Chapter 7 Rules of Differentiation & Taylor Series

Similar documents
Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Iterative Methods of Order Four for Solving Nonlinear Equations

1985 AP Calculus BC: Section I

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Chapter Taylor Theorem Revisited

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

PURE MATHEMATICS A-LEVEL PAPER 1

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Technical Support Document Bias of the Minimum Statistic

A Review of Complex Arithmetic

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Ordinary Differential Equations

Probability & Statistics,

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Discrete Fourier Transform (DFT)

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

+ x. x 2x. 12. dx. 24. dx + 1)

CDS 101: Lecture 5.1 Reachability and State Space Feedback

First derivative analysis

2008 AP Calculus BC Multiple Choice Exam

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

H2 Mathematics Arithmetic & Geometric Series ( )

Calculus & analytic geometry

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

CDS 101: Lecture 5.1 Reachability and State Space Feedback

ln x = n e = 20 (nearest integer)

NET/JRF, GATE, IIT JAM, JEST, TIFR

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

Statistics 3858 : Likelihood Ratio for Exponential Distribution

A Simple Proof that e is Irrational

Lecture contents. Semiconductor statistics. NNSE508 / NENG452 Lecture #12

STIRLING'S 1 FORMULA AND ITS APPLICATION

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

1973 AP Calculus BC: Section I

On Gaussian Distribution

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

UNIT 2: MATHEMATICAL ENVIRONMENT

Correlation in tree The (ferromagnetic) Ising model

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Thomas Whitham Sixth Form

APPENDIX: STATISTICAL TOOLS

10. Joint Moments and Joint Characteristic Functions

Chapter (8) Estimation and Confedence Intervals Examples

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Taylor and Maclaurin Series

10. Limits involving infinity

Math 34A. Final Review

MSLC Math 151 WI09 Exam 2 Review Solutions

Lectures 9 IIR Systems: First Order System

Problem Value Score Earned No/Wrong Rec -3 Total

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

Lectures 2 & 3 - Population ecology mathematics refresher

EEO 401 Digital Signal Processing Prof. Mark Fowler

The Matrix Exponential

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Exercises for lectures 23 Discrete systems

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

First order differential equation Linear equation; Method of integrating factors

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

Thomas Whitham Sixth Form

The Matrix Exponential

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6)

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Differentiation of Exponential Functions

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

DFT: Discrete Fourier Transform

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

Solutions to Homework 5

and one unit cell contains 8 silicon atoms. The atomic density of silicon is

How many neutrino species?

1973 AP Calculus AB: Section I

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Pier Franz Roggero, Michele Nardelli, Francesco Di Noto

10. The Discrete-Time Fourier Transform (DTFT)

Constructive Geometric Constraint Solving

Representing Functions as Power Series. 3 n ...

3 a b c km m m 8 a 3.4 m b 2.4 m

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

Section 11.6: Directional Derivatives and the Gradient Vector

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

10. EXTENDING TRACTABILITY

How much air is required by the people in this lecture theatre during this lecture?

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1.

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Washington State University

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

ENGR 323 BHW 15 Van Bonn 1/7

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

8. Barro Gordon Model

Transcription:

RS - Ch 7 - Ruls o Dirtiatio Chaptr 7 Ruls o Dirtiatio & Taylor Sris Isaa Nwto a Gottri Libiz 7. Rviw: Drivativ a Drivativ Ruls Rviw: Diitio o rivativ. y ' lim lim Applyig this iitio, w rviw th 9 ruls o irtiatio. First, th ostat rul: y Th rivativ o a ostat utio is zro or all valus o. y y k k y ' lim I k th k lim k k lim

RS - Ch 7 - Ruls o Dirtiatio 7. A Rviw o th 9 Ruls o Dirtiatio 5a 5b k g g g g g Costat a prout Costat, Costat Powr Sum - ir Prout utio prout, utio rul ruls & powr ruls 7. A Rviw o th 9 Ruls o Dirtiatio 6 7-8:Lt 7 8 9 : Lt 9 g z g g,..., y, y g g g y y y whr y is a stritly mootoi utio o y g z y y.. g z y y, a Uivariat Chai rul Multivariat Chai rul y Quotit rul Ivrs- utio rul

