Basic Principles of Sinusoidal Oscillators

Similar documents
CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Basic Principles of Sinusoidal Oscillators

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Electronic Circuits EE359A

Nonlinear Op-amp Circuits

EE 230 Lecture 25. Waveform Generators. - Sinusoidal Oscillators The Wein-Bridge Structure

Electronic Circuits Summary

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Chapter 10 Feedback. PART C: Stability and Compensation

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

EE 230 Lecture 24. Waveform Generators. - Sinusoidal Oscillators

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Section 4. Nonlinear Circuits

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Chapter 13 Small-Signal Modeling and Linear Amplification

FEEDBACK, STABILITY and OSCILLATORS

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

Homework Assignment 08

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Oscillators. Figure 1: Functional diagram of an oscillator.

Basics of Network Theory (Part-I)

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Introduction to CMOS RF Integrated Circuits Design

Frequency Dependent Aspects of Op-amps

55:041 Electronic Circuits The University of Iowa Fall Final Exam

OPAMPs I: The Ideal Case

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Design of crystal oscillators

PHYS225 Lecture 9. Electronic Circuits

Q. 1 Q. 25 carry one mark each.

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

ESE319 Introduction to Microelectronics. Output Stages

Refinements to Incremental Transistor Model

Lecture 17 Date:

Lecture 7: Transistors and Amplifiers

12 Chapter Driven RLC Circuits

At point G V = = = = = = RB B B. IN RB f

ECE3050 Assignment 7

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Advanced Current Mirrors and Opamps

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECEN 326 Electronic Circuits

Filters and Tuned Amplifiers

500V N-Channel MOSFET

Lecture 16 Crystal oscillators

Stability and Frequency Compensation

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Homework 6 Solutions and Rubric

F14 Memory Circuits. Lars Ohlsson

DG417/418/419. Precision CMOS Analog Switches. Features Benefits Applications. Description. Functional Block Diagram and Pin Configuration

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

OPERATIONAL AMPLIFIER APPLICATIONS

Design of Analog Integrated Circuits

BENG 186B Winter 2013 Quiz 2. February 15, NAME (Last, First): This quiz is closed book and closed notes. You may use a calculator for algebra.

CD4093BC Quad 2-Input NAND Schmitt Trigger

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Experimental verification of the Chua s circuit designed with UGCs

CMOS Analog Circuits

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Homework Assignment 09

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ECEN 325 Electronics

Biasing the CE Amplifier

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

Time Varying Circuit Analysis

Dynamic operation 20

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

Lectures on APPLICATIONS

Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions

TSP10N60M / TSF10N60M

Input and Output Impedances with Feedback

VI. Transistor amplifiers: Biasing and Small Signal Model

Digital Electronics. Delay Max. FF Rate Power/Gate High Low (ns) (MHz) (mw) (V) (V) Standard TTL (7400)

THE INVERTER. Inverter

Supplementary Reader. EECS 40 Introduction to Microelectronic Circuits

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

S.E. Sem. III [ETRX] Electronic Circuits and Design I

ELEN 610 Data Converters

Voltage-Controlled Oscillator (VCO)

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

S ELECTED E QUATIONS

System on a Chip. Prof. Dr. Michael Kraft

Handout 11: AC circuit. AC generator

CS 436 HCI Technology Basic Electricity/Electronics Review

Mod. Sim. Dyn. Sys. Amplifiers page 1

Operational Amplifiers

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

Transcription:

Basic Principles of Sinusoidal Oscillators Linear oscillator Linear region of circuit: linear oscillation Nonlinear region of circuit: amplitudes stabilization Barkhausen criterion X S Amplifier A X O X f Frequency-selective network Loop gain L(s) = β(s)a(s) haracteristic equation -L(s) = Oscillation criterion L(jw ) = A(jw ) β(jw ) = Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6

Basic Principles of Sinusoidal Oscillators (ont.) At w, the phase of the loop should be zero and the magnitude of the loop gain should be unity Oscillation frequency w is determined solely by φ Δφ Δω dφ dω Δφ ω ω A steep phase response results in a small given change in phase w for a Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6

Nonlinear Amplitude ontrol o sustain oscillation: βa a. Overdesign for βa variations b. Oscillation will grow in amplitude Poles are in the right half of the s-plane c. Nonlinear network reduces βa to when the desired amplitude is reached Poles will be pulled to jw-axis Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Nonlinear Amplitude ontrol (ont.) Limiter circuit for amplitude control Linear region O A B ( f ) 4 i 4 5 O O 4 5 5 I D D f A 4 B 5 O -

