Unit 5 COUNTING PARTICLES

Similar documents
Chapter 10 Chemical Quantities

Unit 6: Chemical Quantities. Understanding The Mole

Atoms, Molecules, and the Mole

Chapter 10 Chemical Quantities

NOTES: 10.3 Empirical and Molecular Formulas

All Roads Lead to the Mole

THE MOLE (a counting unit)

What is a Mole? An Animal or What?

Chapter 10 Chemical Quantities

Unit III: Quantitative Composition of Compounds

Chemistry Chapter 3. Stoichiometry. (three sections for this chapter)

1/7/14. Measuring Matter. How can you convert among the count, mass, and volume of something? Apples can be measured in three different ways.

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

MOLECULAR FORMULA AND EMPIRICAL FORMULA

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction

Molar Conversions & Calculations

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms

Lecture Notes Chapter 6

Measuring matter 11.1

Chapter 8. Chemical Composition

3/22/2017. Chapter 8. Chemical Composition. Counting by Weighing. Section 8.1

Formula Mass. not all compounds are molecular formula mass calculated exactly the same way as molecular mass. Solid structure of NaCl

Finding Formulas. using mass information about a compound to find its formula

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Unit III: Quantitative Composition of Compounds

1. Mole Definition & Background

Chapter 6 Chemical Composition

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance.

Many common quantities have names that are used to describe them: Six of something are a half-dozen, and twelve are a dozen.

Stoichiometry. Chapter 3

CHEMICAL QUANTITIES. Chapter Six

Using the Mole to Calculate % Composition, Empirical Formulas and Molecular Formulas

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

1. Mole Definition & Background

NOTES: Chemical Quantities (The Mole / Molar Mass) All Roads Lead to the Mole!!

CHAPTER 9 AVOGADRO S NUMBER

1. Mole Definition & Background

THE MOLE. Chapter 10 Who is that Little Guy with Squinty Eyes?

Practice questions for Ch. 3

Test Review Unit 3_1_Amount of substance Mole, molar mass and Avogadro s number test

Chapter 3. Stoichiometry

Chemistry 101 Chapter 8 Chemical Composition

Calculations with Chemical Formulas and Equations

Name Date Class. representative particle molar mass representative particles

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

23 carbon atoms The number is known as Avogadro s d Number.

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Unit 5. Chemical Composition

Chapter 3: Stoichiometry

What is a Representative Particle

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H

Notes: The Mole. What is the ratio of calcium ions to chloride ions in calcium chloride? Ca 2+ : Cl -

Warm-up. If aluminum cans weigh 20.g each, how many cans are in a 150 kg truckload of cans? (solve using conversion factors)

UNIT 3 Quantities in Chemical Reactions THE MOLE!

Moles Homework Unit 6

Germanium 32. Nickel Uranium 92. Sulfur THE MOLE Worksheets

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

HW 3 15 Hydrates Notes IC Hydrates HW 4 Water in a Hydrate IC/HW Unit 8 Test Review HW 5 X Unit 8 Test In class on 2/13 and 2/14

UNIT 3 Chemical Quantities Chapter 5 Counting Atoms and Molecules The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Please understand that you will NOT receive another copy of this packet! Name:

Slide 1. Slide 2 Mass in amus. Slide 3 MOLES! MOLES! MOLES! Joe s 2 nd Rule of Chemistry

UNIT 9. Stoichiometry

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

Atoms, Ions and Molecules Calculations

Description Mole Activity. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections)

Chapter 3. Mass Relationships in Chemical Reactions

ب 3 18 قسم الكيمياء مصطفي عيد

I. Oxidation Numbers II. Nomenclature III. The Mole

AP Chemistry: Chapter 3 Notes Outline

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

CHEMISTRY Matter and Change

CHEMISTRY MOLES PACKET PAGE 1. Chemistry Moles Packet

PERCENTAGE COMPOSITION

How do you measure matter?

STOICHIOMETRY via ChemLog

Chemical Calculations: The Mole concept and Chemical Formula. Law of Definite Proportions (John Dalton) Chapter 9

CHEMISTRY Matter and Change. Chapter 10: The Mole

Get out a sheet of paper to take some notes on.

