Microelectronics Circuit Analysis and Design. ac Equivalent Circuit for Common Emitter. Common Emitter with Time-Varying Input

Similar documents
55:041 Electronic Circuits

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Exercises for Differential Amplifiers. ECE 102, Fall 2012, F. Najmabadi

Bipolar Junction Transistor (BJT) - Introduction

Design of Analog Integrated Circuits

ME 3600 Control Systems Frequency Domain Analysis

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

Junction Bipolar Transistor. Characteristics Models Datasheet

OPERATIONAL AMPLIFIERS

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

Chapter 2. - DC Biasing - BJTs

Micro and Smart Systems

Chapter 2 - DC Biasing - BJTs

Section 1: Common Emitter CE Amplifier Design

OP AMP CHARACTERISTICS

Sensors and Actuators Introduction to sensors

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

Lecture #2 : Impedance matching for narrowband block

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

RESONANCE SERIES RESONANT CIRCUITS. 5/2007 Enzo Paterno 1

CHAPTER.4: Transistor at low frequencies

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Homework Assignment 08

T-model: - + v o. v i. i o. v e. R i

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

Chapter 13 Bipolar Junction Transistors

R/2 L/2 i + di ---> + + v G C. v + dv - - <--- i. R, L, G, C per unit length

Bipolar junction transistors

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

ECE 2100 Circuit Analysis

Lecture 2 Feedback Amplifier

ACADAMIC CHAPTER OF SWECHA September- 2010

Analytical Solution to Diffusion-Advection Equation in Spherical Coordinate Based on the Fundamental Bloch NMR Flow Equations

Chapter 13 Small-Signal Modeling and Linear Amplification

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt.

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

Momentum is conserved if no external force

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Bipolar transistors. Two port representation of the bipolar transistor Models of bipolar transistors

5.1 Moment of a Force Scalar Formation

(8) Gain Stage and Simple Output Stage

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

55:041 Electronic Circuits The University of Iowa Fall Exam 2

CHAPTER GAUSS'S LAW

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

EECS 105: FALL 06 FINAL

Direct Torque Control of 5-Phase 10/8 Switched Reluctance Motors

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Data Sheet. ACPL-8x7 Multi-Channel Full-Pitch Phototransistor Optocoupler. Description. Features. ACPL-827 pin layout.

Circle the one best answer for each question. Five points per question.

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

MEM202 Engineering Mechanics Statics Course Web site:

ENGI 1313 Mechanics I

FI 2201 Electromagnetism

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

Chapter 4 Motion in Two and Three Dimensions

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES

Journal of Theoretics

List... Package outline... Features Mechanical data... Maximum ratings... Switching time equivalent test circuits...

Experiment I Voltage Variation and Control

LC transfer of energy between the driving source and the circuit will be a maximum.

The piezoelectric quartz crystal resonator is an essential

Strees Analysis in Elastic Half Space Due To a Thermoelastic Strain

CHAPTER 9 FREQUENCY RESPONSE

Design of CMOS Analog Integrated Circuits. Basic Building Block

A DETAILED STUDY OF THE HIGH ORDER SERIAL RESONANT INVERTER FOR INDUCTION HEATING

A) (0.46 î ) N B) (0.17 î ) N

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Lecture 20a. Circuit Topologies and Techniques: Opamps

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

Steady State Analysis of Squirrel-Cage Induction Machine with Skin-Effect

Digital Integrated CircuitDesign

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

Dynamic Performances of Self-Excited Induction Generator Feeding Different Static Loads

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

Chapter 5. BJT AC Analysis

Combustion Chamber. (0.1 MPa)

KIRCHHOFF CURRENT LAW

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

A) N B) 0.0 N C) N D) N E) N

Lecture 2 Date:

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

AIR FORCE RESEARCH LABORATORY

8 Separation of Variables in Other Coordinate Systems

A two-port network is an electrical network with two separate ports

Electric Charge. Electric charge is quantized. Electric charge is conserved

Section 4.2 Radians, Arc Length, and Area of a Sector

Transcription:

Micelectnics Cicuit Analysis and Design Dnald A. Neamen Chapte 6 Basic BJT Amplifies In this chapte, we will: Undestand the pinciple f a linea amplifie. Discuss and cmpae the thee basic tansist amplifie cnfiguatins. the cmmn-emitte amplifie. the emitte-fllwe amplifie. the cmmn-base amplifie. Analyze multi-tansist amplifies. Neamen Micelectnics, 4e Chapte 6-1 Neamen Micelectnics, 4e Chapte 6-2 Cmmn Emitte with Time-Vaying Input ac Equivalent Cicuit f Cmmn Emitte Neamen Micelectnics, 4e Chapte 6-3 Neamen Micelectnics, 4e Chapte 6-4 1

I B Vesus V BE Chaacteistic ac Equivalent Cicuit exp 1 + x +.. v be i B I BQ (1 + ) = I B + ib VT Neamen Micelectnics, 4e Chapte 6-5 Neamen Micelectnics, 4e Chapte 6-6 ac Equivalent Cicuit ac Equivalent Cicuit Neamen Micelectnics, 4e Chapte 6-7 Neamen Micelectnics, 4e Chapte 6-8 2

ac Equivalent Cicuit Small-Signal Equivalent Cicuit Using Cmmn-Emitte Cuent Gain Neamen Micelectnics, 4e Chapte 6-9 Neamen Micelectnics, 4e Chapte 6-10 ac Equivalent Cicuit Small-Signal Hybid Mdel f npn BJT g g m βv = I m I = V CQ T T CQ = β Phas signals ae shwn in paentheses. Neamen Micelectnics, 4e Chapte 6-11 Neamen Micelectnics, 4e Chapte 6-12 3

