Plant Tissues. As single celled organisms evolved into multi cellular plants or animals, some cells became specialized in structure and function

Similar documents
Plant Growth and Development Part I. Levels of Organization

Chapter 15 PLANT STRUCTURES AND TAXONOMY

Scientific Identification & Classification

Levels of Organization

Botany Basics. Botany is...

Plants. Tissues, Organs, and Systems

Objectives. To identify plant structures and functions. To describe the structure of plant cells. To explain the process of reproduction in plants.

NOTES: CH 35 - Plant Structure & Growth

Life Science Chapter 11 SEED PLANTS PART 2

Plant Structure. Objectives At the end of this sub section students should be able to:

Fun with Botany 2009

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants.

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Structure And Growth

Chapter 23: Plant Diversity and Life Cycles

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS

Chapter 29: Plant Tissues

3.02 Morphology (external) and Anatomy (internal) Packet: P5 Plant Leaves you will explore both compound and simple leaves. Enjoy the journey.

Structures of Seed Plants

Chapter #35~ Plant Structure and Growth

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

ROOTS. Syllabus Theme A Plant Structure and Function. Root systems. Primary Growth of Roots. Taproot system. Fibrous root system.

Plant Anatomy: roots, stems and leaves

Plants. It is all about colonizing land Multi-cellular Chlorophyll = Make their own food Vascular Tissue Specialized structures/adaptations

Chapter 35~ Plant Structure and Growth

All about plants: Overview of Plants

Master Gardener Program. Utah State University Cooperative Extension

Dendrology FOR 219. Instructor: Dr. Jeremy Stovall. Lecture 3: Anatomy I: Vegetative Morphology

Plant Anatomy and Tissue Structures

The three principal organs of seed plants are roots, stems, and leaves.

Plant Structure. Lab Exercise 24. Objectives. Introduction

2018 Envirothon Wetland Plants Study Materials: diagrams and glossary

Anatomy of Plants Student Notes

Name Date Block. Plant Structures

Unit 5: Plant Science. Mr. Nagel Meade High School

Plant Anatomy: roots, stems and leaves

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Plant Structure and Function (Ch. 23)

CAMBIUM, meristem, heartwood, and lenticel are

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Plants can be either herbaceous or woody.

Plant Vocabulary. Define

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

Plant Anatomy AP Biology

All About Plants. What are plants?

Division Ave. High School AP Biology

Topic 2: Plants Ch. 16,28

The Shoot System: Primary Stem Structure - 1

Plant Structure, Growth, and Development

Chapter 23 Notes Roots Stems Leaves

Chapter 31. Plant Structure, Reproduction, and Development. Lecture by L.Brooke Stabler

Chapter 31. Plant Structure, Reproduction, and Development. Lecture by L.Brooke Stabler

Basic Principles of Plant Science EXAMINING PLANT STRUCTURES AND FUNCTIONS

vascular phloem These 68 vocabulary cards are part of a SCIENCE unit. Please keep this set in: Plants - Standard 6-8

Directed Reading A. Section: Structures of Seed Plants. is called a. shoots. c. phloem. b. xylem. d. leaves. is called ROOTS. size.

AP Biology. Basic anatomy. Chapter 35. Plant Anatomy. Shoots. Expanded anatomy. Roots. Modified shoots root shoot (stem) leaves

3. Diagram a cladogram showing the evolutionary relationships among the four main groups of living plants.

Slide 1 / 86. Angiosperms: The Flowering Plants

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Anatomy of Flowering Plants. K C Meena PGT Biology

WSU and UI Master Gardeners March 1, 2016 Philip Shinn

Honors Biology I Ch 29 Plant Structure & Function

BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH Lesson 6: PLANT PARTS AND FUNCTIONS Part 4 - Flowers and Fruit

Measurements of quantitative characters yield continuous data (value ranges) (Ex: plant height),

Parts of the stem. What does a stem do? Botany for Master Gardeners Part II

Plant Structure and Growth

Root cross-section (Ranunculus)

What were some challenges that plants had to overcome as they moved to land? Drying out in the sun Conserving water Reproduction without water

BIOL 317: Plant Identification and Classification Summer Notes

Today: Plant Structure Exam II is on F March 31

Ch. 35 Plant Structure, Growth, and Development

Directed Reading B. Section: Structures of Seed Plants. 1. What moves water and minerals through a plant? a. xylem c. seeds b. phloem d.