TOPIC 4: THE MOLE CONCEPTS

4. Magnesium has three natural isotopes with the following masses and natural abundances:

Chemists need a convenient method for counting accurately the number of atoms, molecules, or formula units in a sample of a substance.

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A:

The Mole. One mole = x things Avogadro s number: N A = x 10 23

Stoichiometry Ratios of Combination

AP Chemistry Chapter 3. Stoichiometry

Examples: Al2(SO4)3 Al 2 x 27.0 = S 3 x 32.1 = O 12 x 16.0 = NiSO3 6H2O Ni 1 x 58.7 = S 1 x 32.1 = O 3 x 16.0 = H2O 6 x 18.0 =

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chemical Reactions, Chemical Equations, and Stoichiometry. Brown, LeMay Ch 3 AP Chemistry

Chapter 8. The Mole Concept

Notes: Unit 7 Moles & Stoichiometry

AP Chemistry A Review of Analytical Chemistry

Dr. Fred O. Garces Chemistry 100

Molecular vs. Empirical Formula Chemistry H 2 O H 2 O 2. NaCl

Notes on Mole 12.notebook. October 25, CaS. Ca + S. Oct 14 6:22 PM. Oct 14 6:23 PM. Oct 14 6:24 PM. Oct 14 6:23 PM MOLE.

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number

Transcription:

Unit 5 COUNTING PARTICLES

Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number of the objects. EXAMPLE: The average mass of a book is 40.0 grams. How many books are present in a sample with a mass of 2000.0 grams? 2000.0g/40.0g = 50.0 books 6-2

Counting By Weighing When we know the average mass of the atoms of an element, as that element occurs in nature, we can calculate the number of atoms in any given sample of that element by weighing the sample. The atomic mass of an element, as found on the periodic table, allows us to count by weighing. 6-3

Relative Masses Once early chemists realized they could determine the relative masses of molecules of gases, they chose weighable samples of the elements as the standard amount of each element.

Molar Masses The molar masses (formerly known as atomic weights) we find in the Periodic Table of the elements were originally determined relative to the mass of hydrogen. 6-5

Section 6.3: The Mole The mole (mol) is known as the chemists dozen and represents Not this type of mole! 6.022 x 10 23 things (atoms, particles, molecules, etc). A mole (from the Latin - lump of stuff ), was originally defined as 1.0g of the lightest element known hydrogen. 6-6

Mole Video

The Mole: Interesting Mole Facts 6.022 X 10 23 watermelon seeds: would be found inside a melon slightly larger than the moon. 6-8

6.02 X 10 23 grains of sand: would be more than all of the sand on Miami Beach.

6.022 X 10 23 pennies: would make at least 7 stacks that would reach the moon. 6.02 X 10 23 blood cells: would be more than the total number of blood cells found in every human on earth. A mol is A LOT of particles: 602,200,000,000,000,000,000,000

The Mole It is VERY important to understand that the value listed as the mass number on the periodic table really tells us TWO things: The mass of one atom in units of amu s. The mass of one mole of atoms in grams. One mol of Al = 26.98 g & one atom = 26.98 amu One mol of Au = 196.97 g & one atom = 196.97 amu One mol of B = 10.81 g & one atom = 10.81 amu Remember one mol = 6.022 X 10 23 atoms (or particles or molecules) 6-11

The Mole To summarize: a sample of any element that weighs a number of grams equal to the molar mass (from the periodic table) contains 6.022 x 10 23 atoms (1 mol) of that element. Therefore, atomic weight of an element = #g in one mol of that element We write that as g/mol. 6-12

Using the mole in calculations How many mols are in 7.0 g of N? 7.0 g 1 mol = 0.50 mol 1 14 g How many atoms are in 7.0 g of N? (0.5mol)( 6.022 x 1023 atoms / 1 mol )= 3.011 x 10 23 atoms. OR (7.0 g)( 1 mol / 14.0 g )( 6.022 x 1023 atoms / 1 mol )=3.011 x 10 23 atoms

