Math 4388 Amber Pham 1. The Birth of Calculus. for counting. There are two major interrelated topics in calculus known as differential and

Similar documents
In today s world, people with basic calculus knowledge take the subject for granted. As

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida

A Preview Of Calculus & 2.1 Rates of Change

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc.

The Scientific Revolution


Historical notes on calculus

Beginnings of the Calculus

STANDARD WHII.6a The student will demonstrate knowledge of scientific, political, economic, and religious changes during the sixteenth, seventeenth,

L1. Determine the limit of a function at a point both graphically and analytically

Development of Thought continued. The dispute between rationalism and empiricism concerns the extent to which we

Final Exam Extra Credit Opportunity

Chapter 1 INTRODUCTION TO CALCULUS

A plane in which each point is identified with a ordered pair of real numbers (x,y) is called a coordinate (or Cartesian) plane.

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2

The Scientific Revolution & The Age of Enlightenment. Unit 8

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws.

MATH1014 Calculus II. A historical review on Calculus

AP Calculus BC. Course Description:

Fluxions and Fluents. by Jenia Tevelev

The Scientific Revolution

O1 History of Mathematics Lecture IV The beginnings of calculus, part 2: quadrature. Monday 17th October 2016 (Week 2)

Models of the Solar System. The Development of Understanding from Ancient Greece to Isaac Newton

Revolution and Enlightenment. The scientific revolution

SCIENTIFIC REVOLUTION

Section 5. Objectives

Astronomy- The Original Science

Galileo Galilei. Trial of Galileo before the papal court

AP Calculus BC Syllabus

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2

AP Calculus AB. Limits & Continuity. Table of Contents

The Scientific Revolution

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following :

Enlightenment and Revolution. Section 1

Origin of the Fundamental Theorem of Calculus Math 121 Calculus II Spring 2015

Newton s Work on Infinite Series. Kelly Regan, Nayana Thimmiah, & Arnold Joseph Math 475: History of Mathematics

Shi Feng Sheng Danny Wong

Mathematics Foundation for College. Lesson Number 8a. Lesson Number 8a Page 1

Euler s Identity: why and how does e πi = 1?

mass vs. weight. 392 dependent variable, 2 derivative(s) of a power series. 459 Descartes, René, 201 Devil s curve, 126 Difference Law of limits, 36 D

Chapter 10. Definition of the Derivative Velocity and Tangents

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '(

AP Calculus BC Scope & Sequence

this cover and their final version of the extended essay to are not

Announcements. Topics To Be Covered in this Lecture

π-day, 2013 Michael Kozdron

Course Catalog. Pre-calculus Glynlyon, Inc.

Basic Calculus. Alexander J. Hahn. From /vrcnimeaes to 1 Newton to its Kole in Jcience. Шк) Springer

Celebrating Torricelli

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK

~ 2. Who was Euclid? How might he have been influenced by the Library of Alexandria?

CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE CALCULUS BC ADVANCED PLACEMENT

Curriculum Catalog

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Academic Content Standard MATHEMATICS. MA 51 Advanced Placement Calculus BC

Reading Essentials and Study Guide

Chapter 0. Introduction. An Overview of the Course

*AP Calculus BC (#9550)

Road to Calculus: The Work of Pierre de Fermat. On December 1, 1955 Rosa Parks boarded a Montgomery, Alabama city bus and

Limits and Continuity

Name Class Date. Ptolemy alchemy Scientific Revolution

The Scientific Revolution Learning Target

Index. Excerpt from "Calculus" 2013 AoPS Inc. Copyrighted Material INDEX

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

Space Notes Covers Objectives 1 & 2

1 Astronomy: The Original Science

Pre Calculus. Intro to Integrals.

Jennifer Duong Daniel Szara October 9, 2009

Topics Covered in Calculus BC

Integration. Copyright Cengage Learning. All rights reserved.