Simple Leaf Compound Leaf

Chapter 29. Table of Contents. Section 1 Plant Cells and Tissues. Section 2 Roots. Section 3 Stems. Section 4 Leaves. Plant Structure and Function

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues.

Stems and Transport in Vascular Plants. Herbaceous Stems. Herbaceous Dicot Stem 3/12/2012. Chapter 34. Basic Tissues in Herbaceous Stems.

Unit 8 Angiosperms Student Guided Notes

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

Structures and Functions of Living Organisms

Ch. 4- Plants. STRUCTURE AND FUNCTION And Taxonomy

Structures and Functions of Living Organisms

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS

Plants Notes. Plant Behavior Phototropism - growing towards light

Plant Structure and Function Extension

Classification of Plants

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Page 1. Gross Anatomy of a typical plant (Angiosperm = Flowering Plant): Gross Anatomy of a typical plant (Angiosperm = Flowering Plant):

MAGNOLIA botany. evergreen ; spicy odor of blooms; chambered pith; hairy leaves(lower epidermis) & petioles

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes

today finish up cell division Continue intro to plant anatomy main plant organs basic anatomy: monocots versus dicots How to tell the organs apart

Directed Reading A. Section: Structures of Seed Plants ROOTS. Skills Worksheet

Plant Anatomy and Physiology. What are the parts of the plant, and how do they work?

Unit 10 Plants/ Study Guide

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue.

BIOL 305L Laboratory One

Transcription:

Plant Tissues As single celled organisms evolved into multi cellular plants or animals, some cells became specialized in structure and function This lead to division of labor with groups of cells performing specific functions referred to as tissues All flowering plants are multi cellular and are composed of root, stem, and leaf tissues Meristems are regions on a plant of active cell division that give rise to the various tissue types Apical (apex) meristems are found at root and stem tips and cause increase in length (called primary growth) These give rise to leaves and non woody stems and roots 1

1/23/2013 Some plants (woody plants) will have meristematic tissue that accounts for increase in diameter These tissues are called vascular cambium and cork cambium and are a large part of a plant s secondary growth Overall, there are 3 types of basic tissues: dermal, ground, and vascular Dermal tissue the outermost cell layers of a plant In young plants and non woody plant parts, the outermost surface is the epidermis, a single layer of flattened cells In leaves and stems, epidermal cells secrete cutin, a waxlike substance that constitutes the cuticle The cuticle prevents water loss and is so thick in some leaves that they have a shiny surface Some leaves will have trichomes (hairs) on their surface and most will be glandular so they release an aroma when disturbed 2 2

The leaf epidermis will also have pores, or stomata, for gas exchange (CO 2, O 2, H 2 O vapor) In woody plants, the epidermis cracks and is replaced by the periderm, which is constantly produced by the cork cambium as tree girth increases Cork is composed of dead cells with walls containing suberin, a water proofing fatty substance Stomata Ground tissue makes up the bulk of non woody plant tissues and there are 3 categories by function: 1. Parenchyma tissue thin walled cells with many shapes and sizes Photosynthetic cells in leaves and green stems Storage cells in all plant organs Stores starch in potato tubers Water in cactus stem Sugar in sugar beets 3 Potato storage cells with starch granules

