Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Similar documents
Catalytic Asymmetric Intramolecular. Reactions

Catalytic Reactions in Organic Synthesis

Alkyne Dicobalt Complexes in Organic Chemistry

Additions to Metal-Alkene and -Alkyne Complexes

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Use of Cp 2 TiCl in Synthesis

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Chiral Bronsted Acids as Catalysts

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Shi Asymmetric Epoxidation

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

CATALYTIC ASYMMETRIC INTRAMOLECULAR PAUSON-KHAND AND PAUSON- KHAND-TYPE REACTIONS

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

"-Amino Acids: Function and Synthesis

Recent Advances in the Catalytic Pauson Khand-Type Reaction

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Electrophilic Carbenes

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Zr-Catalyzed Carbometallation

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis

Operating mechanisms: Useful articles:

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Strained Molecules in Organic Synthesis

Highlights of Schmidt Reaction in the Last Ten Years

MECHANISMS. Croomine. Key reaction is the vinylogous Mannich reaction. (CH 2 ) 4 Br H N P. CO 2 Me. Iminium ion formation via decarboxylation

Made available courtesy of Wiley-Blackwell: The definitive version is available at

Organocopper Reagents

Catalysis by Group IV Elements CHEM 966 (Tunge) Good reference: Titanium and Zirconium in Organic Synthesis Ilan Marek Ed., 2002.

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Total Syntheses of Minfiensine

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

Carbonyl Ylide Cycloadditions

Denmark s Base Catalyzed Aldol/Allylation

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Sonogashira: in situ, metal assisted deprotonation

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Regioselective Reductive Cross-Coupling Reaction

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Homogeneous Catalysis - B. List

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Denmark Group Meeting. & Electrophilic rearrangement of amides

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Mechanism Problem. 1. NaH allyl bromide, THF N H

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Organic Cumulative Exam October 13, 2016

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Stereoselective reactions of enolates

Wilkinson s other (ruthenium) catalyst

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Scandium-Catalyzed Asymmetric Reactions

Chiral Ionic Liquids (CILs) in Asymmetric Synthesis: The story so far.

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction

Stereoselective reactions of enolates: auxiliaries

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Rhodium Carbenoids and C-H Insertion

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Homogeneous Gold Catalysis - Unique Reactivity for Activation of C C Multiple Bonds

Supporting Information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Reporter: Yue Ji. Date: 2016/12/26

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

VI. Metal alkyls from oxidative addition / insertion

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Asymmetric Nucleophilic Catalysis

Oxidative Addition and Reductive Elimination

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

There are 15 total pages to this exam. Please be sure your copy has 15 pages before you begin.

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Cornforth: Nature is an organic chemist with a preference for the aldol reaction.

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

CuI CuI eage lic R tal ome rgan gbr ommon

Advanced Organic Chemistry

Asymmetric Diels Alder Reactions

Control over [2+2+2] and Carbonylative [4+2] Cycloaddition by CO Pressure in Co-Catalyzed Cycloaddition between Internal Diynes and Cyclopentadiene

Problem Session(5) Please provide each reaction mechanisms and explain the stereoselectivities.

Three Type Of Carbene Complexes

CEM 852 Final Exam. May 5, 2011

Transcription:

Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003

The General Pattern of the Pauson-Khand eaction Co 2 (C) 8 D 1 2 1 = C C 2 Co 2 (C) 6 (C) 3 Co Co(C) 3 Formal [2+2+1] cycloaddition Stoichiometric amount of the metal Long reaction time Schore, N. E.; Croudace, M. C. J. rg. Chem. 1981, 46, 5436

Improved eaction Conditions Promoters Tertiary amine N-oxides - oom temperature - Generate free coordination sites at cobalt by oxidative removal of C ligands Shambayati, S.; Crowe, W. E.; Schrieber, S. L. TL 1990, 31, 5289 Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S..; Yoo, S.-E. Synlett 1991, 204 Primary amines as solvent - Few minutes Sugihara, T. et al. ACIEE 1997, 36, 2801