The Mole: Practice 1) Calculate the number of moles and the number of atoms in a 25.0 g sample of calcium. 2) Calculate the number of moles and the number of atoms in a 57.7 g sample of sulfur. 3) Calculate the number of atoms in a 23.6 mg sample of zinc. 4) Calculate the number of atoms in a 128.3 mg sample of silver. 6-14

1..624 mol and 3.76 x 10 23 atoms 2. 1.80 mol and 1.08 x 10 24 atoms 3. 3.61 x 10-4 mol and 2.17 x 10 20 atoms 4. 1.189 x 10-3 mol and 7.160 x 10 20 atoms

The Mole: More Interesting Mole Facts A one-liter bottle of water contains 55.5 moles H 2 0 molecules. A five-pound bag of sugar contains 6.6 moles of C 12 H 22 O 11 (sucrose). We have 3 types of moles that live underground in North America: Eastern Mole, Hairy-Tailed Mole and Star-Nosed Mole The "Mexican" Mole is a chocolate sauce or turkey stew. It comes from the Aztec word "molli." 6-16

Molar Mass A chemical compound is a collection of atoms. One methane (CH 4 ) molecule contains one C atom and four H atoms. It follows then that one mole of methane molecules contains one mole of C atoms and four moles of H atoms. 6-17

Figure 6.3: Various numbers of methane molecules. 6-18

Molar Mass (g/mol) The molar mass of any substance is the mass (in grams) of one mole of the substance. The molar mass of a compound is obtained by summing the masses of ALL component atoms. 6-19

Molar Mass If we know how many atoms and how many moles are present, we can calculate the mass of one mole of a compound. This is called the molar mass or sometimes you may also see it referred to as molecular weight. Since 1 mol C = 12.01 g and 4 mol H = 4(1.008) or 4.032 g, 1 mol CH 4 = 12.01 + 4.032 or 16.04 g (sig figs). Remember to use mass numbers from the periodic table. 6-20

Remember: Molar we Mass can talk about one mole of atoms or one mole of molecules. One mole of oxygen atoms (O) weighs 16.00 g. One mole of oxygen molecules (O 2 ) weighs 32.00 g. Two moles of O atoms weigh 32.00 g. Two moles of O 2 molecules weigh 64.00 g. And so on... 6-21

Molar Mass: Practice 1) Calculate the following molar masses: a) Water H 2 O b) Ammonia NH 3 c) Propane C 3 H 8 d) Glucose C 6 H 12 O 6 2) Calculate the mass of 1.48 mol C 3 H 8. 3) Calculate the mass of 4.85 mol HC 2 H 3 O 2. 6-22

Molar Mass: Practice 1. Calculate the number of moles of H 2 CO 3 present in a 7.55 g sample. 2. How many water molecules are present in 10.0 g of water? (Hint: find moles first) 3. How many molecules of sucrose (C 12 H 22 O 11 ) are present in a five pound bag of sugar? 6-23

Representative Particles= atoms, molecules, Items, etc

Section 6.5: Percent Composition of Compounds Sometimes it is not enough to know a compound s composition in terms of numbers of atoms; it may also be useful to know its composition in terms of the masses of its elements. We can calculate the mass fraction by dividing the mass of a given element in one mole of a compound by the mass of one mole of the compound. 6-25

Percent Composition of Compounds Once we know the mass fraction we can multiply by 100 to get the percent. Remember: percent = part/whole X 100. 6-26

ex) In one mole of methane (CH 4 ), there is one mole of C and four moles of H: 1 mol C = 12.01 g 4 mol H = 4(1.008) = 4.032 g 1 mol CH 4 = 12.01 g + 4.032 g = 16.042 g %C= mass of 1mol C/ mass of 1 mol CH 4 x 100 %C = 12.01/16.042 X 100 = 74.87% C %H= mass of 4 mol H/mass of 1 mol CH 4 x 100 %H = 4.032/16.042 X 100 = 25.13% H

Percent Composition Practice Determine the mass percent of each element in the following: H 2 SO 4 (sulfuric acid) C 3 H 7 OH (isopropyl alcohol) C 6 H 12 O 6 (glucose) 6-28

Section 6.6: Formulas of Compounds The object of this section is to do the opposite of the previous section. Instead of getting the mass from the formula, we will determine the formula from the mass. To do this, the mass must be converted to moles using each element s mass number. How can we convert mass to moles? 6-29

