Stability Indicating Assay Method for Montelukast Sodium in Pharmaceutical Formulations by RP-HPLC

Similar documents
7. Stability indicating analytical method development and validation of Ramipril and Amlodipine in capsule dosage form by HPLC.

Method Development and Validation Of Prasugrel Tablets By RP- HPLC

Stability-indicating HPLC determination of tolterodine tartrate in pharmaceutical dosage form

Volume 6, Issue 2, January February 2011; Article-015

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

CHAPTER - IV. Acharya Nagarjuna University, Guntur 105

Development and Validation of Stability-Indicating RP-HPLC Method for Estimation of Atovaquone

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

A Simple, Novel Validated Stability Indicating RP-HPLC method for estimation of Duloxetine HCl in Capsule Pharmaceutical Formulation

RP-HPLC Method Development and Validation of Dapagliflozin in Bulk and Tablet formulation

International Journal of Pharmacy and Pharmaceutical Sciences Vol 2, Issue 1, 2010

ISSN: ; CODEN ECJHAO E-Journal of Chemistry , 9(1), 35-42

Validation of Stability-Indicating RP-HPLC Method for the Assay of Ibrutinib in Pharmaceutical Dosage form

Int. J. Pharm. Sci. Rev. Res., 30(2), January February 2015; Article No. 09, Pages: 63-68

Impact factor: 3.958/ICV: 4.10 ISSN:

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD TO DETERMINE CINITAPRIDE HYDROGEN TARTARATE IN BULK AND PHARMACEUTICAL FORMULATION

STABILITY INDICATING METHOD OF RELATED IMPURITIES IN VENLAFAXINE HYDROCHLORIDE SUSTAINED RELEASE TABLETS

Praveen kumar.m 1 *, Sreeramulu.J 2. *Corres.author: Mobile no: India.

SIMULTANEOUS RP HPLC DETERMINATION OF CAMYLOFIN DIHYDROCHLORIDE AND PARACETAMOL IN PHARMACEUTICAL PREPARATIONS.

DEVELOPMENT AND VALIDATION OF A STABILITY-INDICATING RP-HPLC METHOD FOR ASSAY OF IRBESARTAN IN PURE AND PHARMACEUTICAL DOSAGE FORM

Mashhour Ghanem 1 and Saleh Abu-Lafi 2 * ABSTRACT ARTICLE INFO

KEYWORDS: Acetaminophen, Doxylamine succinate, Dextromethorphan hydrobromide.

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

STABILITY INDICATING RP HPLC METHOD FOR ANALYSIS OF DORZOLAMIDE HCl IN THE BULK DRUG AND IT S PHARMACEUTICAL DOSAGE FORM

Development and Validation of Stability Indicating RP-HPLC Method for the Determination of Anagrelide HCl in Pharmaceutical Formulation

STABILITY INDICATING RP-HPLC METHOD FOR DETERMINATION OF EPROSARTAN IN PURE AND PHARMACEUTICAL FORMULATION

Saudi Journal of Medical and Pharmaceutical Sciences

Chapter 4: Verification of compendial methods

Journal of Pharmaceutical and Biomedical Analysis Letters. Analysis Letters

Pelagia Research Library

In the present analytical project, an attempt has been made to develop a simple, economical and reliable liquid

Available online Research Article

Research Article. Identification and characterization of unknown impurity in zolmitriptan tablets by a sensitive HPLC method

Isocraticc Reverse Phase HPLC Method-Determination and Validation of Cilostazol

INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND LIFE SCIENCES

Journal of Chemical and Pharmaceutical Research

Analytical method development and validation of carvedilol in bulk and tablet dosage form by using uv spectroscopic method as per ich guidelines

Dissolution study and method validation of alprazolam by high performance liquid chromatography method in pharmaceutical dosage form

TEMPLATE FOR AN EXAMPLE STANDARD TEST METHOD

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India

A Stability Indicating UPLC Method for Candesartan in Bulk Drug Samples

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC ASSAY METHOD OF ZOLMITRIPTAN IN PURE AND PHARMACEUTICAL DOSAGE FORMS