2. Collenchyma cells the primary support tissue in young plant tissue Elongated cells with thickened primary cell walls tightly packed just below the epidermis The tough strings in celery are strands of collenchyma cells 3. Sclerenchyma tissue can be of 2 cell types: a) Fibers elongated cells for support but non living (collenchyma cells are living at maturity) and have thickened secondary walls These are the fibers we use for rope and clothing (hemp, cotton, etc.) b) Sclereid cells many shapes but usually not elongate For mechanical support and protection Extremely thick secondary cell walls account for hardness of walnut shells and grit of pear fruit Vascular tissue the conductive tissues in plants In leaves, we can see them as veins Form a continuum of flow throughout the plant and there are 2 types (both composed of several cell types): xylem and phloem 4

a) Xylem transports mainly water but also some soluble nutrients from the roots through the rest of the tree The cells die soon after forming and harden to become wood in the interior of the tree b) Phloem it s the innermost layer of bark and transports nutrients, mainly sucrose, from leaves to the rest of the tree In the spring, nutrients flow from roots to the rest of the tree 5

Plant organs Angiosperms (flowering plants) are divided into 2 Classes and we see anatomical differences in stems, roots, and leaves 1. Magnoliopsida or Dicots 2 seed leaves Leaf venation pinnate or palmate, rarely parallel Flower parts usually in 4 s or 5 s, rarely 3 s Vascular bundles (xylem and phloem) in stems form a ring around a central pith Many (but not most) considered as trees 2. Liliopsida or monocots 1 seed leaf Leaf venation almost all parallel Flower parts mostly in 3 s, rarely 4 s or 5 s Vascular bundles are scattered throughout stem Only groups to reach tree size are palms, giant bamboo, and yucca like plants None have secondary xylem or wood Monocot (left) and dicot (right) stem 6

Stems Composed of vascular bundles, usually surrounded by a bundle sheath of fibers, and parenchyma cells Dicots can be herbaceous (non woody) or woody A soft pith of parenchyma cells is found in herbaceous stems Woody stems are filled with more vascular tissue, especially xylem, and annual rings are formed as new xylem is added each year Rays of parenchyma cells transport materials radially Important features include: 1. Buds found in the leaf axil (axillary) or on the tip (terminal) of the twig Buds can be scaly (with protective stipules) or naked (no protection for growing twig) Naked buds are usually found in the tropics where yearround high temperatures will not freeze the new tissue Scaled buds can have many overlapping scales (imbricate) or 2 or 3 large scales (valvate) 7

Imbricate, terminal beech bud Valvate, terminal yellow poplar 2. Leaf scars are left when a leaf falls from the twig We can see vascular bundle scars that show the pattern of leaf veins where they connected to the twig 3. Stipule scars (protective bud leaves) are not found on some trees and can be used for identification of species or group Leaf scar of tupelo Stipule scar surrounding magnolia twig 8

4. Lenticels are small, sometimes wartlike patches where some species get aeration (CO 2 and O 2 exchange) 5. The pith is the central part of the twig and is relatively soft in consistency in newly grown twigs Most of our native trees have a solid pith but some have diaphragmed pith (yellow poplar) with obvious elongated cells or chambered pith (walnut) with empty chambers Lenticels Walnut chambered pith 6. Thorns, spines, and prickles Some species have pointed protective structures to deter browsing animals and they are derived from various twig tissue depending on group or species Types include: a) Spines modified leaves or stipules (black locust) Because they are from structures only found at the node they can only be found at the node and nowhere else on the twig 9

b) Prickles formed from epidermal tissue so can be found anywhere on the twig (devil s walking stick, blackberry) c) Thorns modified stems so must occur at leaf axil and may have small leaves themselves (honeylocust, hawthorn, osage orange) Black locust spines Devil s walking stick Osage orange Roots can form 2 types of root systems 1. Taproot systems consist of one large main root with small lateral branch roots They can be used for storage (carrots, turnips, beets) 2. Fibrous root systems are highly branched and lack a central root (most grasses) 10