Formulas of Compounds ex) An unknown compound with a mass of 0.2015 g is is found to contain: 0.0806 g C 0.01353 g H 0.1074 g O It must contain: 0.0806g (1 mol C/12.01 g C) = 0.00671 mol C 0.01353g(1 mol H/1.008 g H) = 0.01342 mol H 0.1074g(1 mol/16.00 g O) = 0.00671 mol O 6-30

The numbers from the previous slide allow us to determine the C:H:O ratio. 0.00671 (C) : 0.01342 (H) : 0.00671 (O) If we divide each number by the smallest number we get 1:2:1 for the C:H:O ratio. This leads us to a formula of C 1 H 2 O 1 or CH 2 O. This is not necessarily the TRUE formula of the compound, but represents the RELATIVE numbers of atoms. 6-31

This represents the lowest whole number ratio of the compound. The actual formula could be CH 2 O, C 2 H 4 O 2, C 3 H 6 O 3, C 4 H 8 O 4, C 5 H 10 O 5, C 6 H 12 O 6,... Any formula with a C:H:O ratio of 1:2:1 is possible (in theory, an infinite number). C 1 H 2 O 1 represents the simplest possible formula or the EMPIRICAL FORMULA. The multiples represent possible MOLECULAR FORMULAS. 6-32

Determine Formulas the empirical of formula Compounds: from each of the Practice following molecular formulas: H 2 O 2 (hydrogen peroxide) C 4 H 10 (butane) CCl 4 (name?) HC 2 H 3 O 2 (acetic acid) C 6 H 12 O 6 (glucose) 6-33

Section 6.7: Calculation of Empirical Formulas There are four steps to determine the empirical formula of a compound: 1. Obtain the mass of each element present (in grams). 2. Determine the number of moles of each type of atom present (use atomic mass). 3. Divide each number by the smallest number. 4. Multiply all numbers by the smallest integer that will make them all integers 6-34

1) A Empirical 1.500 g sample Formulas: of a compound Practice containing only carbon and hydrogen is found to contain 1.198 g of carbon. Determine the empirical formula for this compound. 2) A 3.450 g sample of nitrogen reacts with 1.970 g of oxygen. Determine the empirical formula for this compound. 3) When a 2.000 g sample of iron metal is heated in air, it reacts with oxygen to achieve a final mass of 2.573g. Determine the empirical formula for this compound. 6-35

If the relative amounts of elements are presented as percentages, assume we are starting with a 100 g sample (100%). Then each percentage simply becomes a mass (in grams). For example if 15% of a compound is carbon, we just assume it is 15 g of a 100 g sample; from there we convert to moles. 6-36

Empirical Formulas: More Practice 1) The simplest amino acid, glycine, has the following mass percents: 32.00% carbon, 6.714% hydrogen, 42.63% oxygen, and 18.66% nitrogen. Determine the empirical formula for glycine. 2) A compound has been analyzed and found to have the following mass percent composition: 66.75% copper, 10.84% phosphorous, and 22.41% oxygen. Determine the empirical formula for this compound. 6-37

Section 6.8: Calculation of Molecular Formulas If we know the empirical formula AND the molar mass, we can calculate a compound s molecular formula. Note: without the molar mass, the best you can find is the empirical formula. Once the molar mass is known, one must ALWAYS find the empirical formula before one can calculate the molecular formula. It is impossible to do the reverse. 6-38

Calculation of Molecular Formulas It is also important to note that the molecular formula is ALWAYS an integer multiple of the empirical formula. We can represent the molecular formula in terms of the empirical formula: (Empirical Formula) n = molecular formula It should also be noted when n = 1, the empirical and molecular formulas are identical to each other. 6-39

Molecular Formulas: Practice 1) A compound containing carbon, hydrogen, and oxygen is found to be 40.00% carbon and 6.700% hydrogen by mass. The molar mass of this compound is between 115 and 125 g/mol. Determine the molecular formula for this compound. 2) Caffeine is composed of 49.47% C, 5.191% H, 28.86% N, and 16.48% O. The molar mass is about 194 g/mol. Determine the molecular formula for caffeine. 6-40