Entanglement and Quantum Teleportation

Similar documents
Quantum Teleportation Pt. 1

Quantum Gates, Circuits & Teleportation

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Quantum information and quantum computing

Lecture 3: Superdense coding, quantum circuits, and partial measurements

Quantum Information & Quantum Computation

Quantum Wireless Sensor Networks

Entanglement and information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Quantum Teleportation Pt. 3

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

SUPERDENSE CODING AND QUANTUM TELEPORTATION

CSE 599d - Quantum Computing The No-Cloning Theorem, Classical Teleportation and Quantum Teleportation, Superdense Coding

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

Problem Set: TT Quantum Information

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution

Introduction to Quantum Information Hermann Kampermann

5. Communication resources

Instantaneous Nonlocal Measurements

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Single qubit + CNOT gates

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

Lecture 4: Postulates of quantum mechanics

Technical Report Communicating Secret Information Without Secret Messages

Introduction to Quantum Mechanics

Unitary evolution: this axiom governs how the state of the quantum system evolves in time.

Lecture 11 September 30, 2015

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

EPR paradox, Bell inequality, etc.

Transmitting and Hiding Quantum Information

Measuring Quantum Teleportation. Team 10: Pranav Rao, Minhui Zhu, Marcus Rosales, Marc Robbins, Shawn Rosofsky

IBM quantum experience: Experimental implementations, scope, and limitations

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC)

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

10 - February, 2010 Jordan Myronuk

Entanglement. Michelle Victora Advisor: Paul G. Kwiat. Physics 403 talk: March 13, 2017

An Introduction to Quantum Information and Applications

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

Ping Pong Protocol & Auto-compensation

Introduction to Quantum Computing

5th March Unconditional Security of Quantum Key Distribution With Practical Devices. Hermen Jan Hupkes

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum walks: Definition and applications

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií

Short introduction to Quantum Computing

Multi-Particle Entanglement & It s Application in Quantum Networks

Quantum Dense Coding and Quantum Teleportation

1. Basic rules of quantum mechanics

arxiv:quant-ph/ v1 27 Dec 2004

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

The Relativistic Quantum World

Entanglement Manipulation

arxiv:quant-ph/ v1 6 Dec 2005

Universal Blind Quantum Computing

Experimental quantum teleportation. Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger

Quantum sampling of mixed states

Squashed entanglement

Introduction to Quantum Cryptography

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Communication. Serge Massar Université Libre de Bruxelles

Quantum Cryptography

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Security Implications of Quantum Technologies

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits

arxiv:quant-ph/ v2 2 Jan 2007

1 1D Schrödinger equation: Particle in an infinite box

arxiv:quant-ph/ v1 13 Jan 2003

A Superluminal communication solution based on Four-photon entanglement

PHY305: Notes on Entanglement and the Density Matrix

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Lecture 1: Overview of quantum information

Lecture: Quantum Information

Quantum key distribution for the lazy and careless

Quantum cryptography. Quantum cryptography has a potential to be cryptography of 21 st century. Part XIII

10. Physics from Quantum Information. I. The Clifton-Bub-Halvorson (CBH) Theorem.

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević

Quantum Entanglement and Cryptography. Deepthi Gopal, Caltech

Quantum Computer Architecture

Quantum Communication Complexity

LECTURE NOTES ON Quantum Cryptography

Week 11: April 9, The Enigma of Measurement: Detecting the Quantum World

Quantum Mechanics II: Examples

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

Introduction to Quantum Key Distribution

CS/Ph120 Homework 8 Solutions

2. Introduction to quantum mechanics

Seminar 1. Introduction to Quantum Computing

1 1D Schrödinger equation: Particle in an infinite box

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

The Future. Currently state of the art chips have gates of length 35 nanometers.