Quantitation of Sodium Bisulfite in Pharmaceutical Formulation by RP-HPLC

Development and Validation of a HPLC Method for Determination of Anastrozole in Tablet Dosage Form

Development of Validated Analytical Method of Mefenamic Acid in an Emulgel (Topical Formulation)

International Journal of Pharmaceutical Research & Analysis

Research Article METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF ELBASVIR AND GRAZOPREVIR BY RP-HPLC

ASEAN GUIDELINES FOR VALIDATION OF ANALYTICAL PROCEDURES

A RP-HPLC METHOD DEVELOPMENT AND VALIDATION OF PARA- PHENYLENEDIAMINE IN PURE FORM AND IN MARKETED PRODUCTS

2.1 2,3 Dichloro Benzoyl Cyanide (2,3 DCBC) and survey of. manufactured commonly for the bulk drug industry, few references were

Analytical Method Development and Validation of Lafutidine in Tablet dosage form by RP-HPLC

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Journal of Chemical and Pharmaceutical Research, 2017, 9(10): Research Article

Method Development and Validation for the Estimation of Darunavir in Rat Plasma by RP-HPLC

Development and validation of RP-LC method for lisinopril dihydrate in bulk and its pharmaceutical formulations

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article. Estimation of zaleplon by a new RP-HPLC method

Work plan & Methodology: HPLC Method Development

Development And Validation Of Rp-Hplc Method For Determination Of Velpatasvir In Bulk

Development and validation a RP-HPLC method: Application for the quantitative determination of quetiapine fumarate from marketed bulk tablets

Development and Validation of a HPLC Method for Chlorphenamine Maleate Related Substances in Multicomponents Syrups and Tablets

DEVELOPMENT AND VALIDATION OF ULTRA PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR ASSAY OF OMEPRAZOLE BLEND

J Pharm Sci Bioscientific Res (4): ISSN NO

Pelagia Research Library

Simultaneous HPLC Determination of Methocarbamol, Paracetamol and Diclofenac Sodium

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF IVABRADINE HCL IN BULK AND FORMULATION

A NEW HPLC METHOD FOR THE QUANTIFICATION OF PANTOPRAZOLE IN PHARMACEUTICALS

Journal of Drug Delivery and Therapeutics

Research Article. Figure 1. Chemical structure of doxofylline. Indonesian J. Pharm. Vol. 24 No. 1 : ISSN-p :

Analytical method development and validation of gabapentin in bulk and tablet dosage form by using UV spectroscopic method

Development and Validation of Sensitive RP-HPLC Method for the Estimation of Glibenclamide in Pure and Tablet Dosage Forms

Chapter-4 EXPERIMENTAL WORK BY RP-HPLC

Development and validation of stability indicating reverse phase high performance liquid chromatography method for Timolol Maleate

Validated spectrophotometric determination of Fenofibrate in formulation

Journal of Chemical and Pharmaceutical Research

Rapid and simultaneous determination of paracetamol, ibuprofen and related impurity of ibuprofen by UPLC/DAD

DEVELOPMENT OF RP-HPLC METHOD FOR THE SIMULTANEOUS ESTIMATION OF CANDESARTAN CILEXETIL AND HYDROCHLOROTHIAZIDE IN PHARMACEUTICAL DOSAGE FORMS

Stability indicating RP-HPLC method for determination of azilsartan medoxomil in bulk and its dosage form

Original Article Mahidol Univ J Pharm Sci 2016; 43 (1), P.T. Dung 1*, K.X. Hai 1 1

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS OF GABAPENTIN IN PURE AND PHARMACEUTICAL FORMULATIONS

Available online at Scholars Research Library

Department of Quality Assurance, Luqman College of Pharmacy, GULBARGA (K.S.) INDIA ABSTRACT

Stability Indicating RP-HPLC Method for Determination of Valsartan in Pure and Pharmaceutical Formulation

Validated First Order Derivative Spectroscopic Method for the determination of Stavudine in Bulk and Pharmaceutical Dosage Forms

Impact factor: 3.958/ICV: 4.10 ISSN:

Department of Chemistry, JNTUACE, Kalikiri

International Journal of Research and Reviews in Pharmacy and Applied science.

