison with experiment: CURIE TEMPERATURE 2 data available for Ni 2 MnSn and Pd 2 MnSn shows increase of T C with pressure Austin, Mishra Phil. Mag. 15 529 (1967), Gavriliuk et al. J. Appl. Phys. 79 2609 (1999) exchange mechanisms: direct exchange: not important as d(mn-mn) > 4 Å Anderson s superexchange (AFM): becomes stronger for smaller interatomic distances, tendency to lower T C, might be important, but it does not explain behavior of Heusler alloys Stearns indirect exchange between localized and itinerant d electrons: analogy to RKKY, oscillatory (FM or AFM), necessary for explanation delicate balance of superexchange and Stearns indirect exchange: only ab initio calculations can make quantitative prediction

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 11 TRANSPORT PROPERTIES mechanisms responsible for resistivity in magnetic metals: scattering on static atomic disorder (impurities etc.): residual resistivity ρ 0 scattering on lattice vibrations ρ vib scattering on magnetic disorder ρ mag for simplicity assume that these mechanisms are independent: ρ = ρ 0 + ρ vib + ρ mag individual contributions can be extracted from measured temperature dependence: residual resistivity ρ 0 = const. scattering on lattice vibrations ρ vib (T) T above Debye temperature (small) scattering on magnetic disorder ρ mag (T) T 2 for T < T C and ρ mag (T) const. for T > T C (large) Kubo-Greenwood: σ(e) Tr[δ(E H)Jδ(E H)J], J = i[r, H] where J is current operator and R are discrete coordinates of atomic sites Turek et al. Phys. Rev. 65 125101 (2002) spin disorder resistivity: via disordered local moment (DLM) approach

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 12 SPIN DISORDER RESISTIVITY 1 at ambient pressure: ρ(t) = ρ 0 + ρ vib (T) + ρ mag (T) ρ vib (T) = at ρ mag (T) = 8 < : ct 2 ρ 0, a from experiment c from ab initio : T < T C ρ mag (T C ) : T > T C ρ( µω.cm) 80 60 40 20 Ni 2 MnSn (exp.) Ni 2 MnSn (theory) Pd 2 MnSn (exp.) Pd 2 MnSn (theory) c = ρ mag(t 2 C ) T 2 C 0 0 100 200 300 400 500 T (K)

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 13 SPIN DISORDER RESISTIVITY 2 disorder at E F is weak 50 (a) Ni 2 MnSn U Ni =2.0 ev two effects of pressure: ρ( µω cm) 25 0 50 25 0 50 25 0 (b) (Ni 50,Pd 50 ) 2 MnSn (c) Pd 2 MnSn ambient pressure 3% reduction of a ambient pressure 3% reduction of a ambient pressure 3% reduction of a 0 100 200 300 400 T (K) band broadening and delocalization of states leads to a smaller ρ increase of T C causes increased ρ(t) for T C (0) < T < T C (P) mostly theoretical predictions, experiment so far missing experimental data are available only for a related compound Pd 2 MnSb: increase of resistivity above T C (Austin, Mishra 1967)

DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 14 CONCLUSIONS T C in (Ni x Pd 1 x ) 2 MnSn increases with pressure there are two regimes in (Ni x Cu 1 x ) 2 MnSn: T C increases with pressure for x < 0.7 T C decreases with pressure for x > 0.7 explanation in terms of Anderson superexchange and Stearns indirect d d exchange pressure dependence of spin-disorder resistivity ρ(t) ρ(t) decreases for T < T C (0) ρ(t) increases for T > T C (0)