TF System Quench analyses in operation condition

Similar documents
Studio preliminare di fattibilità di un tokamak derivato da FAST compatibile con le configurazioni di plasma Super X

JT-60SA configuration for which one of the most notable modification is a switch of magnet system from fully resistive to fully

Rapporto preliminare del progetto del target di IFMIF comprensivo di disegni, analisi numeriche e valutazione dei costi

The New Sorgentina Fusion Source Project

JOINTS FOR SUPERCONDUCTING MAGNETS

Multiphysics Simulations for the design of a Superconducting magnet for proton therapy

BUSBAR AND JOINTS STABILITY AND PROTECTION

Test Results of a NbTi Wire for the ITER Poloidal Field Magnets: A Validation of the 2-pinning Components Model

Development of Monte Carlo Algorithms for Eigenvalue Calculations

REFRIGERATION OF LOW-TEMPERATURE SUPERCONDUCTING COILS FOR NUCLEAR FUSION

Seismic risk computation for the fixed-base reactor building of the IRIS NPP

Electromagnetic, stress and thermal analysis of the Superconducting Magnet

Development of the Neutronic Module and Benchmark and Validation of the Thermal- Hydraulic of the FRENETIC Code

Politecnico, Dipartimento di Energetica, Torino, I-10129, Italy

Studio di strati compositi di nanotubi di carbonio per il miglioramento di celle solari

for the French fusion programme

L. Mengali, M. Lanfredini, F. Moretti, F. D Auria RICERCA DI SISTEMA ELETTRICO. Report RdS/2012/062

\\ I\\\\ \\\ \\\ \\I\\ l ll \\ \ \\I1\ i\i Pamaeiose

Heat slug propagation in QUELL. Part I: Experimental setup and 1- uid GANDALF analysis

Feasibility of HTS DC Cables on Board a Ship

Evaluation of the Current Sharing Temperature of the ITER Toroidal Field Model Coil

HIMARC Simulations Divergent Thinking, Convergent Engineering

Which Superconducting Magnets for DEMO and Future Fusion Reactors?

THERMOHYDRAULIC TRANSIENTS IN BOILING HELIUM NATURAL CIRCULATION LOOPS

THE DIMENSIONING OF ELECTRICAL CONDUCTORS FOR USE IN "PANEL BOARDS" ADDRESSED TO HAZARDOUS AREAS - PART THREE

Optimization of Plasma Initiation Scenarios in JT-60SA

RICERCA DI SISTEMA ELETTRICO

Double Thyristor Module For Phase Control MT A2

Stability Analysis of the Interconnection of the LHC Main Superconducting Bus Bars

LHC status & 2009/2010 operations. Mike Lamont

1SDC007004D0201. Discrimination tables

Calculation of minimum Quench Energies in Rutherford Cables

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

JT-60 SA Toroidal Field coil structural analysis

Multi-scale approach to the thermal modelling of the ITER superconducting magnets

COMPARISON OF TWO ICCS CONDUCTORS AND FOR MHD APLLICATION *

Retraining of the 1232 Main Dipole Magnets in the LHC

Issued August DATA SHEET. 3VT3 MCCB up to 630 A

Use of High Temperature Superconductors for Future Fusion Magnet Systems

Effects of Noise in Time Dependent RWM Feedback Simulations

CTC 155 / 350 / 660 Dry-block calibrator

Magnetic field shielding of underground power cables in urban areas: a real-life example

1798 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 16, NO. 2, JUNE 2006

The Activities of ENEA on Superconductors Developments. presented by Antonio della Corte

Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015

Electric Circuits. Overview. Hani Mehrpouyan,

Progress in Transport Modelling of Internal Transport Barrier Plasmas in JET

INFORMATION TECHNOLOGY SYSTEMS SPDs FOR 19 TECHNOLOGY. NET Protector Surge Arrester. Protects switches, HUBs and telecommunication

Phase Control Thyristor Type SKT552/16E

EU Contribution to the Test and Analysis of the ITER Poloidal Field Conductor Insert (PFCI)

TeSys circuit-breakers

M05/4/PHYSI/HP2/ENG/TZ1/XX+ PHYSICS HIGHER LEVEL PAPER 2. Candidate session number 0 0. Thursday 19 May 2005 (afternoon) 2 hours 15 minutes

Isolated Current Sensor with Common Mode Field Rejection

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Qualification Tests and Facilities for the ITER Superconductors

08/072 PKZ2 Motor-Protective Circuit-Breakers Tripping Characteristics

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges

Heat Sinks and Component Temperature Control

Large Superconducting Conductors and Joints for Fusion Magnets : from Conceptual Design to Test at Full Size Scale