Sachin Zade, Padma There Sunanda Aswale, and Shashikant Aswale. Lokmanya Tilak Mahavidyalaya, Wani, Dist. Yavatmal, (MS).

INDICATING LIQUID CHROMATOGRAPHIC METHOD FOR QUANTIFICATION OF CIPROFLOXACIN HCL, ITS RELEATED SUBSTANCE AND TINIDAZOLE IN TABLET DOSAGE FORM

Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form

Application Note. Pharmaceutical QA/QC. Author. Abstract. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Asian Journal of Research in Chemistry and Pharmaceutical Sciences Journal home page:

Sravani and Haritha Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

Pelagia Research Library

Scholars Research Library. Rapid and sensitive RP-HPLC analytical method development and validation of Pioglitazone hydrochloride

LC Determination of Deferasirox in Pharmaceutical Formulation

Intercontinental journal of pharmaceutical Investigations and Research

Reverse Phase High Performance Liquid Chromatography method for determination of Lercanidipine hydrochloride in bulk and tablet dosage form

International Journal of Pharmaceutical Sciences and Drug Research 2016; 8(4):

Journal of Advanced Scientific Research DEVELOPMENT AND VALIDATION OF STABILITY-INDICATING RP-HPLC METHOD FOR ESTIMATION OF DABIGATRAN ETEXILATE

Transcription:

Mastanaiah Thummisetty et al /J. Pharm. Sci. & Res. Vol.3(8), 20,373-377 Stability Indicating Assay Method for Montelukast Sodium in Pharmaceutical Formulations by RP-HPLC Mastanaiah Thummisetty a,b,dr. Jayapal Reddy Sama a,b,. V. Surya Narayana Rao b, and. P. Reddanna a a. Department of Animal Sciences, School of Life Sciences, University of Hyderabad, India. b. Department of Chemistry, Sri Krishnadevaraya Univeristy, Anantapur, India. Abstract-Montelukast Sodium is used to treat asthma. A simple, precise cost effective and stability indicating RP-HPLC method has been developed and validated for the determination of Montelukast Sodium in pharmaceutical formulations. Separation of Montelukast Sodium from its potentional degradents were achieved with in shorter run time with required resolution, accuracy and precision thus enabling the utility of the method for routine analysis. Chromatographic separation was achieved on a Zorbax SB Phenyl column(50 4.6 mm,.8μ) using a mobile phase-a consisting of 0.5% trifluro acetic acid in milli-q grade water and mobile phase-b Consist of 0.5% trifluro acetic acid in acetonitrile at a flow rate of.2ml per minute. The detection was made at 238nm. The retention time of Montelukast Sodium was 8.9 minutes. The method was found linear over the range of 5-5 µg per ml. The proposed method was validated as per the ICH and USP guidelines. Key words: Montelukast Sodium, HPLC and validation INTRODUCTION Montelukast sodium( Fig ) is chemically (R-(E))-- (((-(3-(2-(7-chloro-2-quinolinyl) ethenyl)phenyl)- 3(2-(-hydroxy-- methylethyl)phenyl)propyl)thio)methyl)cyclopropan eacetic acid, monosodium salt[ 2]. Montelukast is a leukotriene receptor antagonist (LTRA) used for the treatment of asthma and to relieve symptoms of seasonal allergies in children and adults[3 5]. It is a potent selective inhibitor of leukotriene D4 (LTD4) at the cysteinyl leukotriene receptor cyslt[6 7]. Literature survey reveals that liquid chromatography with fluorescence detector[8], stereoselective high performance liquid chromatography (HPLC) for montelukast and its S-enantiomer[9], column switching HPLC with fluorescence detector[0], semi-automated 96-well protein precipitation[], HPLC with derivative spectroscopy[2], pressurized liquid extraction followed by HPLC[3] and LC-MS methods[4 6] have been reported for the estimation of montelukast sodium. The present study illustrates development and validation of a Stability indicating simple, accurate and precise method for assay of Montelukast sodium by RP-HPLC in bulk and in tablet dosage form. Figure : Chemical Structure of Montelukast Sodium MATERIALS AND METHODS I. Chemicals and Reagents Montelukast Sodium working standards were procured from Cipla Labs, and the tested pharmaceutical formulations were procured from commercial pharmacy. Trifluroacetic acid, acetonitrile, methanol were of suitable analytical grade. II. Apparatus and Chromatographic Conditions HPLC analysis was performed on Agilent HPLC system with diode array detector. Separations were carried on a Zorbax SB Phenyl (50 4.6 mm, i.d.,.8 μm particle size) using gradient elution. The flow rate was.2 ml min-. UV detection was performed at 238 nm. HPLC Column temperature was 30 C. Peak identity was confirmed by retention time comparison and the HPLC was operated at room temperature. Time Mobile phase A (%) Mobile phase B (%) (Minute) 0 60 40 3 60 40 6 49 5 7 60 40 2 60 40 III. Preparation of Mobile Phase Mobile Phase-A: 0.5% of trifluroacetic Acid in milli-q grade water, filtered through a 0.45 μm nylon filter (Millipore, USA) and degassed by sonication prior to use. Mobile Phase-B: 0.5% of trifluroacetic Acid in Acetonitrile, filtered through a 0.45 μm nylon filter (Millipore, USA) and degassed by sonication prior to use. Diluents: Mixed 300ml of milli-q grade water and 700ml of methanol. 373