All roots have a thimble shaped root cap to protect the meristem as they grow Vascular tissue is found in the center, or stele, of the root with phloem surrounding xylem Parenchyma cells compose the surrounding cortex (the bulk of the root) and are for storage Leaves The primary photosynthetic organs of trees and one of the most variable structures They grow at regular intervals along a stem and the point where one or more leaves arise is called a node (the portion of the stem between the nodes is the internode) The wide portion of the leaf is the blade (or lamina) and the supporting stalk is the petiole 11

Some leaves have a pair of scales or leaf like structures called stipules that are attached to the petiole base or the twig These usually drop as the leaf grows but we may be able to see the scars where they were attached Some stipules have evolved into protective structures (spines) If all leaves drop after one growing season it is deciduous, and if all leaves do not drop at once and the tree appears green all year it is evergreen Some typically deciduous trees may keep their mostly dead, brown leaves into the winter (marcescent) This is common in beech and some oak species in our area (further north the species may be truly deciduous) 12

Leaf complexity often a very good trait to divide groups If there is a single blade it is simple If the leaf is divided into 2 parts it is compound If a leaf is compound, the individual blades are leaflets The axis supporting the leaflets is the rachis If leaflets are attached laterally along the rachis it is pinnately compound Leaves that have a secondary branching system (twice pinnate) are called bipinnate If a compound leaf does not have a long rachis and the leaflets seem to radiate in a fan like manner from the petiole, it is palmately compound 13

To distinguish a pinnately compound leaf from a twig with simple leaves, look for buds because they will only be found in the axil of the leaf (not leaflet) Leaf arrangements on twigs (phyllotaxy) Usually in 3 patterns of attachment at nodes: 1. Opposite paired at the same height on each side of the twig 2. Whorled >2 leaves at the same node 3. Alternate a single leaf attached at each node Leaf venation pattern of veins within leaves 4 basic types: 1. Pinnate single midrib with secondary veins branching off 2. Palmate 3 primary veins arising near the base of the blade and spreading out like a fan 3. Pinnipalmate intermediate between the 2 above with lowermost pairs of secondary veins arising near the base of the midrib that are larger than the other secondary or tertiary veins 4. Parallel many equal sized veins running parallel to one another that usually meet at the apex of the leaf 14

Leaf shape several features of leaf shape can be used for ID Overall blade shape Shape of apices (apex or end of the leaf) Shape of base Form of the leaf margin (or edge shape) Degree of lobing (deepness of lobes) Lobed margins indented 1/4 to 1/2 distance to midrib Cleft indented just over 1/2 Incised deeply indented to near midrib 15

Overall leaf shapes Leaf margins Leaf lobing 16

17

18

19

Reproductive Morphology More stable traits than vegetative parts (always same number, color, length, etc.) so more reliable to ID to species 2 problems for gathering: 1. Usually high in the crown 2. And/or very short lived in most cases Primary male reproductive structure is the pollen grain that carries the sperm Primary female reproductive structure is the ovule that carries the egg Basic steps and terminology for reproduction: 1. Pollination pollen must be delivered to the ovule (insects, wind) 2. Fertilization pollen grain reaches ovule then the egg and they combine 3. Seed develops from ovule and contains an embryo which can grow into a tree under the right conditions There are several levels of sexual differentiation Flowers that contain both male and female parts are perfect (or bisexual or synoecious; syn = together, oecious = house) Many plants: corn, squash, dogwood, cherry, black locust 20

If cones or flowers have only one sex they are imperfect or unisexual When male and female flowers or cones are on same plant it is monoecious (one house) Most conifers, oak, hickory, birch, many more When male and female flowers or cones are different plant it is dioecious (two houses) Willow, poplar, persimmon, holly, ginkgo, juniper, ash, boxelder, only a few others Pollination transfer of pollen from pollen sac to the ovule (for gymnosperms/conifers) or anther to stigma (for angiosperms/ flowering plants) 3 types: 1. Wind small, lightweight, dry pollen in super abundance Small flowers with exposed anthers and stigma Flowers in early spring before leaves for maximum airflow among branches Many are allergenic: oak, hickory, pine 21