Improved eaction Conditions Sulfides - Mild condition p-ts N Co 2 (C) 6 N 2 83 o C, 30 min, 15% p-ts N p-ts N Co 2 (C) 6 n-bu S C 3 ClC 2 C 2 Cl p-ts N 83 o C, 30 min, 79% Co 2 (C) 6 + Ph n-bu S C 3 ClC 2 C 2 Cl Ph 83 o C, 30 min, 79% Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. Synlett 1991, 204

Catalytic Pauson-Khand eactions Cobalt Catalyzed ethylene/c (310-360 bar) Co 2 (C) 8 (0.22 mol%) C 5 11 C 5 11 150 o C, 16h, 48% igh C pressure, high temperature autenstrauch, V.; Megard, P.; Conesa, J.; Kuster, W. ACIEE 1990, 29, 1413 Co 2 (C) 8 (3 mol%) Et 2 C Et 2 C P(Ph) 3 (10 mol%) C (1 atm), DME 120 o C, 82% Et 2 C Et 2 C The ligands stabilize the active cobalt intermediates. Jeong, N.; wang, S..; Lee, Y.; Chung, Y. K. JACS 1994, 116, 3159

Catalytic Pauson-Khand eactions Cobalt Catalyzed Et 2 C Et 2 C (ind)co(cd) (2 mol%) C (15 atm) DME, 100 o C, 64% Et 2 C Et 2 C Lee, B. Y.; Chung, Y. K.; Jeong, N.; Lee, Y.; wang, S.. JACS 1994, 116, 8793 Co 2 (C) 8 (5 mol%) Et 2 C Et 2 C C (1 atm) DME, 50-55 o C hv = 95% D = 83% Et 2 C Et 2 C Photochemical 8% starting enyne remaining after 14h Thermal 15 % starting enyne remaining after 14h Pagenkopf, B. L.; Livinghouse, T. JACS 1996, 118, 2285 Belanger, D. B.; Mahony, D. J..; Livinghouse, T. TL 1998, 39, 7637

Catalytic Pauson-Khand eactions Cobalt Catalyzed Et 2 C Et 2 C Co 2 (C) 8 (2.5 mol%) C (30 atm), C 2 (112 atm) 90 o C, 82% Et 2 C Et 2 C Super critical fluids promote the reaction. Jeong, N.; wang, S..; Lee, Y. W.; Lim, J. S. JACS 1997, 119, 10549 Me 2 C Me 2 C Co 2 (C) 8 (1 mol%) additive C (7 atm), toluene 120 o C Me 2 C Me 2 C additive yield DME (4 mol%) 94% 2 (4 ml) 97% ard Lewis Bases Sugihara, T.; Yamaguchi, M. Synlett 1998, 1384

Catalytic Pauson-Khand eactions Cobalt Catalyzed Co(acac) 2 (5 mol%) Et 2 C Et 2 C NaB 4 (10 mol%) C (30-40 atm), C 2 Cl 2 Et 2 C Et 2 C 100 o C, 66% Lee, N. Y.; Chung, Y. K. TL 1996, 37, 3145 Et 2 C Et 2 C Co 4 (C) 12 (1 mol%) C (10 atm), C 2 Cl 2 Et 2 C Et 2 C 150 o C, 92% Kim, J. W.; Chung, Y. K. Synthesis 1998, 142

Catalytic Pauson-Khand eactions Cobalt Catalyzed Me 2 C Me 2 C Co 3 (C) 9 (m 3 -C) (1 mol%) C (7 atm), toluene Me 2 C Me 2 C 120 o C, 98% Sugihara, T.; Yamaguchi, M. JACS 1998, 120, 10782 CoBr 2 (0.4 eq) + Zn (0.43 eq) C (1 atm), 110 o C toluene/t-bu In situ generation of the alkyne-co 2 (C) 6 complex ajesh, T.; Periasamy, M. TL 1999, 40, 817

