Chapter 12 Intermolecular Forces and Liquids

Similar documents
Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

Ch. 11: Liquids and Intermolecular Forces

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

Intermolecular forces Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Intermolecular Forces, Liquids and Solids Chap. 10

Solids, Liquids and Gases

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

- intermolecular forces forces that exist between molecules

Chapter 11 Intermolecular Forces, Liquids, and Solids

Intermolecular Forces

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Chemistry: The Central Science

Chapter 11. Liquids and Intermolecular Forces

Liquids, Solids and Phase Changes

Ch. 9 Liquids and Solids

Chapter 11. Liquids and Intermolecular Forces

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Chap 10 Part 4Ta.notebook December 08, 2017

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together.

Liquids and Solids The Condensed States of Matter

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

Chapter 11. Intermolecular Forces and Liquids & Solids

The Liquid and Solid States

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

RW Session ID = MSTCHEM1 Intermolecular Forces

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

CHEMISTRY. Chapter 11 Intermolecular Forces Liquids and Solids

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11. Intermolecular Forces, Liquids, and Solids

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

Intermolecular Forces, Liquids, & Solids

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

The Liquid and Solid States

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

Chem 30A. Ch 12. Liquids, Solids, and Intermolecular Forces

Chapter #16 Liquids and Solids

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Chapter 11 Intermolecular Forces, Liquids, and Solids

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Chapter 14. Liquids and Solids

Liquids, Solids, and Intermolecular Forces or. Why your Water Evaporates and your Cheerios Don t. Why are molecules attracted to each other?

13.1 States of Matter: A Review 13.2 Properties of Liquids A. Evaporation B. Vapor Pressure C. Surface Tension 13.3 Boiling Point and Melting Point

Intermolecular Forces and Liquids and Solids Chapter 11

Chapter 10: Liquids, Solids, and Phase Changes

Property of liquid and Phase Diagram for EN 2017

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

CHAPTER 9: LIQUIDS AND SOLIDS

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces

Chapter 11. Intermolecular Forces, Liquids, and Solids

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Intermolecular Forces and Phase Equilibria

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

q i = 0 aa + bb cc + dd q = si mi!t qsolid=>liquid = # moles!h fusion qliquid=>gas = # moles!h vaporization i=1

Chapter 11: Intermolecular Forces. Lecture Outline

ENTROPY

Forces, Liquids, and Solids

- As for the liquids, the properties of different solids often differ considerably. Compare a sample of candle wax to a sample of quartz.

Chapter 14. Liquids and Solids

Chapter 12. Intermolecular Forces: Liquids, Solids, and Phase Changes

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Chapter 10. The Liquid and Solid States. Introduction. Chapter 10 Topics. Liquid-Gas Phase Changes. Physical State of a Substance

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Ch 11: Intermolecular Forces, Liquids, and Solids

CHEMISTRY Matter and Change. Chapter 12: States of Matter

Chapter 10 Review Packet

Intermolecular forces are classified into four major types.

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction

Properties of Liquids and Solids

CHAPTER 10. States of Matter

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

What biological molecules have shapes and structures that depend on intermolecular forces?

Intermolecular Forces and Liquids and Solids

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion

CHAPTER 6 Intermolecular Forces Attractions between Particles

Some Properties of Solids, Liquids, and Gases

Red Beryl, Be 3 Al 2 Si 6 O 18. Liquids and

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

Bonds & IMAFs in Liquids, Solids, and Solutions

Intermolecular Forces: Liquids, and Solids. Chapter 11

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded

Properties of Solutions

Chapter 10 Liquids, Solids, and Intermolecular Forces

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

Chemistry 101 Chapter 14 Liquids & Solids

Physical States of Matter

AP Chemistry: Liquids and Solids Practice Problems

Transcription:

Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento

Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I 2 a solid whereas Cl 2 is a gas? Why are NaCl crystals little cubes? All of these questions may be answered by Intermolecular Forces

Intermolecular Forces The forces holding solids and liquids together are called intermolecular forces. Intermolecular Forces are the attractions and repulsions between molecules. They are NOT chemical bonds. The intermolecular forces of a substance may exhibit are a function of: 1. charge (ions vs. neutrals) 2. polarity (molecular shape, dipoles) 3. molar mass

Intermolecular Forces Intermolecular forces influence chemistry in many ways: They are directly related to properties such as melting point, boiling point, and the energy needed to convert a solid to a liquid or a liquid to a vapor. They are important in determining the solubility of gases, liquids, and solids in various solvents. They are crucial in determining the structures of biologically important molecules such as DNA and proteins.