René Descartes AB = 1. DE is parallel to AC. Check the result using a scale drawing for the following values FG = 1

Radnor High School Course Syllabus Advanced Placement Calculus BC 0460

The Scientific Revolution

Slopes, Derivatives, and Tangents. Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane

INTEGRALS5 INTEGRALS

2.4 The Birth of Modern Astronomy

Orbital Mechanics Laboratory

Contents. Preface. Chapter 3. Sequences of Partial Sums Series in the 17th century Taylor series Euler s influence 96.

Origins of Modern Astronomy

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

President. Trustees Marion Blane Steve Enella John Ferrara Wendy Gargiulo Janet Goller Gina Piskin. Kate Freeman, Business

Harbor Creek School District

West Windsor-Plainsboro Regional School District AP Calculus BC Grades 9-12

Fairfield Public Schools

Units. Year 1. Unit 1: Course Overview

NORTH ALLEGHENY SCHOOL DISTRICT MATHEMATICS DEPARTMENT HONORS PRE-CALCULUS SYLLABUS COURSE NUMBER: 3421

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58

Foundations of Calculus in the 1700 s. Ghosts of departed quantities

Correlation with College Board Advanced Placement Course Descriptions

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005

Region 16 Board of Education. Precalculus Curriculum

Chapter 21: The Enlightenment & Revolutions, Lesson 1: The Scientific Revolution

Chapter 3 Differentiation Rules

NFC ACADEMY COURSE OVERVIEW

2.5 Exponential Functions and Trigonometric Functions

AP Calculus BC. Functions, Graphs, and Limits

A History of Modern Mathematical Symbols (In Twenty Slides)

The Birth of Astronomy. Lecture 3 1/24/2018

Chapter 1. Complex Numbers. 1.1 Complex Numbers. Did it come from the equation x = 0 (1.1)

Transcription:

Math 4388 Amber Pham 1 The Birth of Calculus The literal meaning of calculus originated from Latin, which means a small stone used for counting. There are two major interrelated topics in calculus known as differential and integral calculus. The differential calculus deals with motion and change, while integral calculus finds quantities such as area under a curve and so on. Various areas of studies have been taking advantage of calculus such as engineering, economics, business, statistics, computer science and etc. Calculus is profoundly intertwined with architecture, aviation and other technologies that are useful for our daily lives. For this reason, calculus stays to be one of the most fundamental math fields that sustains the balance of our lives. Several Greek mathematicians contributed to the development of Calculus. For instance, in 225 BC, Archimedes constructed an infinite sequence of triangles, with an area A, to estimate the area of a parabola. Archimedes used the process of exhaustion to find the estimate area of a circle. These two attempts made Archimedes to take the credit for the infinite series sum. Between the 16th and 17th century, philosophers had the curiosity to apply the knowledge of math to discern the universe better. Galileo Galilee was one of the natural philosophers that had undertaken several experiments to observe mathematical analysis and motion in general. Johannes Kepler then came with an idea of measuring the area of a circle with indefinitely increasing isosceles triangles. Kepler also studied about the correlation and the movement of planets around the sun, as well as their speeds in completing a cycle. He explained that the distance between the sun and the planets, in the Copernican system, is highly dependent on the five regular solids that are uniquely circumscribed as shown in Fig 1.

Math 4388 Amber Pham 2 Figure 1: Relative distance of the Sun from the planets in Kepler s Copernican System The other mathematician who has contributed to the development of algebra and applied math to optics and navigation was Thomas Harriot (1560-1621). Harriot built the fundamental ingenious application that deals with the functional relations before the advent of calculus. In the later years, Rene Descartes studied comets and light, and correlated algebra and geometry. The above mathematicians works led to the birth of ideas and studies of velocities and infinite divisibility of space and time. Bonaventura Cavalieri (1598-1647) coined the principle of cutting a planar region into infinite sets of line segments by setting up an integral of x^n from 0 equating it with a^ (n+1)/ (n+1). Consequently, the idea of Cavalieri led Roverval to a more detailed method in finding the area between a curve and a line by setting up infinite numbers of narrow rectangular strips with an approximated integral value of x^m from 0 to 1. Graphing and finding areas for solid objects led Pierre de Fermat to use geometric partition of interval to explore the max and min by looking into place where the tangent of the graph was parallel to the x-axis. Fermat s geometric partition includes the intervals from [0, X 0 )