Catalytic Pauson-Khand eactions Titanium Catalyzed Titanocene TMS 3 + N Ph Me 3 SiCN benzene, 45 o C Ph Ph catalyst mol% yield Cp 2 Ti(PMe 3 ) 2 10 80% Cp 2 TiCl 2 / n-buli 10 82% Ni(CD) 2 / Ligand 5 60% Berk, S. C.; Grossman,. B.; Buchwald, S. L. JACS 1993, 115, 4912 Berk, S. C.; Grossman,. B.; Buchwald, S. L. JACS 1994, 116, 8593 Ph catalyst (5 mol%) C (18 psig) toluene, 90 o C Ph catalyst yield ee Cp 2 Ti(C) 2 92% - C Ti C 85% 96% icks, F. A.; Buchwald, S. L. JACS 1996, 118, 11688 icks, F. A.; Buchwald, S. L. JACS 1999, 121, 7026

Catalytic Pauson-Khand eactions uthenium Catalyzed Et 2 C Et 2 C u 3 (C) 12 (2 mol%) C (10-15 atm) Et 2 C Et 2 C solvent, 140-150 o C 11 solvent yield Murai dioxane 86% Mitsudo DMAc 78% Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. JC 1997, 62, 3762 Kondo, T.; Suzuki, N.; kada, T.; Mitsudo, T. JACS 1997, 119, 6187

Catalytic Pauson-Khand eactions hodium Catalyzed Et 2 C Et 2 C Ph [hcl(c) 2 ] 2 (1 mol%) C (1 atm), dibutyl ether 130 o C, 94% Et 2 C Et 2 C Ph Koga, Y.; Kobayashi, T.; Narasaka, K. CL 1998, 249 Et 2 C Et 2 C Ph trans-[hcl(c)(dppp)] 2 (2.5 mol%) C (1 atm), toluene 110 o C, 99% Et 2 C Et 2 C Ph Jeong, N.; Lee, S.; Sung, B. K. rganometallics 1998, 17, 3642

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach S C Co C C C Co C C -C (D), N 2 +C (C) S Co C C C C Co C The sulfur ligated complex can be isolated. The equilibrium can be controlled. Maximum concentration of complex A - 40% de Maximum concentration of complex B - 92% de - Could not be used with less reactive olefins

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach 1. Co 2 (C) 6 2. NM S rt, 44h * dr 9:1 (+)-15-nor-pentalenene Tormo, J.; Moyano, A.; Pericas, M. A.; iera, A. JC 1997, 62, 4851

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach S 1. Co 2 (C) 8 2. 65 o C, 42h hexanes *S * 1.4 : 1 C C C Co S C Co C C NM (6 eq) C 2 Cl 2, -20 o C 28h *S * * 4.6 : 1 In the absence of the chelating sulfur moiety : low diastereoselectivity Pericas, M. A.; iera, A. et al. Tetrahedron 1997, 53, 8651

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach C C C Co C Co C C N 2 S toluene 25-45 o C or NM 2 (6 eq) Xc C 2 Cl 2 Thermal conditions - dr 523:1 xidative conditions - dr 800:1 Pericas, M. A.; iera, A. et al. JACS 1997, 119, 10225

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach S C C Co C Co C C C + S * * + S * * Close proximity Low reactivity Low selectivity The dicobalthexacarbonyl alkynyl sulfoxide complex is configurationally unstable. Pericas, M. A.; iera, A. et al. TA 1999, 10, 457

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach Co 2 (C) 8 S S C 3 CN, 80 o C 44% Zn, N 4 Cl TF, rt 96% ee The chiral sulfoxide moiety was attached to the olefin. cis and trans vinyl sulfoxides afforded only one isomer upon cyclization. Adrio, J.; Carretero, J. C. JACS 1999, 121, 7411