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

3.3V Power Supply Isolated Current Sensor with Common Mode Field Rejection

Plasma Response Control Using Advanced Feedback Techniques

Appendix B. GENETIK+ Near-real time thermal model correlation using genetic algorithm. Guillaume Mas (CNES, France)

Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplifi ed models*

Electric circuit analysis for plasma breakdown in JT-60SA

Superconducting Fault Current Limiters

HB Magnet Quench Calculation. R. Rajput-Ghoshal P. Ghoshal R. Fair

THE TREATMENT OF THE THROTTLING EFFECT IN INCOMPRESSIBLE 1D FLOW SOLVERS

Internal transport barriers in some Hamiltonian systems modeling the magnetic lines dynamics in tokamak

Development of cable in conduit conductor for ITER CS in Japan

Isolated Current Sensor with Common Mode Field Rejection

MITICA: il prototipo dell'iniettore di neutri da 1 MeV-22 MW per ITER

A process-based guide to

earth live neutral (ii) What is the colour of the insulation around the wire labelled T? blue brown green and yellow

3VT4 Molded Case Circuit Breakers up to 1000 A

Schmitt-Trigger Inverter/ CMOS Logic Level Shifter

Development and validation of FEM-LCORE code for the Thermal Hydraulics of open cores

A new detector for neutron beam monitoring

Qualification of tabulated scattering parameters

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

DATASHEET CD4093BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Quad 2-Input NAND Schmitt Triggers

Coupling Physics. Tomasz Stelmach Senior Application Engineer

EM Simulations using the PEEC Method - Case Studies in Power Electronics

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

The output voltage is given by,

Temperature measurement and real-time validation

IRGP4263PbF IRGP4263-EPbF

RESERVE THALES ALENIA SPACE CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR

Table 3: Absolute Ratings (limiting values) Symbol Parameter Value Unit I T(RMS)

Mission Elements of the FNSP and FNSF

Varius SUMMARY OF MODELS OF HRC FUSE-LINKS

Status of the High Temperature Superconductor Current Lead Development at the Research Centre Karlsruhe

5V/400mA Low Drop Voltage ILE4275 TECHNICAL DATA

Superconductivity at Future Hadron Colliders

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS

Transient Finite Element Analysis of a Spice-Coupled Transformer with COMSOL-Multiphysics

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

Transient Behavior of

Transcription:

Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO TF System Quench analyses in operation condition U. Besi-Vetrella, G.M. Polli, contributors: L. Zani(F4E), B. Lacroix (CEA) Report RdS/2011/ 391

TF SYSTEM QUENCH ANALYSES IN OPERATION CONDITION U. Besi-Vetrella, G.M. Polli (ENEA) Contributors: L. Zani(F4E), B. Lacroix (CEA) Novembre 2011 Report Ricerca di Sistema Elettrico Accordo di Programma Ministero dello Sviluppo Economico ENEA Area: Governo, gestione e sviluppo del sistema elettrico nazionale Progetto: Fusione nucleare: Attività di fisica e tecnologia della fusione complementari ad ITER, denominate Broader Approach Responsabile Progetto: Aldo Pizzuto, ENEA

UTFUS TF System Quench analyses in operation condition RT-JT60SA-012 Pag 1 di 15 Rev. 0 TF SYSTEM QUENCH ANALYSES IN OPERATION CONDITION Rev. 0 30/11/2011 List of Contributors: L. Zani (F4E) B. Lacroix (CEA) 0 30/11/2011 U. Besi-Vetrella G.M. Polli Rev. Date Author Reviewer Approver

TF system quenchanalyses U. BESI-VETRELLA (ENEA), B. LACROIX (CEA), G. M. POLLI (ENEA), L. ZANI (F4E) 1- Introduction 2- Reference configuration 3- Parametric analyses 4- Conclusion & perspectives DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 1/13

1- Introduction Recent investigations on the impact of some design changes regarding components linked to the TF magnets system (TF strand, Power Supplies) Need of finalization for the protection system features New modelisation works were launched both regarding thermohydraulics approach (Gandalf) or with more simple thermal approach (xls solver) The results presented here aim at setting the main parameters for protection circuit and show their robustness in terms of reliability for magnet protection purpose DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 2/13

2- Reference configuration Simulation of a quench with the GANDALF code: on the CW median conductor in operating conditions (Iop = 25 700 A) with the heat perturbation deposited in the middle of the Bmax zone (x = 12.5 m) Main hypotheses: Model limited to the 114 m conductor (cryolines/feeders not represented) Updated friction factor correlation according to pressure drop measurements Updated strand design (A Cu reduced of 5% >> CuNi barrier change), RRR=100 DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 3/13