RS - Ch 7 - Ruls o Dirtiatio 5 7.. Powr-Futio Rul lim... lim... lim lim lim ' Eampl: Lt Total Rvu R b: R = 5 Q Q => RQ = MR =5 Q. As Q irass R irass as log as Q>7.5. 6 7.. Epotial-Futio Rul h h h h κ h κ h h ' lim Thus, lim.th, Lt uiqu positiv umbr or whih lim : Diitio o lim lim lim t t t t t y Eampl.5.5.5.5 Growth : Epotial

RS - Ch 7 - Ruls o Dirtiatio 7.. Epotial-Futio Rul: Jok A mathmatiia wt isa a bliv that h was th irtiatio oprator. His ris ha him pla i a mtal hospital util h got bttr. All ay h woul go arou rightig th othr patits by starig at thm a sayig "I irtiat you!" O ay h mt a w patit; a tru to orm h star at him a sai "I irtiat you!", but or o, his vitim's prssio i't hag. Surpris, th mathmatiia ollt all his rgy, star irly at th w patit a sai louly "I irtiat you!", but still th othr ma ha o ratio. Fially, i rustratio, th mathmatiia sram out "I DIFFERENTIATE YOU!" Th w patit almly look up a sai, "You a irtiat m all you lik: I'm." 7.. Sum or ir rul Th rivativ g g o a sum or ir o sum or ir o th rivativs o two utios is th th two utios Eampl : C Q C Q Q C Q Q Q Q Q Q 8Q Q 75 Q Q Q 75 8

RS - Ch 7 - Ruls o Dirtiatio 7.. Prout rul g g g Th rivativ o th prout o two utios is qual to th so utio tims th rivativ o th irst plus th irst utio tims th rivativ o th so. Eampl: Margial Rvu R PQ R Q Chk : Q Q R Q P 5 -Q P P Q 5 Q 5 Q Q Q R 5 -QQ 5 Q R Q 5 Q 9 7.. Quotit rul 6 g g g g Eampl : TC CQ AC CQQ C Q Q i Q Q Q C Q C Q Q C Q, th Q Total ost Avrag ost C Q Q Q C Q Q AC MC Avrag Cost Margial Cost MC AC 5

RS - Ch 7 - Ruls o Dirtiatio 7.. Chai rul This is a as o two or mor irtiabl utios, i whih ah has a istit ipt variabl, whr z y, i.., z is a utio o variabl y a y 7 g, i.., y is a utio o variabl z z y y y yg Q y L Eampl: R Q rvu& R R Q L Q L g MR MPP L MRP L y g z Q gl g.that is, output 7.. Chai rul: Appliatio - Log rul Chai Rul : z z y y yg y y y g Cosir h = l = Th, h =. Lt s apply Chai rul to h h ' l l l l l 6

RS - Ch 7 - Ruls o Dirtiatio 7.. Chai rul a its rlatio to total irtial Fi z, whr z y a y g, z Algorithm : Substitut th total irtial o y ito that o z a ivi through by z y y y y y assumig z z z y. y z y y y 7.. Ivrs utio rul Lt y= b a irtiabl stritly mootoi utio. y y y Not: A mootoi utio is o i whih a giv valu o yils a uiqu valu o y, a giv a valu o y will yil a uiqu valu o a o-to-o mappig. Ths typs o utios hav a i ivrs. Eampl : Q P Q s Q s b P b P b P P PQ -b - s Q b b b Q s [ Q s whr P] b 7

RS - Ch 7 - Ruls o Dirtiatio 7.. Ivrs-utio rul This proprty o o-to-o mappig is uiqu to th lass o utios kow as mootoi utios: Rall th iitio o a utio utio: o y or ah mootoi utio: o or ah y ivrs utio i > > mootoially irasig Q s = b + b P supply utio whr b > P = -b b + b Q s ivrs supply utio i > < mootoially rasig Q = a -a P ma utio whr a > P = a a -a Q ivrs ma utio 5 7. So a Highr Drivativs Drivativ o a rivativ Giv y = Th irst rivativ ' or y is itsl a utio o, it shoul b irtiabl with rspt to, provi that it is otiuous a smooth. Th rsult o this irtiatio is kow as th so rivativ o th utio a is ot as '' or y. Th so rivativ a b irtiat with rspt to agai to prou a thir rivativ: ''' a so o to or y This pross a b otiu to prou a -th rivativ. 6 8