Asymmetric Pauson-Khand eactions Chiral Complex Approach X E X X P P X C Co Co C C C Ph + 5 eq toluene 80 o C Ph E=NMe : 3-5 days, 90-98% yield E=(-)-a- methyl-benzylamine : 16% ee Greene, A. E. et al.jc 1999, 64, 3492

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach Co Mo C C C C C toluene 61% 100% de Chiral mixed metal complex Thermally stable utherford, D. T.; Christie, S. D.. TL 1998, 39, 9805 10-15 mol% (S,S)-(EBTI)TiMe 2 N N 14 psig C, toluene, 12-45 h, 95 o C Sturla, S. J.; Buchwald, S. L. JC 1999, 64, 5547

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach Jeong, N.; Sung, B. K.; Choi, Y. K. JACS 2000, 122, 6771

Asymmetric Pauson-Khand eactions Chiral Auxiliary Approach Shibata, T.; Takagi, K. JACS 2000, 122, 9852

Asymmetric Pauson-Khand eactions Chiral Promoter Approach C C Co Co C C C C Chiral promoter should be able to differentiate between the enantiotopic ligands. Chiral N-oxides were used. Maximum ee 33% Kerr, W. J.; Kirk, G. G.; Middlemiss, D. Synlett 1995, 1085 Derdau, V.; Laschat, S.; Jones, P. G. eterocycles 1998, 48, 1445

Asymmetric Pauson-Khand eactions Chiral Precursor Approach TMS Me Cr(C) 3 Li 1. 2. Br 3. Ts TMS TMS 1. Co 2 (C) 8 2. NM (10 eq) 88% TMS TMS Quattropani, A. et al. JACS 1997, 119, 4773

Asymmetric Pauson-Khand eactions Chiral Precursor Approach Me Me 1 1. Co 2 (C) 8 1 1 2 or 1 2 2. D or TMAN or NM 1 1 2 Depending on groups, yields ranged from 0 to 96%. The product ratio ranged from 1:1 to 100:0. Mukai, C.; anaoka, M. et al. JCS PT1 1998, 2903 Mukai, C.; anaoka, M. et al. TL 1998, 39, 7909

Asymmetric Pauson-Khand eactions Chiral Precursor Approach Et TMS 1. Co 2 (C) 8 2. Et 2 AlCl, -78 o C 82% 2 steps C C Co C C Co C C C 3 CN, air reflux, 15 min 85% (5:1) or NM, C 2 Cl 2 70% (11:1) or ultrasound C 3 CN, 40 o C (+)-epoxydictymene 45% (3:1) Schreiber, S. L. et al. JACS 1994, 116, 5505 Schreiber, S. L. et al. JACS 1997, 119, 4353

Pauson-Khand reaction - Mechanistic Studies C C Co C C Co C C ' '' C C C C Co Co C C '' ' C CC C C Co Co '' C ' ' '' -Co 2 (C) 5 C C Co C C Co C ' '' C CC C Co Co C ' '' The currently accepted mechanistic pathway Magnus, P.; Principe, L. M. TL 1985, 26, 4851 Beyond the fact that a hexacarbonyldicobalt-alkyne complex is involved, little is actually known about the mechanism. No group has observed any of the proposed intermediates.

Pauson-Khand reaction - Mechanistic Studies C Co C C Co C C C -C C Co C Co C C C C Co C Co C C C 2 C C L Co Co C C L C Co C Co C L C The reaction was interrupted by exposing the reaction mixture to an oxygen containing atmosphere. Krafft, M. E. et al. JACS 1996, 118, 6080

Pauson-Khand reaction - Summary The P-K reaction allows for a rapid increase in molecular complexity from relatively simple starting materials. Several promoters can make the reaction efficient. Many kinds of metal complexes can be used as catalysts. igh levels of enantioselectivity can be achieved. The reaction mechanism is not clear.