Mastanaiah Thummisetty et al /J. Pharm. Sci. & Res. Vol.3(8), 20,373-377 IV. Preparation of Standard Solution The standard solution of mountaleucast 200ppm was prepared by dissolving the working standard in the diluents. V. Preparation of Sample Solution The sample solution of mountaleucast 200ppm was prepared by transferring 0 tablets of 0mg in to 500ml of volumetric flask, added 350 ml of diluents and sonicated for 30minutes with intermediate shaking and made up to volume with diluents. Centrifuged the portion of solution at 4000rpm for 0minutes. RESULTS AND DISCUSSION Method Development Drug quality control, stability, metabolism, pharmacokinetics, and toxicity studies all necessitate the determination of drugs in pharmaceutical formulations and biological samples. Correspondingly, efficient and validated analytical methods are very critical requirements for all these investigations. Chromatographic parameters were preliminary optimized to develop a stability indicating assay method for mountaleucast with short analyses time (<22 min). Since mountaleucast is highly sensitive Figure 2: Chromatogram of Blank to light and oxidation. It tends to degrade while storage for long time. So these degradents need to separate from main analyte to show the stability indicating assay mehod, to separate the degradents from main analyte chosen the gradient program. The sample retention increases with increased column length so a shorter column (50 x 4.6 mm i.d..8µm) was selected to have a shortest possible runtime not compromising on the resolution. In order to identify a suitable organic modifier, various organic solvents like acetonitrile and methanol were tested. Methanol produced high column pressures due to the high viscosity. Acetonitrile was found to display advantageous separations. Various buffers at different ph was verified only trifluro acetic acid is giving the sharp peak compare to other buffers, so trifluro acetic acid at 0.5% was selected. Different gradient programs were tied to separate all the impurities from main analyte with high resolution, optimized the gradient program by choosing initial three minutes isocratic mode followed by linear gradient and initial stabilization mode. Figure 3: Chromatogram of Placebo Figure 4: Chromatogram of Standard Figure 5: Chromatogram of Sample Figure 6: Chromatogram of Spiked Sample 374