2- Reference configuration Initial conditions (magnetic field & temperature distributions) correspond to the End Of Burn for the 100 s burn scenario with NY = 1.3 10 17 n/s B (T) 6 5 4 3 2 1 Magnetic field before quench initiation (EOB) Bmax = 5.55 T on perturbated zone T (K) 9 8 7 6 5 Tconductor & Tcs before quench initiation (EOB) Tma = 1.6 K on perturbated zone Tcond Tcs 0 0 20 40 60 80 100 x (m) Calculation baseline configuration: DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 4/13 4 0 20 40 60 80 100 x (m) 1 m heat deposition on equatorial plane (from 12 to 13 m) during 1 s Reference MQE (RMQE) = 132 W ~ 791 mj/cc Quench triggered with 2*RMQE Reference features for protection circuit : Voltage detection threshold = 0.5 V Tdelay (after detection) = 1 s highly conservative approach with respect to PID conditions, but referring to real exploitation conditions (e.g. Tore Supra)

2- Reference configuration Case # V_detect[V] T_delay[s] RRR heated length[m] Mdot[g/s] T_duration [s] P_perturb MQE [W/m] MQE [mj/cm^3] Ref. 0 0.5 1 100 1 4.0 1 2*MQE 2*132 2*791 140 2,50E+06 1,50 2,70E+04 Tcond (K) 120 100 80 60 40 20 Tcond at x = 12.5 m Pressure at x = 12.5 m 2,00E+06 1,50E+06 1,00E+06 5,00E+05 Pressure [Pa] Volatge (V) 1,00 0,50 Voltage Current 2,60E+04 2,50E+04 2,40E+04 2,30E+04 2,20E+04 2,10E+04 Current [A] 0 0,00E+00 0,00 10,00 20,00 30,00 40,00 50,00 time (s) Pressure < 25 bar (value considered for mechanical analyses) the conductor temperature < 130 K (upper classical limit ~150 K) 0,00 2,00E+04 0,00 1,00 2,00 3,00 4,00 5,00 Voltage detection threshold (0.5 V) time (s) Delay time after detection (1 s) DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 5/13

2- Reference configuration Case # V_detect[V] T_delay[s] RRR heated length[m] Mdot[g/s] T_duration [s] P_perturb MQE [W/m] MQE [mj/cm^3] Ref. 0 0.5 1 100 1 4.0 1 2*MQE 2*132 2*791 Tmeperature (K) 1,40E+02 1,20E+02 1,00E+02 8,00E+01 6,00E+01 4,00E+01 2,00E+01 Temp. vs. length @ 40 s REF. case 0,00E+00 0,00 50,00 100,00 Distance from inlet (m) Length (m) 35,00 30,00 25,00 20,00 15,00 10,00 5,00 Normal length vs. time REF. case 0,00 0,00 10,00 20,00 30,00 40,00 50,00 time (s) The extension of the normal length keeps below 40 m during the period considered for simulation Current (A) 30.000 25.000 20.000 15.000 10.000 5.000 Current vs. time 0 0,00 20,00 40,00 time (s) At 40 s I ~ 1000 A DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 6/13

3- Parametric analysis: overview Case RRR T_delay [s] A_Cu [mm 2 ] P_perturb [W/m] Length [m] V_detect [V] Ref. 100 1 180 2*132 1 0.5 RRR 55 70 100 130 160 T_delay - - - - - - 0.5 1 1.5 - - - - A_Cu strand - - 170 - - - MQE - - - 10*132 - Length V_detection - - - - - - - - - 0.05 0.2 1 5-0.1 0.2 0.5 1 DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 7/13

3- Parametric analysis Sensitivity to detection voltage Voltage (V) Tmax (K) Pmax (bar) at x = 12.5m 170 160 150 Tcond max Pmax @ x=12.5m 26 24 0.1 95.6 20.8 0.2 103.2 21.5 Tcond (K) 140 130 120 22 P (bar) Reference 0.5 126 23.1 1 158.8 24.2 110 100 90 20 18 Strong impact of detection voltage on Temperature 0 0,2 0,4 0,6 0,8 1 1,2 Detection Voltage (V) Sensitivity to perturbation length Perturbation length (m) Tmax (K) Pmax (bar) at x = 12.5m Perturbation Power (W/m) 170 160 150 24 22 0,05 157,2 17,9 2*524 0,2 149,5 18,5 2*196 Tcond (K) 140 130 120 Tcond max Pmax @ x=12.5m 20 P (bar) Reference 1 126 23,1 2*132 5 103,2 21,5 2*112 The lower heated length, the higher Tcond, but acceptable 110 100 90 0 1 2 3 4 5 Triggering zone length (m) 18 16 DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 8/13