RS - Ch 7 - Ruls o Dirtiatio 7. Eampl: st. a r rivativs Graphially: Q Q Q R Q Q Q Q R Q Q primitiv utio st rivativ rivativ r rivativ MR Q Q Q MR 7 7. Eampl: Highr Orr Drivativs 5 6 y ' 6 " 8 5 96 6 96 7 6 primitiv utio st rivativ rivativ r rivativ th rivativ 5th rivativ 8 9

RS - Ch 7 - Ruls o Dirtiatio 7. Itrprtatio o th so rivativ ' masurs th rat o hag o a utio.g., whthr th slop is irasig or rasig '' masurs th rat o hag i th rat o hag o a utio.g., whthr th slop is irasig or rasig at a irasig or rasig rat how th urv ts to b itsl Utility utios ar irasig i osumptio '>. But thy ir by th rat o hag i '>; that is, thy ir o ''. '' >, irasig '> '' =, ostat '> '' <, rasig '> usual assumptio 9 7. Strit oavity a ovity Stritly oav: i w pik ay pair o poits M a N o its urv a joit thm by a straight li, th li sgmt MN must li tirly blow th urv, pt at poits MN. A stritly oav urv a vr otai a liar sgmt aywhr i it os it s just oav, ot stritly oav. Tst: i " is gativ or all, th stritly oav. Stritly ovity: i w pik ay pair o poits M a N o its urv a joit thm by a straight li, th li sgmt MN must li tirly abov th urv, pt at poits MN. A stritly ov urv a vr otai a liar sgmt aywhr i it os it s just ov, ot stritly ov. Tst: i " is positiv or all, th stritly ov.

RS - Ch 7 - Ruls o Dirtiatio Figur 7.6 Coav a Cov Futios 7. Coavity a Covity: & I " < or all, th stritly oav. a global maima I " > or all, th stritly ov. a global miima Coav utios hav valuabl proprtis: ritial poits ar global maima, & th wight sum o oav utios is also oav. A popular hoi to srib a avrag utility a proutio utios. Eampl: AP = Arrow-Pratt risk avrsio masur = -U wu w Lt Uw = β lw β > U w = βw > U w = -β w - < AP = w As w walth irass, risk avrsio rass.

RS - Ch 7 - Ruls o Dirtiatio Figur 7.5 Logarithmi Utility Futio Figur 7.7 Utility Futios or Risk- Avrs a Risk-Lovig Iiviuals

RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris Diitio: Sris, Partial Sums a Covrg Lt {a } b a iiit squ.. Th ormal prssio Σ a is all a iiit sris.. For N =,,,... th prssio S = Σ a is all th N-th partial sum o th sris.. I lim S ists a is iit, th sris is sai to ovrg.. I lim S os ot ist or is iiit, th sris is sai to ivrg. Eampl: Σ = + + 8 + 6 +... a iiit sris Th r, a th partial sums ar, rsptivly:.875, a.975. Th -th partial sum or this sris is i as S = + + +... + Divi S by a subtrat it rom th origial o, w gt: S - S = - + S = - + 5 Th, lim S = th iiit sris ovrgs to 7.5 Sris: Covrg A sris may otai positiv a gativ trms, may o thm may al out wh a togthr. H, thr ar irt mos o ovrg: o mo or sris with positiv trms, a aothr mo or sris whos trms may b gativ a positiv. Diitio: Absolut a Coitioal Covrg A sris Σ a ovrgs absolutly i th sum o th absolut valus Σ a ovrgs. A sris ovrgs oitioally, i it ovrgs, but ot absolutly. Eampl: Σ - = - + - +... => o absolut ovrg Coitioal ovrg? Cosir th squ o partial sums: S = - + - +... - = - i is o, a S = - + - +... - + = i is v. 6 Th, S = - i is o a i is v. Th sris is ivrgt.

RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Rarragmt Coitioally ovrgt squs ar rathr iiult to work with. Svral opratios o ot work or suh sris. For ampl, th ommutativ law. Si a + b = b + a or ay two ral umbrs a a b, positiv or gativ, o woul pt also that hagig th orr o summatio i a sris shoul hav littl t o th outom Thorm: Covrg a Rarragmt A sris Σ a b a absolutly ovrgt sris. Th ay rarragmt o trms i that sris rsults i a w sris that is also absolutly ovrgt to th sam limit. Lt Σ a b a oitioally ovrgt sris. Th, or ay ral umbr thr is a rarragmt o th sris suh that th w rsultig sris will ovrg to. 7 7.5 Sris: Absolut Covrgt Sris Absolutly ovrgt sris bhav just as pt. Thorm: Algbra o Absolut Covrgt Sris Lt Σ a a Σ b b two absolutly ovrgt sris. Th:. Th sum o th two sris is agai absolutly ovrgt. Its limit is th sum o th limit o th two sris.. Th ir o th two sris is agai absolutly ovrgt. Its limit is th ir o th limit o th two sris.. Th prout o th two sris is agai absolutly ovrgt. Its limit is th prout o th limit o th two sris Cauhy Prout. 8

RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Covrg Tsts Thr ar may tsts or ovrg or ivrg o sris. Hr ar th most popular i oomis. Divrg Tst I th sris Σ a ovrgs, th {a } ovrgs to. Equivaltly: I {a } os ot ovrg to, th th sris Σ a a ot ovrg. Limit Compariso Tst Suppos Σ a a Σ b ar two iiit sris. Suppos also that r = lim a b ists a < r <. Th Σ a ovrgs absolutly i Σ b ovrgs absolutly. 9 7.5 Sris: Covrg Tsts p Sris Tst Th sris Σ p is all a p Sris. i p > th p-sris ovrgs i p th p-sris ivrgs. Altratig Sris Tst A sris o th orm Σ - b, with b is all altratig sris. I {b } is rasig a ovrgs to, th th sum ovrgs. Gomtri Sris Tst Lt a R. Th sris Σ a is all gomtri sris. Th, i a < th gomtri sris ovrgs i a th gomtri sris ivrgs. 5

RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Powr Sris Diitio: Powr Sris A utio sris o th orm Σ a - = a + a - + a - +... is all a powr sris tr at. That is, a powr sris is a iiit sris o utios whr ah trm osists o a oiit a a a powr -. Eampls: - Σ = + = + + + +... - Σ = - = - + - 8 + 6 +... - Σ = - = - + 6 - + 98 - +... - Popular ampl i Fia DDM isout ivi mol: 7.5 Sris: Powr Sris Proprtis: - Th powr sris ovrgs at its tr, i.. or = - Thr ists a r suh that th sris ovrgs absolutly a uiormly or all - p, whr p<r, a ivrgs or all - > r. r is all th raius o ovrg or th powr sris a is giv by: r = lim sup a a + Not: It is possibl or r to b zro --i.., th powr sris ovrgs oly or = -- or to b -i.., th sris ovrgs or all. Eampl: Σ = - r = lim sup a a + = lim sup + + = lim sup +* = Sris ovrgs absolutly a uiormly o ay subitrval o - <. 6

RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Powr Sris Polyomials ar rlativly simpl utios: thy a b a, subtrat, a multipli but ot ivi, a, agai, w gt a polyomial. Dirtiatio a itgratio ar partiularly simpl a yil agai polyomials. W kow a lot about polyomials.g. thy a hav at most zros a w l prtty omortabl with thm. Powr sris shar may o ths proprtis. Si w a a, subtrat, a multiply absolutly ovrgt sris, w a a, subtrat, a multiply thik Cauhy prout powr sris, as log as thy hav ovrlappig rgios o ovrg. Dirtiatig a itgratig works as pt. Importat rsult: Powr sris ar iiitly ot lim sup irtiabl. 7.6 Taylor Sris Th Taylor sris is a rprstatio o a iiitly irtiabl utio as a iiit sum o trms alulat rom th valus o its rivativs at a sigl poit,. It may b rgar as th limit o th Taylor polyomials. Brook Taylor 685 7, Egla Diitio: Taylor Sris Suppos is a iiitly ot irtiabl utio o a st D a D. Th, th sris T, = Σ [!] - is all th ormal Taylor sris o tr at, or arou,. I =, th sris is also all MaLauri Sris. 7