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6-5 Nonlinear Amplitude ontrol (ont.) Nonlinear region ) ( L similarly, ) ( ) ( L 5 4 D 5 4 O D D - O D B D A f ) ( Slope L L 4 f ) ( Slope O I f Slope

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -6 郭泰豪, Electronics(), 6 Wien-bridge oscillator L ) L s jω) ω L s OPAMP- Oscillator ircuits Z S S j ω ω For phase,ω p Z Z ) p s d ω Z P _ Z S O

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -7 郭泰豪, Electronics(), 6 OPAMP- Oscillator ircuits (ont.) Wien-bridge oscillator with a limiter 5 D k a.k k _ 4 k O k 6nF 6nF k 5 k D b 6 k 5

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -8 郭泰豪, Electronics(), 6 OPAMP- Oscillator ircuits (ont.) v O 5k p b k a - 6nF 6nF k k

Phase-Shift Oscillator Without amplitude stabilization -K ------- phase shift of the network is 8 degrees. otal phase shift around the loop is or 6 degrees. Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -9 郭泰豪, Electronics(), 6

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Phase-Shift Oscillator (ont.) With amplitude stabilization k t 5k x 6nF 6nF 6nF k k _ D vo D 4

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 OP : inverting integrator with amplitude control OP : noninverting integrator 4 - Quadrature Oscillator v O v - f v O Equivalent circuit at the input of OP Set v(t) v v f O O (t) (s) t vo(t) dt t vo(t) dt vo(s) s _ v O X _ OP v O v OP f (Nominally )

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Quadrature Oscillator (ont.) ------ Break the loop at X, loop gain L(s) = O oscillation frequency X (s) (s) = - s w s - s ------ o is the integral of o 9 phase difference between o and o quadrature oscillator

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Block diagram Active-Filter uned Oscillator f PSD - t PSD t 5f o f o f o... Frequency - f o Frequency High-distortion v High-Q bandpass low-distortion v

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Active-Filter uned Oscillator (ont.) Practical implementation Q - -

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -5 郭泰豪, Electronics(), 6 A General Form of L-uned Oscillator onfiguration Many oscillator circuits fall into a general form shown below O ˆ - A I Z Z Z O O - A ˆ v Z Z Z O Z L Z L Z, Z, Z : capacitive or inductive

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6-6 A General Form of L-uned Oscillator onfiguration (ont.) v v v O v O v O L v O L O O L L v O X X A X X X A ) X (X X X X A X X X oscillation, for ) X (X X ) X X (X j X X A capacitance for ω X inductance ωl for X jx Z, jx Z jx, Z if ) Z (Z Z ) Z Z (Z Z Z A, Z Z Z Z A Z Z Z A ˆ ˆ ˆ

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -7 郭泰豪, Electronics(), 6 A General Form of L-uned Oscillator onfiguration (ont.) With oscillation = and i.e. = =, 6, 7, degree. (X =ωl or X = - ) ω X & X must have the same sign if A v is positive X & X are L, X = -(X + X ) is or X & X are, X = -(X + X ) is L ransistor oscillators.ollpitts oscillator -- X & X are s, X is L.Hartley oscillator -- X & X are Ls, X is

L-uned Oscillators wo commonly used configurations olpitts (feedback is achieved by using a capacitive divider) DD L L Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -8 郭泰豪, Electronics(), 6

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -9 郭泰豪, Electronics(), 6 L-uned Oscillators (ont.) Hartley (feedback is achieved by using an inductive divider) DD L L L L

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 olpitts oscillator Equivalent circuit L-uned Oscillators (ont.) s π L c π s L ) sπ π g m π π ( gs for a FE) can be considered to be a part of = loss of inductor + load resistance of oscillator + output resistance of transistor

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6 - L-uned Oscillators (ont.) For oscillations to start, both the real and imaginary parts must be zero Oscillation frequency ) + L( = ω S=jw ] ) ( [ ) ( ) ( ) ( ) ( ) )( ( L j L g g s L s L s L s s g s sl s m m m c w w w

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Gain g m L-uned Oscillators (ont.) (Actually, g Oscillation amplitude.l tuned oscillators are known as self limiting oscillators. (As oscillations grown in amplitude, transistor gain is reduced below its small signal value).output voltage signal will be a sinusoid of high purity because of the filtering action of the L tuned circuit Hartley oscillator can be similarly analyzed m )