Conifers have wind borne pollen but much less allergenic than angiosperms Some pollen have air sacs or wings and shape is genus or species specific, so with pollen ID in soil or fossil remains we can determine what types of plants grew in the past and where 2. Insect floral morphology correlated with a particular pollinating insect (beetle, bee, bumble bee, wasp, butterfly, moth) Flower petals are showy to attract and guide pollinator and flowers are usually aromatic (fragrant) Small amounts of large, heavy, sticky pollen grains Many times with a nectar supply as additional attractant (but some insects do eat pollen) Persimmon, magnolia, apple, cherry, sourwood, golden rod and most other small plants In gymnosperms, cycads are beetle pollinated 22

3. Birds similar to insect pollination, flower shape is correlated to pollinator and flowers are showy (usually red or yellow), aromatic, and full of nectar Bee pollinates a sourwood tree Magnolia beetle Fig fig wasp Reproductive Structures in Gymnosperms Ovules are exposed (naked) and arranged in various ways depending on the group Ovules of cycads are found on modified leaves attached to a central stem axis and the entire structure is a strobilus Ovules of conifers are found in axils of bracts (a type of reduced leaf) which are attached to modified lateral branches (scales) Pollen cones are simple with a stem axis with modified leaves, each with 2 pollen sacs 23

Male pollen cone of pines Cycad with strobilus A mature opened cypress cone and a mature unopened cone The exposed part of the scale in a mature, unopened cone is called the apophysis In pine cones, it terminates with a small pointy bump called an umbo Pine cones usually mature in 2 but sometimes 3 years 24

Most cones open and release seed soon after maturity but some remain closed for a long time and require fire to open These are called serotinous cones and are found on pines that have evolved in a fire maintained habitat This leads to rapid seed dispersal and seedling development after fire Seeds can be terminally or laterally winged or wingless depending on species Reproductive Structures in Angiosperms Flower anatomy: Central stem axis (receptacle) is a modified short shoot Perianth highly modified sterile leaves Outer whorl of leaves in perianth are sepals and together they are called the calyx Inner whorl of leaves are petals and together they are called the corolla 25

Stamens male reproductive leaves are composed of anthers (holds pollen sacs) and a filament (stalk) Carpels female reproductive structure composed of: Ovary containing ovules Style (stalk) and stigma (collects pollen) Pistil is a term to describe the visible portion of the ovary/style/stigma complex 26

A flower with all 4 parts (sepal, petal, stamen, pistil) is considered complete and if it s missing any one it is incomplete If one of the missing parts is a stamen or pistil, the flower is imperfect and is either staminate (male) or pistilate (female) In many flowers, these parts can be fused leading to further ID clues and the ovary will occur in different positions relative to the other parts (inferior, superior) Flowering is the process of floral maturation to the point when pollination is possible (anthesis) This is called coning in conifers because they have no flowers 27

Inflorescence and Infructescence Flowers can be terminal on the twig or axillary in leaf axils An inflorescence is the arrangement of several flowers in a branching system Some flowers are single so have no inflorescence The infructescence is the same but for fruit The stalk of a single flower or an inflorescence is the peduncle The stalk of individual flowers of an inflorescence is a pedicel 28

A fruit is a ripened ovary, usually with seeds A seed is a ripened ovule, usually with an embryo (fused pollen and egg) inside Classification of fruits is based on ovary structure and form of the mature fruit A fruit from a single ovary in a flower is simple and one formed from several ovaries that stay together when mature is compound Both types may be fleshy or dry Fleshy fruits are classified by differentiation of the fruit wall (pericarp) Dry fruits are classified by whether they split open and release seeds (dehiscent) or not (indehiscent), number of carpels (ovaries), and general form 29

30

31