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Rmarks - A Taylor sris is assoiat with a giv utio. A powr sris otais i priipl arbitrary oiits a. Thror, vry Taylor sris is a powr sris but ot vry powr sris is a Taylor sris. - T, ovrgs trivially or =, but it may or may ot ovrg aywhr ls. I othr wors, th r o T, is ot ssarily gratr tha zro -Ev i T, ovrgs, it may or may ot ovrg to Eampl: A Taylor Sris that os ot ovrg to its utio = p- i = i = Th utio is iiitly ot irtiabl, with =. T g, arou = has raius o ovrg iiity. T g, arou = os ot ovrg to th origial utio T g, = or all. 5 7.6 Malauri Sris: Powr Sris Drivatio a a a a a a... a a a a 6a... a 6a... a a 6a a a a! a Evaluatig ah utio at, simpliyi g & solvig or th oii t!! a! a...! a! a! a primitiv utio rivativ a a! a! a! Substituti g th valu o th oii ts ito th primitiv utio st r th rivativ rivativ rivativ!!! 6 8

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Taylor s Thorm Suppos C + [a, b] -i.., is +-tims otiuously irtiabl o [a, b]. Th, or [a,b] w hav:! whrr!! p p p R I partiular, th T, or a iiitly ot irtiabl utio ovrgs to i th rmair R + ovrgs to as.!! W a show that a utio rally has a Taylor sris by hkig to that th rmair gos to zro. Lagrag ou a asir prssio: p R! 7 or som p btw a. 7.6 Taylor Sris: Taylor s Thorm Impliatios: - A utio that is +-tims otiuously irtiabl a b approimat by a polyomial o gr. -I is a utio that is +-tims otiuously irtiabl a + = or all th is ssarily a polyomial o gr. - I a utio has a Taylor sris tr at th th sris ovrgs i th largst itrval -r, +r whr is irtiabl. I prati, a utio is approimat by its Taylor sris usig a small, say =:!!! p with R! Th rror & th approimatio ps o th urvatur o. 8 9

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Taylor s Thorm - Eampl Taylor sris pasio o a quarati polyomial arou =. =5+ + = = 8 = + = = = = = = = = Taylor s sris ormula:!! For,! & First-orr Taylor sris: = 8 + - + R = + + R with R = [!]- =- p R!! 9 7.6 Taylor Sris: Taylor s Thorm - Eampl Lt s hk th approimatio rror R =- : = 5+ + + R = = 8 = 8 =.. = 8.. = 8.. =.. = 8.8. = 8.8. For : R 8! 8! 5 R prt it R R R Not: Polyomial a b approimat with grat auray.

RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o Lt s o a Taylor sris arou =: primitiv utio st rivativ ' rivativ '' r rivativ ''' th rivativ Substitutig th valu o th oiits ito th primitiv utio!!!!! 7.6 Malauri Sris o os Lt s o a Taylor sris arou =: os primitivutio si os si os st r th rivativ rivativ rivativ rivativ os ' si '' os ''' si os Substitutig th valuo th oiits ito th primitivutio os!!! Now, lt s hk i th rmair R + gos to as : p os p R!!! a th last trm is a ovrgig sris to, as.

RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o si & Eulr s ormula Similarly, w a a Taylor sris or si: si! 5 7 5! 7!! Now, lt s go bak to th Taylor sris o. Lt s look at i : i i! i! i! os isi! 5 i i i i i!!! 5! 5! i i 5! This last rsult is all Eulr s ormula. It will r-appar wh solvig irtial quatios with ompl roots. 7.6 Malauri Sris o log + log! primitivutio st r th rivativ rivativ rivativ rivativ Evaluatigah utio at, simpliyig & solvig or th oiit log &!... Substitutig th valu o th oiits ito th primitivutio!!!! i i! i i

RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o log + log A st orr sris pasio: log+ = + O. Notatio: O : R is bou by A as or som A <. Blow, w plot log+ & its liar approimatio. Wh is small say, <., typial o aual itrst rats or mothly stok rturs, th liar approimatio works vry wll. 5 7.6 Taylor sris: Approimatios Taylor sris work vry wll or polyomials; th potial utio a th si a osi utios. Thy ar all ampls o tir utios i.., quals its Taylor sris vrywhr. Taylor sris o ot always work wll. For ampl, or th logarithm utio, th Taylor sris o ot ovrg i is ar rom. Log approimatio arou : 6