Covalent Bonding Forces for Comparison of Magnitude C=C (610 kj/mol) C C (346 kj/mol) C H (413 kj/mol) C N (887 kj/mol)

Covalent Bonding Forces for Comparison of Magnitude 20 to 30 kj/mol D (H-Cl) = 432 kj/mol Intermolecular forces are much weaker than the bonds that make up compounds.

Ion-Ion Forces: Formal Charges The forces that govern charged particles are defined by Coulomb s law. Q Q F k 2 r Q = the charges on the cation and anion r = the distance between k = a constant Greater charge = stronger attraction These are the strong forces that lead to salts with high melting temperatures. H 2 O, mp = 0 C Greater distance = weaker attraction NaCl, mp = 800 C MgO, mp = 2800 C

Attractions Between Ions & Permanent Dipoles The polar nature of water provides for attractive forces between ions and water.

Solvation of Ions + When a cation exists in solution, it is surrounded by the negative dipole ends of water molecules. When as anion exists in solution, it is surrounded by the positive dipole ends of water molecules.

Enthalpies of Hydration: A Measure of Ion-Dipole Forces As the size of the ion increases, the exothermicity of the process decreases. This is due to the weaker ion-dipole forces.

Enthalpies of Hydration: A Measure of Ion-Dipole Forces As the size of the ion increases, the exothermicity of the process decreases. This is due to the weaker ion-dipole forces.

Attraction Between Ions & Permanent Dipoles Water is highly polar and can interact with positive ions to give hydrated ions in water.

Molecular Polarity Molecular Geometry Linear Trigonal Planar Tetrahedral Trigonal bipyramidal Octahedral Non-Polar Molecule Both atoms the same (outer the same for linear tri-atomic) All bonding groups the same All bonding groups the same All bonding groups the same or both axial groups the same and all three equatorial groups the same, All bonding groups the same or all groups trans to one another the same. Any deviations of symmetry yield a polar molecule.

Dipole-Dipole Forces Dipole-dipole forces bind molecules having permanent dipoles to one another.

Dipole-Dipole Forces As the polarity for a given set of molecules with similar molar masses increases, the boiling point increases. Compound Molar Mass (amu) Dipole Moment (D) BP (K) CH 3 CH 2 CH 3 44.1 0.1 231 CH 3 OCH 3 46.07 1.3 248 CH 3 Cl 40.49 1.9 249 CH 3 CN 41.05 3.9 355 400 350 300 250 Boiling point 200 150 100 50 BP 0 1 2 Molar Mass 3 4 Dipole molar Mass Dipole Moment

Hydrogen Bonding A special form of dipole-dipole attraction, which enhances dipole-dipole attractions. H-bonding is strongest when X and Y are N, O, or F

Hydrogen Bonding The water molecules network with one another. H bonding in water brings about a network of interactions which explain phenomena such as: capillary action surface tension why ice floats

Surface Tension Molecules at surface behave differently than those in the interior. Molecules at surface experience net INWARD force of attraction. This leads to SURFACE TENSION the energy reqired to break the surface.

Surface Tension SURFACE TENSION also leads to spherical liquid droplets.

Capillary Action IMF s also lead to CAPILLARY action and to the existence of a concave meniscus for a water column. concave meniscus ATTRACTIVE FORCES between water and glass H 2 O in glass tube COHESIVE FORCES between water molecules

Capillary Action Movement of water up a piece of paper is a result of H-bonds between H 2 O and the OH groups of the cellulose in the paper.

Ice, H 2 O(s) floats because it is less dense than water, H 2 O(l). The H bonds allow the molecules in the liquid phase to to approach closer than normal for non H bonding liquids. This is why water has its maximum density at 4 C.

Hydrogen Bonding in H 2 O Ice has open lattice-like structure. Ice density is < liquid and so solid floats on water. One of the VERY few substances where solid is LESS DENSE than the liquid.

The Consequences of Hydrogen Bonding

18 g/mol Boiling Points of Simple Hydrogen- Containing Compounds Notice that water has an unusually high bp for its M wt... 20 g/mol 17 g/mol 16 g/mol This is a result of hydrogen bonding!

Hydrogen Bonding H-bonding leads to abnormally high boiling point of water.

Forces Involving Induced Dipoles How can non-polar molecules such as O 2 and I 2 dissolve in water? The water dipole INDUCES a dipole in the O 2 electron cloud. Dipole-induced dipole

Induced Dipole Forces How can non-polar molecules such as O 2 and I 2 dissolve in water? The water dipole INDUCES a dipole in the O 2 electron cloud. Once polarized, the O 2 is attracted to additional water molecules.