Math 4388 Amber Pham 3 or [X 0, ). Ferment used the limit to compute the area for functions like y=x -k. Presented for a given N, the partition point is solved as shown below. Isaac Newton s teacher in the mathematical subjects was Isaac Barrow (1630 1677). Barrow s work revolved around determining the areas and tangents of curves. His work led to the discovery of infinitesimal calculus. Barrow is believed to have played an early role for the

Math 4388 Amber Pham 4 discovery of fundamental theorem of calculus, as well as his tremendous contribution to differential calculus. Evangelista Torricelli was in the field of astronomy and a committed Copernican at his younger years. Torricelli then worked on the treatise of motion with variable speed. Consequently, the idea of estimation led to the development of calculus by Newton, who was influenced by Descartes, DeBeaune and Leibniz. In 1666, Newton wrote a tract on fluxions with horizontal and vertical velocities or derivatives, briefly discussing anti-differentiation. Newton also calculated the series expansion for sine, cosine and exponential functions, although they are now called Taylor or Maclaurin series. Although it has been disputed who should take the credit for the invention of calculus, among numerous mathematicians mentioned above, Isaac Newton and the self-taught German mathematician Gottfried Leibniz contributed to the rising of calculus, independently working to find general methods to find areas and volumes in the 17th century. Newton is known for the discovery of the inverse relationship of integral and derivative functions which are equivalent to the area under the curve, and the slope of the curve. This correlation enabled crucial scientific dilemmas to be solved, such as calculating the slope of the tangent line, determining the velocity and acceleration of an object, finding the absolute and relative extreme of objects in a projectile motion, finding volume and surface area of solids and so forth. Newton applied calculus in geometry and the physical world, to describe the orbit of the planets around the sun. Due to this, Newton has been deemed as the creator of calculus. In the other hand, Leibniz invented the notations that we still use for taking derivative and integral. Leibniz was a philosopher, which allowed him to manipulate mathematical arguments into notations and formulas that made calculus to be used efficiently. Leibniz studied

Math 4388 Amber Pham 5 the correlation of sequences and sums, and tied it with the infinitesimal geometry that is based on the features of calculus. The other crucial thread that Leibniz contributed for mathematics was his notion on a harmonic triangle that starts with a number in each row which represents the reciprocal of the row number. And the value of each fraction is calculated by looking at the sum of two numbers just below it. Figure 2: Leibniz s symmetrical Harmonic Triangle All the problems and curiosities that were in the minds of philosophers and philosophers led for the birth of calculus that we use with great reverence today. After all, along with the existence of human beings on this planet, came problems to be solved mathematical and others. Mathematics was first practiced to alleviate the burden of people from counting to value certain things. With the birth of math, people s life has gotten simplified in a tremendous fold. For this reason, I strongly believe with S.Gudder s saying the essence of math is not to make simple things complicated, but to make complicated things simple. One of the versatile branches of mathematics that has benefited several fields of studies is calculus, a field that was developed from algebra and geometry. Calculus allows complicated problems that are

Math 4388 Amber Pham 6 consistently changing, focusing on infinitesimal moments, that can t be solved using algebra or other field of mathematics. This is the beauty of calculus!

Math 4388 Amber Pham 7 Work Cited Barret, David J. "Galileo Galilei." Galileo Galilei. N.p., 9 June 2015. Web. 31 Oct. 2016. <http://chemistry.mtu.edu/~pcharles/scihistory/galileogalilei.html> Boyer, Carl B. " The History of the Calculus and Its Conceptual Development." (2011): n. pag. Wlym. 21 Mar. 2013. Web. 31 Oct. 2016. <http://www.wlym.com/archive/oakland/docs/therealcalculus.pdf> Figure 1 source: http://galileo.rice.edu/sci/kepler.html Figure 2 source: http://en.wikipedia.org/wiki/leibniz_harmonic_triangle