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Nwto Raphso Mtho Th Nwto Raphso NR mtho is a prour to itrativly i roots o utios, or a solutio to a systm o quatios, whr =. Vry popular i umrial optimizatio, whr =. To i th roots o a utio. W start with: W riv a itrativ pross to i th roots o a utio. ' ' ' ' y y k k k k k k k 7 k Xk+ Xk X B C A 7.6 Taylor Sris: NR Mtho 8 W a us th NR mtho to miimiz a utio. Rall that '* = at a miimum or maimum, thus statioary poits a b ou by applyig NR mtho to th rivativ. Th itratio boms: W '' k ; othrwis th itratios ar ui. Usually, w a a stp-siz, λ k, i th upatig stp o : k+ = k λ k ' k '' k. '' ' k k k k

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: NR Quarati Approimatio Wh us or miimizatio, th NR mtho approimats by its quarati approimatio ar k. Epa loally usig a -orr Taylor sris: +δ = + ' δ + ½ '' δ + oδ +δ= +' δ+½ '' δ Fithδ whih miimizs this loal quarati approimatio: δ = ' '' Upat: k+ = k - ' ''. 7.6 Taylor Sris: Th Dlta Mtho Th lta mtho is us to obtai th asymptoti istributio o a o-liar utio o a raom variabl usually, a stimator. It uss a st-orr Taylor sris pasio a Slutsky s thorm. Lt b a RV, with plim =θ a Var =σ <. W kow th asymptoti istributio o : ½ - θσ N, But w wat to kow th asymptoti istributio o g. W assum g is otiuously irtiabl, ipt o. Stps: Taylor sris approimatio arou θ : g = gθ + gθ - θ + highr orr trms W will assum th highr orr trms vaish as grows. 5 5

RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Th Dlta Mtho Us Slutsky thorm: plim g = gθ plim g = g θ Th, as grows, g gθ + gθ - θ ½ [g - gθ] gθ [ ½ - θ]. ½ [g - gθ]σ gθ [ ½ - θσ]. I g. os ot bhav baly, th asymptoti istributio o g - gθ is giv by that o [ ½ - θσ], whih is a staar ormal. Th, ½ [g - gθ] N, [gθ] σ. Atr som work ivrsio, w obtai: g Ngθ, [gθ] σ. 5 7.6 Taylor Sris: Th Dlta Mtho Eampl Lt a Nθ, σ Q: g =δ? δ is a ostat First, alulat th irst two momts o g : g = δ plim g =δθ g = -δ plim g =-δθ Rall lta mtho ormula: g Th, g a Nδθ, δ θ σ a Ngθ, [gθ] σ. 5 6

RS - Ch 7 - Ruls o Dirtiatio 7 7.7 Gomtri sris 5... 6 6 6 6 6 -!!!. arou Malauri sris th o trms irst iv th Fi. Giv 5 5 5 a a a a Gomtri sris: Eah trm is obtai rom th prig o by multiplyig it by, ovrgt i <. 5 9 whr a a a a y. a a y 7.7 Gomtri sris: Approimatig -a - It is possibl to auratly approimat som ratios, with - trm i th omiator, with a gomtri sris. Rall: For =. a=. -a=. & +.+. +. +. =. a=.9 -a= & +.9+.9 +.9 +.9 =.95

RS - Ch 7 - Ruls o Dirtiatio 7.7 Gomtri sris: Approimatig A - AA Taylor sris approimat io - I i I A A I A A... A by aalogy A A A A I... salar algbra Appliatio to th Loti Mol =A+ => I-A =.5 A..5.5 I A. 5. 6. 5. 5. 5 I A.. 5.. 56. 9 with 6 I A. 6.... 5. 5 75... 5. 55 55 7.7 Appliatio: Gomtri sris & PV Mols A stok pri P is qual to th isout som o all uturs ivis. Assum ivis ar ostat a th isout rat is r. Th: whr. Eampl: = USD ; r = 8% P = USD.8 = USD.5 = 56 8

RS - Ch 7 - Ruls o Dirtiatio 7.7 Appliatio: Gomtri sris & PV Mols Now, w assum ivis grow at a ostat g a th isout rat is r. Th:, Eampl: = USD ; r = 8% & g = % P = USD *..8-. = USD 7. whr Not: NPV o ivi growth = USD 7 USD.5 = USD.5 57 Q: What is th irst rivativ o a ow? A: Prim Rib! 9