Lecture 18: Quantum Information Theory and Holevo s Bound

arxiv: v7 [quant-ph] 20 Mar 2017

Some Introductory Notes on Quantum Computing

Quantum Computing 1. Multi-Qubit System. Goutam Biswas. Lect 2

Transcription:

Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney, Australia Lecture 2 on Quantum Computing NITP Summer School 2003 Adelaide, Australia 28-3 January 2003

Outline - Entanglement What is entanglement? Coupled quantum systems Classical and quantum correlations Using entanglement Superdense coding Quantum teleportation Entanglement as a resource Creating entanglement Quantum teleportation in the lab! Entanglement and Teleportation - NITP 2003 2

An abstract quantum system We describe it using: a Hilbert space, with dimension basis of states State of the system could be a superposition Projective measurements in this basis give result with prob. Example: a qubit (a two-level system) basis e.g., spin ½ particle, photon with pol. Entanglement and Teleportation - NITP 2003 3

Composite quantum systems A A+B B How do we describe two quantum systems together? A: Hilbert space dimension B: Hilbert space dimension A+B: Hilbert space basis: dimension: Let s look at the form of states for A+B Product, not sum Entanglement and Teleportation - NITP 2003 4

Product and entangled states Product state: has the form System A is in the state regardless of B Measurements on A and B will be uncorrelated Entanglement: take a superposition of product states, e.g., Leads to correlated measurements between A and B Entanglement and Teleportation - NITP 2003 5

Example: coupled qubits Let A and B be two-level (qubit) systems Product state: e.g., Basis for : Many qubits: e.g., Basis for : Computational basis Use binary notation to label product state basis Entanglement and Teleportation - NITP 2003 6

Example: the Bell states Entangled state: e.g., for two qubits Bell states: a basis of entangled states for two qubits Check: they are orthogonal and cannot be expressed as product states for A and B Entanglement and Teleportation - NITP 2003 7

Different bases Consider the Bell state What if we changed bases for each qubit? Rewrite the Bell state: Entangled in any basis Entanglement and Teleportation - NITP 2003 8

Using entanglement Take an entangled system (e.g., in a Bell state) Give system A to Alice and B to Bob Bell state Alice Bob Alice and Bob can: transform their systems (quantum evolution) perform measurements on their systems Entanglement and Teleportation - NITP 2003 9

Measurements by Alice or Bob What happens if Alice (or Bob) performs projective measurements on their system? Random result in any basis Basis: Basis: 0 + Random results 2 3 4 5 6 0 0 Measurements on an ensemble of the same Bell state 2 3 4 5 6 + + + Random results 7 0 7 8 8 9 0 Entanglement and Teleportation - NITP 2003 0 9 +

Entanglement and Teleportation - NITP 2003 Measurements by Alice or Bob What happens if Alice and Bob both perform projective measurements and compare? Correlated results if in the same basis B A 0 0 0 0 5 4 0 3 2 B A + + + + 5 + 4 3 2 + Basis: Basis: B A 0 0 5 4 3 + 2 + Different bases

Entangled states can generate classical correlations Classical correlations can be useful for secret communication Example: private key cryptography (one-time pad) Alice has a message m (0000) to send Bob Alice and Bob have a channel A If Alice and Bob share a private key of random numbers (00): 0000 A B No transmitted information! +00 0 0000 0 Entanglement and Teleportation - NITP 2003 2 B 0-00 0000

Power of quantum correlations Quantum correlations (from entangled states) can be useful for communication Quantum correlations can lead to classical correlations (one-time pads) which are powerful Without converting to classical correlations, the entangled states have even more power: Tests of local realism (Bell) Superdense coding Quantum teleportation Entanglement swapping Quantum cryptography Quantum computing (?) Other applications??? (field is still growing) Entanglement and Teleportation - NITP 2003 3

Classical communication on a quantum channel Alice and Bob share a quantum channel Quantum channel sends qubits instead of bits Alice wants to send classical messages to Bob They agree on a basis, say 0, Alice wants to communicate a bit b, so sends a qubit b Bob measures in the agreed basis gets the result b with certainty Entanglement and Teleportation - NITP 2003 4

Classical communication on a quantum channel Can we do better? Qubits seem to store two complex numbers: Number of distinguishable states is limited to the dimension of the Hilbert space (for a qubit, it's 2) Only one bit of information can be measured from a qubit One qubit must be sent for every bit, right? NO! Quantum (non-classical) correlations can be used to send two bits with every qubit superdense coding Entanglement and Teleportation - NITP 2003 5