Small-Signal Equivalent Cicuit f npn Cmmn Emitte cicuit A = ( g C )( Neamen Micelectnics, 4e Chapte 6-13 v m + B ) Pblem-Slving Technique: BJT AC Analysis 1. Analyze cicuit with nly dc suces t find Q pint. 2. eplace each element in cicuit with smallsignal mdel, including the hybid mdel f the tansist. 3. Analyze the small-signal equivalent cicuit afte setting dc suce cmpnents t ze. Neamen Micelectnics, 4e Chapte 6-14 Tansfmatin f Elements Element DC Mdel AC Mdel Hybid Mdel f npn with Ealy Effect esist Capacit Open C Induct Sht L Dide +V γ, f d = V T /I D Independent Cnstant Vltage Suce Independent Cnstant Cuent Suce I S + V S - Sht Open V = I A CQ Neamen Micelectnics, 4e Chapte 6-15 Neamen Micelectnics, 4e Chapte 6-16 4

Hybid p Mdel f pnp with Ealy Effect h-paamete Mdel f npn All vltage and cuent plaities ae evesed. Gain equatin ae the SAME. v = gm( C ) v = gmv ( C ) v = vs ( ) + B v = Bib ( C ) vs ib = ( ) + B V I be c = h I + h V ie = h I + h V fe b b e e ce ce KVL at input lp KCL at utput lp Neamen Micelectnics, 4e Chapte 6-17 Neamen Micelectnics, 4e Chapte 6-18 h-paamete Mdel f npn Cmmn Emitte with Vltage-Divide Bias and a Cupling Capacit h h ie fe = b = β + µ h h e e µ 1+ β 1 = + µ Neamen Micelectnics, 4e Chapte 6-19 Neamen Micelectnics, 4e Chapte 6-20 5

Small-Signal Equivalent Cicuit Cupling Capacit assumed a Sht npn Cmmn Emitte with Emitte esist i = 1 2 = c i Av = gm ( ) + i S Neamen Micelectnics, 4e Chapte 6-21 Neamen Micelectnics, 4e Chapte 6-22 Cmmn Emitte with E E and Emitte Bypass Capacit ib i = Vin / I = 1 2 b ib βc Av = + (1 + β ) = + (1 + β ) E i ( + i S E ) Neamen Micelectnics, 4e Chapte 6-23 Neamen Micelectnics, 4e Chapte 6-24 6

DC and AC Lad Lines: E and Emitte Bypass Capacit Pblem-Slving Technique: Maximum Symmetical Swing 1. Wite dc lad line equatin that elates I CQ and V CEQ. 2. Wite ac lad line equatins that elates ic and vce 3. In geneal, i c = I CQ I C (min), whee I C (min) is ze the minimum cllect cuent. 4. In geneal, v ce = V CEQ V CE (min), whee V CE (min) is sme specified minimum cllect-emitte vltage. 5. Cmbine abve 4 equatins t find ptimum I CQ and V CEQ. Neamen Micelectnics, 4e Chapte 6-25 Neamen Micelectnics, 4e Chapte 6-26 Cmmn-Cllect Emitte-Fllwe Amplifie Emitte Fllwe Neamen Micelectnics, 4e Chapte 6-27 Neamen Micelectnics, 4e Chapte 6-28 7

Emitte Fllwe S-S Equivalent :Emitte Fllwe Typically a lage value due t the eflected impedance (1 + β )( E ) i Av = ( ) 1 + (1 + β )( ) + E i S Neamen Micelectnics, 4e Chapte 6-29 Neamen Micelectnics, 4e Chapte 6-30 Output esistance: Emitte Fllwe Emitte Fllwe Cuent Gain V = I x x = E Typically a lw value due t 1 + β the eflected impedance Neamen Micelectnics, 4e Chapte 6-31 Neamen Micelectnics, 4e Chapte 6-32 8

Emitte Fllwe Cuent Gain Cmmn-Base Amplifie Neamen Micelectnics, 4e Chapte 6-33 Neamen Micelectnics, 4e Chapte 6-34 Cmmn Base Cmmn Base A g ( v m C C ) C Ai = gm ( + L L )[ 1+ β E ] Neamen Micelectnics, 4e Chapte 6-35 Neamen Micelectnics, 4e Chapte 6-36 9

Cmmn Base Cmmn Base Neamen Micelectnics, 4e Chapte 6-37 Neamen Micelectnics, 4e Chapte 6-38 Cmmn Base Cmmn Base Neamen Micelectnics, 4e Chapte 6-39 Neamen Micelectnics, 4e Chapte 6-40 10

Cmmn Emitte Cascade Amplifie Neamen Micelectnics, 4e Chapte 6-41 Neamen Micelectnics, 4e Chapte 6-42 Cascade Amplifie Dalingtn Pai A i β 1 β 2 Neamen Micelectnics, 4e Chapte 6-43 Neamen Micelectnics, 4e Chapte 6-44 11

Cascde Amplifie Cascde Amplifie A g v ( m1 C L ) Neamen Micelectnics, 4e Chapte 6-45 Neamen Micelectnics, 4e Chapte 6-46 12