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Symbol of crystal rystal Oscillators ircuit model of crystal L S P r

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 rystal Oscillators (ont.) eactance of a crystal assuming r = Z(s) s ω Let ω If Z jω) P S P P sl s L L S S S ω ω j ω P ω ω, then ω ω P S P s S S P P s s L ) P L S S P S rystal reactance (rystal is high Q device) inductive ωs capacitive ω p ω

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -5 郭泰豪, Electronics(), 6 rystal Oscillators (ont.) he crystal reactance is inductive over the narrow frequency band between ω s and ω p olpitts crystal oscillator onfiguration Equivalent circuit L P crystal π S v S - w P, L, S w S w P

Pierce oscillator rystal Oscillators (ont.) Almost all digital clock oscillators are Pierce oscillators Derived from olpitts oscillator Inverter with feedback resistor as an inverting amplifier eplacement of the E amplifier f o DD o = i crystal D operation point i Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -6 郭泰豪, Electronics(), 6

Multivibrators Multivibrators bistable: two stable states ( types) monostable: one stable state astable: no stable state Bistable Has two stable states an be obtained by connecting an amplifier in a positive-feedback loop having a loop gain greater than unity. I.e. βa> where β= /( + ) Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -7 郭泰豪, Electronics(), 6

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -8 郭泰豪, Electronics(), 6 Bistable Multivibrators (ont.) Bistable circuit with clockwise hysteresis v o v + L v I - - v O L - L H v I lockwise hysteresis (or inverting hysteresis) L + :positive saturation voltage of OPAMP L - :negative saturation voltage of OPAMP H L βl βl L L Hysteresis width = H - L

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -9 郭泰豪, Electronics(), 6 Noninverting Bistable ircuit ounterclockwise hysteresis onfiguration v I - v + - v O L L v o H v I L - v v I v O For v For v O O L L,, v v,, v v I I L H L H L L

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Noninverting Bistable ircuit (ont.) omparator characteristics with hysteresis an reject interference Input Output Hysteresis buffer Signal corrupted with interference Input H L t Multiple Zero crossings Output t

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Generation of Square and riangular Waveforms Using Astable Multivibrators an be done by connecting a bistable multivibrator with a circuit in a feedback loop. v o L v v L H v I H βl t L - L t L βl L -

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Generation of Square and riangular Waveforms Using Astable Multivibrators (ont.) v O t) L t v + - v - L - ) t o L v - v O - H βl t - L H βl v t) βl o L - ime constant t = L βl

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan - 郭泰豪, Electronics(), 6 Generation of Square and riangular Waveforms Using Astable Multivibrators (ont.) During (t) if L ( ) L βl ) βl e t where, L L ) β ln β β During (t) if ( L ) L βl ) βl ln e β ; β (t ) L L ) β ln β L L is assumed)

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Generation of riangular Waveforms v o t _ L L H L - v I t Bistable Slope -L H L t t L Slope L L

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -5 郭泰豪, Electronics(), 6 Generation of riangular Waveforms (ont.) During L L i dt where i H L L L H ; L During Similarily L H L Period = + o obtain symmetrical waveforms L L

Monostable Multivibrators Alternative name one shot Has one stable state (βl+ D) v E (t) an be triggered to a quasi-state v A (t) t L E D 4 L - _ A βl v (t) B βl - D D v B (t) o L βl - o L Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -6 郭泰豪, Electronics(), 6

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -7 郭泰豪, Electronics(), 6 During Monostable Multivibrators (ont.) B B For (t) L () βl D (L L βl ln( βl D D )e L L L t ) (L D )e ln( ) β βl + is greater than D Stable state is maintained

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -8 郭泰豪, Electronics(), 6 Monostable Multivibrators (ont.) Monostable multivibrator using NO gates v in in O X + DD O DD v O t NO NO DD DD X t DD DD v O t DD t

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -9 郭泰豪, Electronics(), 6 Monostable Multivibrators (ont.) - - O DD v X - - O - DD DD v X - () v t v (e ) x DD v ( ) ( e ) x DD DD ln ln.69 DD DD where ; is NO gate threshold voltage v v x ( ) DD e t

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Monostable Multivibrators (ont.) Monostable multivibrator with catching diode DD in o D O NO x NO X 5.6 forward resistance of diode 5 D ime constant f ime constant t