3- Parametric analysis 6 Shifting the heated zone in the Bmax area low impact B (T) 5 4 3 2 1 Heated zone shifted upstream or downstream Heated zone position Tmax (K) Pmax (bar) at x = 12.5m upstream 125.8 22.2 Center (ref.) 126 23.1 downstream 129 24.3 0 0 5 10 15 20 25 x (m) Influence of the perturbation energy 1,E+05 Perturbation & Joule volumic energy P_perturb 2 MQE = 2 * 132 W/m 10 MQE = 10 * 132 W/m Tmax (K) Pmax (bar) at x = 12.5m 126 23.1 138 24.9 E (mj/cc) 8,E+04 6,E+04 4,E+04 2,E+04 Ejoule - 10 RMQE Ejoule - 2 RMQE Eperturb - 10 RMQE Eperturb - 2 RMQE Joule heating dominates limited impact of perturbation energy 0,E+00 0 10 20 30 40 time (s) DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 9/13

3- Parametric analysis Sensitivity to delay time after quench detection 150,00 140,00 Tcond max Pmax @ x=12.5 m 24,5 24 Reference Delay time (s) Tmax (K) at x = 12.5m Pmax (bar) at x = 12.5m 0.5 114 22.2 1 126 23.1 Tcond[K] 130,00 120,00 110,00 23,5 23 Pressure [bar] 1.5 138 23.9 100,00 22,5 90,00 0 0,5 1 1,5 2 Delay time [s] 22 The longer delay time, the higher Tcond, but acceptable DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 10/13

3- Parametric analysis Sensitivity to parameters relevant of manufacturing tolerances RRR Tmax (K) Pmax (bar) at x = 12.5m 55 133 32.0 70 129 27.6 100 126 23.1 130 123 21.1 160 122 20.2 Tcond [K] 136 134 132 130 128 126 Tco max at t = 40 s Pmax at x=12.5 m 32 30 28 26 24 22 20 Pressure [bar] 124 18 122 16 120 14 50 70 90 110 130 150 170 RRR The lower the RRR time, the higher Tcond, but acceptable Pressure also increases even if not dramatically critical DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 11/13

3- Parametric analysis Conservative model cross-check used for design in a straightforward approach (see presentation TCM12-02-09). Working hypotheses : - reference scenario same as Gandalf, with reaching V detect immediatly - RRR taken as minimum in TF strand specifications value of 80 T MAX ~ 263 K Gandalf cross check - in similar conditions (no He) T MAX ~ 25 K good consistency, still under investigations Mitigation : RRR is in average higher than specifications - from Cu and NbTi production the minimum "effective RRR" ~ 100 T MAX ~ 250 K - in similar conditions (no He) in Gandalf T MAX + 25 K still under investigations but good consistency, Remark : upper limit value commonly used is 250 K but the present situation is highly conservative (no Helium present in the cable) and this criterion is commonly considered for "dry magnets", which is not the case for JT-60SA. DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 12/13

4- Conclusion & perspectives A reference configuration for TF magnet protection system was defined with : - a voltage detection threshold of 0.5 V - a delay after detection of 1 sec This configuration aims at enabling a good capacity to distinguish transient parasitic signals to real DC quench ones ("filter" by amplitude and frequency). The present analyses led with Gandalf showed that this reference configuration is robust, demonstrated as : - showing acceptable cable temperature (<130 K) and pressure (< 25 bar) increase for a quench scenario which is reasonably conservative. - being in a domain where the variations of central parameters (RRR, detection V, delay time or length quenched) do not imply a critical change in the temperature rise. Should this reference configuration features be agreed, it is then proposed that the PID is modified accordingly. Some further investigations are under consideration to consolidate the results before switching to the TF cold tests configuration. DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI

3- Parametric analysis Pressure [Pa] Sensitivity to parameters relevant of manufacturing tolerances Pressure distribution with RRR=130 2,00E+06 1,80E+06 t= 0.0 s 1,60E+06 t= 1.0 s 1,40E+06 t= 2.0 s 1,20E+06 t=10.0 s 1,00E+06 8,00E+05 6,00E+05 4,00E+05 2,00E+05 0,00E+00 0,00E+00 2,00E+01 4,00E+01 6,00E+01 8,00E+01 1,00E+02 1,20E+02 Distance [m] DRM13, Karlsruhe 5 December 2011 U. BESI-VETRELLA, B. LACROIX, G.M. POLLI, L. ZANI 14/13