Mastanaiah Thummisetty et al /J. Pharm. Sci. & Res. Vol.3(8), 20,373-377 Method Validation The above method was validated according to ICH and USP guidelines to establish the performance characteristics of a method (expressed in terms of analytical parameters) to meet the requirements for the intended application of the method. System Suitability In order to determine the adequate resolution and reproducibility of the proposed methodology, suitability parameters including retention time, asymmetry factor, %RSD of retention time and peak areas were investigated. The results are summarized in Table. Table: System Suitability Parameter Result Acceptance Criteria Tailing Factor.2 NMT 2.0 %RSD of Peak Area 0.6 NMT 2.0% %RSD of retention time 0.0 NMT 2.0% Specificity The specificity of an analytical method may be defined as the ability to unequivocally determine the analyte in the presence of additional components such as impurities, products and matrix. Specificity was evaluated by preparing the analytical placebo and it was confirmed that the signal measured was caused only by the analytes. A solution of analytical placebo (containing all the tablet excipients except Montelukast was prepared according to the sample preparation procedure and injected. To identify the interference by these excipients, a mixture of inactive ingredients (placebo), standard solutions, and the commercial pharmaceutical preparations were analyzed by the developed method. The representative chromatograms did not show any other peaks, which confirmed the specificity of the method. Peak purity of Montelukast Sodium was also evaluated for confirming the purity of the individual peak of Montelukast.In all the samples Peak purity is more than acceptance limits (Peak purity should be not less than 0.99 on Agilent EZChrom Elite software (version # 3.2.)). Interference from Impurities: All the impurities are Injected indivudialy and spiked into test at 0.3% of test concentration and injected in to the system. All the impurities are well separated from each other and from main analyte. The Spiked chromatogram was shown in Figure- 6. Forced Studies: Drug product and placebo were subjected to forced at various stressed conditions like acid, base, hydrolysis, peroxide, heat, photo light, U.V light and Humidity. All the samples were analyzed for peak purity of Montelukast peak. In all the samples Peak purity is more than acceptance limits. (Peak purity should be not less than 0.99 on Agilent EZChrom Elite software (version # 3.2.)). The results are summarized in Table 2. Table: 2 Forced Degradation Data Sample % Net Procedure condition Acid N HCl on bench top for 2Hrs 2.2.00 Alkali N NaOH at 60 C 2Hours 5.2.00 Peroxide.0% H 2 O 2 on bench top for Hour 3.8 0.99 Water 60 C for 5Hours 8.2 0.99 UV 200 W /m 2 /hours.2.00 Photolight Thermal Humidity 200 million Lux Hours Peak Purity 5.5.00 05 C for 7 Days 5.2 0.99 90% RH at 25 C for 7 days 3.8 0.99 Linearity: The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample. Linearity of detector response for Montelukast was established by analyzing serial dilutions of a stock solution of the working standard. Five concentrations ranging from 50% to 50% of the test concentration were prepared and analyzed. The final concentration of each solution in µg per ml was plotted against peak area response. Slope, correlation coefficient (R) and intercept were found to be 3794.32, 0.999635and 4057.838. The linear graphs was shown in Figure- 7 Figure 7. Linearity graph for Montelukast Precision: The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from 375