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Astable Multivibrator Using NO(or Inverter) Gates v o X O O DD v _ v o DD t ransient behavior () < t < (i) v : when t= o DD (ii) v : when t= o DD (iii)v =( + )e x DD -t (iv)v =v - =- +( + )e c x O DD DD -t DD v X DD v t DD t t

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Astable Multivibrator Using NO(or Inverter) Gates (ont.) () < t < ( + ) (i) v : when t= (ii) v : o DD o DD x DD DD when t= (iii)v = -( + )e (t- ) (iv)v =v - =v = -( + )e c x O x DD DD (t- )

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -4 郭泰豪, Electronics(), 6 Astable Multivibrator Using NO(or Inverter) Gates (ont.) Oscillation frequency v ( )= x t DD ( + )e = DD+ =ln DD If =, then =ln and =ln.455 oscillation frequency f = ln

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -44 郭泰豪, Electronics(), 6 Astable Multivibrator Using NO(or Inverter) Gates (ont.) With catching diode at X X O O v _ f ln ln.7 Asymmetrical square wave DD (i) (ii) DD X O D D v _ O

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -45 郭泰豪, Electronics(), 6 c + - eading Assignment: he 555 I imer Widely used as both a monostable and astable multivibrator n Used as a monostable multivibrator hreshold c rigger t H L omparator S Q omparator Q Q O v t (t) v c (t) H v O (t) v(t) S n Q n+ Q n N/A H L vt L ( e n t ) Dischargetransistor

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -46 郭泰豪, Electronics(), 6 eading Assignment: he 555 I imer (ont.) For t v (t) [ ()]e t ( () E(sat) ) For t =, v ln ( ) H () ln ( () )

Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan -47 郭泰豪, Electronics(), 6 eading Assignment: he 555 I imer (ont.) Used as an astable multivibrator cc H= cc L = ( ) A B cc c S, cc c S, cc cc c S ln, ( )ln B A B Oscillation frequency t A B f hreshold c rigger t H L (A omparator omparator B )ln 555 timer chip S Q Q Q O Dischargetransistor

Sine-wave shaper Precision rectifier circuits Precision full-wave rectifiers Peak rectifier rystal oscillators Appendix APP- -48 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Sine-Wave Shaper Shape a triangular waveform into a sinusoid Extensively used in function generators Note: linear oscillators are not cost-effective for low v O v f t frequency application not easy to time over wide frequency ranges t APP- -49 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Sine-Wave Shaper (ont.) Nonlinear-amplification method For various input values, their corresponding output values can be calculated ransfer curve can be obtained and is similar to _ vo (Sine wave) v i (riangular wave) Q Q I I - EE APP- -5 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Sine-Wave Shaper (ont.) Breakpoint method Piecewise linear transfer curve Low-valued is assumed and are constant in in in D D D out ( in in ison(voltage drop D 5 ) ison limit 5 to 4 D ) D APP-4-5 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Sine-Wave Shaper (ont.) D in out D 5 5 in 4 D 5 4 out D 4 APP-5-5 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Precision ectifier ircuits Precision half-wave rectifier --- superdiode "Superdiode" O i _ A O i An alternate circuit O D _ D O i i APP-6-5 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Precision ectifier ircuits (ont.) Application:Measure A voltages D 4 i _ A D _ A O Average π P ;where p is the peak amplitude of an input sinusoid APP-7-54 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Precision ectifier ircuits (ont.) If ω 4 π P min 4 ;ω min is the lowest expected frequency of the input sine wave APP-8-55 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Precision Full-Wave ectifiers A D A A B D B B or L APP-9-56 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

Precision Full-Wave ectifiers (ont.) i A _ A E D O O _ A D P i F L APP- -57 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

With load Peak ectifier Super diode v i - _ L v O - Buffered D _ A D _ A v O - v i - APP- -58 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

rystal Oscillators - + gd MHz XAL L 6~ uh stray M.kΩ D N68 S =pf.μf Bias circuit L - (For A,- and ground are the same=) APP- -59 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6

rystal Oscillators (ont.) AX v Since return ratio = X then X must be large for the loop gain to be greater than one. X is very large when ω closes to ω ωs ω ωp p and X +X +X = & X = X &X are inductive ω j Z =L//= = jω + ω + jω L ω L X = > ωl> ω> ω+ ω L ωl For MHz crystal, =pf L 84.4μH π L MHz APP- -6 Prof. ai-haur Kuo, EE, NKU, ainan ity, aiwan 郭泰豪, Electronics(), 6