Induced Dipole Forces The degree to which electron cloud of an atom or molecule can be distorted is measured by its polarizability. The larger the molecule, the more easily it is polarized. As the electrons in a molecule become more loosely held and more spread out, the greater the degree of polarizibility in the molecule. The explains the trend we see in solubility.

Forces Involving Induced Dipoles Formation of a dipole in two nonpolar I 2 molecules. Induced dipoleinduced dipole

London Dispersion Forces London dispersion forces exist between all molecules. London dispersion forces are a function of molecular polarizability. The Polarizability of a molecule is measured by the ease with which an electron cloud can be distorted. The larger the molecule (the greater the number of electrons) the greater polarizability. The greater the surface area available for contact, the greater the dispersion forces. London dispersion forces therefore increase as molecular weight increases.

London Dispersion Forces For molecules with the same relative polarizability, the forces scale with molar mass: Higher M wt. = larger induced dipoles. Molecule BP ( o C) CH 4 (methane) - 161.5 C 2 H 6 (ethane) - 88.6 C 3 H 8 (propane) - 42.1 C 4 H 10 (butane) - 0.5 C 2 H 6 C 3 H 8 C 4 H 10 Note the linear relation between bp and molar mass. CH 4

Forces Involving Induced Dipoles The induced forces between I 2 molecules are very weak, so solid I 2 sublimes (goes from a solid to gaseous molecules).

Intermolecular Forces Summary

Intermolecular Forces

Properties of Liquids Of the three states of matter, liquids are the most difficult to describe precisely. Under ideal conditions the molecules in a gas are far apart and are considered to be independent of one another. The structures of solids can be described easily because the particles that make up solids are usually in an orderly arrangement. The particles of a liquid interact with their neighbors, like the particles in a solid, but, unlike in solids, there is little long-range order.

Properties of Liquids Liquids Particles are in constant motion. Particles are in close contact. Liquids are almost incompressible Liquids do not fill the container. Intermolecular forces are relevant.

Liquids: Vaporization In order for a liquid to vaporize, sufficient energy must be available to overcome the intermolecular forces. Breaking IM forces requires energy. The process of vaporization is therefore endothermic.

Liquids: Enthalpy of Vaporization The HEAT OF VAPORIZATION is the heat required to vaporize the liquid at constant P. vap H Liquid + energy = Vapor Notice how the types of forces greatly affects the H vap and boiling point. Compound IMF vap H (kj/mol) BP H 2 O H-bonds 40.7 100 C SO 2 Dipole 26.8 47 C Xe London 12.6 107 C

Liquids: Enthalpy of Vaporization When molecules of liquid are in the vapor state, they exert a VAPOR PRESSURE. The EQUILIBRIUM VAPOR PRESSURE is the pressure exerted by a vapor over a liquid in a closed container. At equilibrium, rate of evaporation = the rate of condensation.

Vapor Pressure When molecules of liquid are in the vapor state, they exert a VAPOR PRESSURE EQUILIBRIUM VAPOR PRESSURE is the pressure exerted by a vapor over a liquid in a closed container when the rate of evaporation = the rate of condensation.

Vapor Pressure Recall from kinetic molecular theory As Temp increases, so does the average KE of the particles. This means that there are more particles that can escape into the gas phase!

Boiling Point Liquid boil when P vap = P atm (Vapor pressure equals atmospheric pressure.

Boiling Point at Reduced Pressure As the external pressure is lowered, the vapor pressure equals the external pressure at a lower temperature. Boiling therefore occurs at a reduced temperature.

Consequences of Vapor Pressure Changes When can cools, vapor pressure of water drops. Pressure inside of the can is less than that of atmosphere, which collapses the can.

Equilibrium Vapor Pressure The vapor pressure of a liquid is seen to increase exponentially with temperature.

Measuring Equilibrium Vapor Pressure Liquid in flask evaporates and exerts pressure on manometer.

The Temperature Dependence of Vapor Pressure Goes As: lnp vap vap RT H C - slope : D vap R H A plot of lnp vap vs. slope of: 1 T yields a vap H is related to T and P by the Clausius-Clapeyron equation y-intercept = C

Liquids: IMF s Summary Molecules in the Liquid State vap H Volatility Equilibrium Vapor Pressure Boiling Point Strong IMF s More Endothermic Low Low High Weak IMF s Less Endothermic High High Low