Mastanaiah Thummisetty et al /J. Pharm. Sci. & Res. Vol.3(8), 20,373-377 multiple sampling of the same homogeneous sample under the prescribed conditions. Precision may be considered at three levels: repeatability, intermediate precision and reproducibility. Six replicate samples were prepared and analyzed as per the sample preparation procedure. Assay of each replicate, the average of 6 replicates, its standard deviation, %RSD and the 95% confidence interval were calculated.. The results are shown in Table 3. Table: 3 Precision Sample No. % Assay 0.3 2 00.6 3 00.6 4 00.7 5 00.9 6 0.0 Mean ( X ) 00.9 s 0.2739 %RSD 0.3 Lower 95% CI 00.7 Upper 95% CI 0. Accuracy: The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value and the value found. Recovery study was performed at 50%, 75%, 00%, 25% and 50% of the target concentration by spiking placebo blend with the drug substance. Six replicates each were spiked at 50% & 50% levels, and 3 replicates each at 75%, 00% and 25% levels. Spiked samples were extracted and analyzed. The amount spiked, amount recovered, percent recovery and its mean were calculated. The results are shown in Table 4. Range: The range of an analytical procedure is the interval between the upper and lower concentration (amounts) of analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity. The results are shown in Table 5. Robustness: The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage. The variations like flow rate of mobile phase, column temperature, does not have any significant effect on the method performance. Table: 4 Recovery Sample No. Spike Level Amount Spiked, mg Amount Recovered, mg Percent Recovery Mean Percent Recovery 50.23 49.86 99.3 2 50.5 50.25 00.2 3 50.46 50.05 99.2 50% 4 50.37 49.86 99.0 99.7 5 50.89 50.35 98.9 6 49.48 50.5 0.4 75.02 74.86 99.8 2 75% 75.48 74.96 99.3 3 75.36 75.85 00.7 00.25 00.05 99.8 2 00% 00.38 00.05 99.7 3 00.85 00.5 99.3 25.56 25.2 99.6 2 25% 24.36 25.36 00.8 3 25.56 24.86 99.4 50.36 48.86 99.0 2 50.85 50.5 99.5 3 50.36 48.96 99. 50% 4 50.65 50.25 99.7 5 49.36 48.85 99.7 6 50.2 49.2 99.3 Table 5: Range Parameter Acceptance Criteria Result Linearity R 0.999 0.999635 Precision %RSD of 6 Replicates NMT 2.0% 0.3% to 0.97% Accuracy Recovery 97.0% to 03.0% 99.0%-0.4% 99.9 99.6 00.6 99.4 376

Mastanaiah Thummisetty et al /J. Pharm. Sci. & Res. Vol.3(8), 20,373-377 CONCLUSIONS A simple, rapid, cost effective and accurate RP- HPLC method was developed for the Stability indicating assay method for Montelukast Sodium in pharmaceutical formulations. The analytical conditions and the solvent system developed provided good resolution between Montelukast Sodium and its potentional degradents within a short run time. The HPLC method was validated and demonstrated good linearity, precision, accuracy, specificity and stability indicating. Thus, the developed HPLC method can be utilized for routine analysis stability studies for Montelukast Tablets. ACKNOWLEDGMENTS The authors are thankful to Cipla labs for providing the working standards of Montelukast Sodium. REFERENCES []. Vanheek M, France C F and Compton D S, Pharmacol Exp Ther., 997, 283, 57. [2]. A. W. Alberts, J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers- Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer. Proc. Nati. Acad. Sci. USA. 77, 3957 (980) [3]. Lipka L, Kerzner B and Corbelli J, Am J Cardiol., 2003, 9, 48. [4]. E. Leitersdorf. Int. J. Clin.Pract. 56(2), 6 (2002). [5]. M.Von Heek, C. Farley, D.S. Compton. Br. J. Phamacol. 34, 409 (200). [6]. Melani L, Mills R and Hassman D, Eur Heart J., 2003, 24, 77. [7]. Vuletic M, Cindric M and Kouznjak J D, J Pharm Biomed Anal., 2005, 37, 75. [8]. Carlucci G, and Mazzeo P, J Pharm Biomed Anal., 992, 0, 693. [9]. Ochiai H, Chiyama N K and Imagaki S, J Chromatogr B, 997, 694, 2. [0]. Wang L and Asgharnejad M, J Pharm Biomed Anal., 2000, 2, 243. []. Srinivasu M K, Narasaraju A and Omreddy G, J Pharm Biomed Anal., 2002, 29, 75. [2]. Yang H, Feng Y and Luan Y, J Chromatogr B, 2003, 785, 369. [3]. Tokano T, and Abe S, Biomed Environ Mass Spectrom., 990, 9, 577. [4]. Sistla R, Tata V S S K and Diwan P V, J Pharm Biomed Anal., 2005, 39, 57. [5]. Oswald S, Scheuch E, Cascorbid I. and Siegmund W, J Chromatogr B, 2006, 830, 43-50. 377