Superdense coding Let Alice and Bob share a Bell state Bell state Alice wants to send two bits b and b 2 to Bob Alice performs a unitary operation on her qubit Check: X and Z are unitary operators If b =, then flip the qubit: If b 2 =, then change the relative phase by π: Entanglement and Teleportation - NITP 2003 6

Superdense coding Result of Alice s operations: bits apply bits result 00 0 I X Resulting effect on total state of both parties 00 0 Ψ + Ψ 0 Z 0 Φ + XZ Φ Alice then sends her qubit to Bob Bob performs a measurement in the Bell basis: with both qubits, Bob can perform a 4-outcome measurement and obtain two bits of information Entanglement and Teleportation - NITP 2003 7

Results from superdense coding Superdense coding transfers two bits of info per qubit b,b 2 b,b 2 The qubit transferred from Alice to Bob is half of one of the four Bell states: Contains no information on its own All the information is in the quantum correlations This coding has the properties of the classical one-time pad, plus the remarkable advantage of sending two classical bits with every qubit! Entanglement and Teleportation - NITP 2003 8

Interpreting superdense coding Alice has managed to communicate two bits of information to Bob by sending only one qubit, provided they shared a Bell state to start To create and share a Bell state, they must have (at some point) transmitted a qubit, although this transmission could be in either direction The important point: the act of sharing the quantum correlation (Bell state) could be long prior to the protocol, and does not involve the transmission of information All the information about the two bits is transmitted with a single qubit... yet somehow this qubit doesn't contain any information either! Quantum correlations (entanglement) are a resource Entanglement and Teleportation - NITP 2003 9

Sending quantum information Say Alice wants to send Bob a qubit (i.e., quantum information rather than classical) 0000000 Quantum channels are hard to make and maintain! Can Alice send the qubit over a classical channel (i.e., the telephone)? Option : -measure the qubit -send the measurement results to Bob Entanglement and Teleportation - NITP 2003 20

Sending quantum information If Alice has complete information about the qubit: Alice tells Bob all of this information Bob performs a preparation to create this state If Alice has NO information about the qubit: for instance, the qubit is prepared by a third party Could perform a measurement, e.g., in basis If the qubit were in, no information is gained and the qubit is destroyed in the process Without knowledge of the preparation procedure of a qubit, no measurement can determine its state Entanglement and Teleportation - NITP 2003 2

Quantum teleportation Again, entanglement provides a solution! Let Alice and Bob share a Bell state 2 Bell state 3 Alice takes the qubit to send () and the qubit from the Bell state (2) and measures them in the Bell basis One of four possible outcomes two bits of information Send these bits to Bob, who operates on his qubit (3) Entanglement and Teleportation - NITP 2003 22

Quantum teleportation Result of Alice s measurements: result bits Ψ + Ψ Φ + Φ 00 Send bits to Bob, who must apply 0 0 b,b 2 bits 00 0 0 apply I X Z XZ Looks like the opposite of superdense coding! Result: any measurement predictions involving the original qubit () now apply to Bob s qubit (3) The qubit has been quantum teleported to Bob Entanglement and Teleportation - NITP 2003 23

Interpreting quantum teleportation The quantum system has not been teleported, only the state of the system The two bits contain no information about the qubit If qubit () was entangled with another system before quantum teleportation, qubit (3) is entangled after After teleportation, qubit () contains no information Entanglement and Teleportation - NITP 2003 24

Quantum teleportation: reality Quantum teleportation has been performed in the lab! 997: Innsbrook, Austria Qubit: polarization state of a single photon Bell state: generated through parametric down conversion 998: Caltech, USA Qubit : coherent state of electromagnetic field mode Bell state : generated through two-mode squeezing Entanglement and Teleportation - NITP 2003 25

Quantum teleportation in Oz 2002: Ping-Koy Lam s group at ANU Similar to Caltech exp. Hi-Fi QT Demonstrates: Entanglement was used Alice gains no info about the system Entanglement and Teleportation - NITP 2003 26

Summary Entanglement is a resource Quantum correlations (from entangled states) can be useful for communication Tests of local realism (Bell) Superdense coding Quantum teleportation Entanglement swapping Quantum cryptography Quantum computing (?) Bell state Other applications??? (field is still growing) Next lecture: quantum algorithms... Entanglement and Teleportation - NITP 2003 27