Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Similar documents
Homework Problem Set 8 Solutions

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

General Physical Chemistry I

Entropy Changes & Processes

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Entropy Changes & Processes

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chemistry. Lecture 10 Maxwell Relations. NC State University

CHEM-UA 652: Thermodynamics and Kinetics

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

What is a spontaneous reaction? One, that given the necessary activation energy, proceeds without continuous outside assistance

The Second Law of Thermodynamics (Chapter 4)

Lecture 4. The Second Law of Thermodynamics

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous?

CHEM-UA 652: Thermodynamics and Kinetics

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

Exam 1A. 4) Calculate the H 0 rxn in kj for this reaction. a) 6339 b) 5106 c) 775 d) 6535 e) 2909

CHEM Thermodynamics. Entropy, S

Final Examination. Multiple Choice Questions. 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is:

Exam 3, Chemistry 481, 8 December 2017

Chemistry 452 July 23, Enter answers in a Blue Book Examination

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required?

Chapter Eighteen. Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Chapter 19 Chemical Thermodynamics Entropy and free energy

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

Physical Chemistry I Exam points

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

KEY. Chemistry 1A, Fall2003 Midterm Exam III, Version A November 13, 2003 (90 min, closed book)

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Ch 10 Practice Problems

Final Exam, Chemistry 481, 77 December 2016

Entropy, Free Energy, and Equilibrium

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

du = δq + δw = δq rev + δw rev = δq rev + 0

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

Chemistry 102b First Exam. CIRCLE the section in which you are officially registered:

Advanced Chemistry Practice Problems

I. Multiple Choice Questions (Type-I)

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

HOMOGENEOUS CLOSED SYSTEM

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts:

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

Thermodynamics (XI) Assignment(Solution)

Chapter 20: Thermodynamics

5. Internal energy: The total energy with a system.

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax.

Pressure Volume Work 2

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Free-energy change ( G) and entropy change ( S)

Chemistry Chapter 16. Reaction Energy

Disorder and Entropy. Disorder and Entropy

UNIT 15: THERMODYNAMICS

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v.

Homework Week The figure below depicts the isothermal compression of an ideal gas. isothermal du=0. δq rev = δw rev = P dv

Chapter 11 Spontaneous Change and Equilibrium

Outline of the Course

Entropy Changes & Processes

THE ZEROTH AND FISRT LAW OF THERMODYNAMICS. Saeda Al-Mhyawi secend Tearm 1435H

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chapter 16. Spontaneity, Entropy and Free energy

For more info visit

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

PHASE CHANGES EVAPORATION EVAPORATION PHYSICAL PROPERTIES OF LIQUID PHYSICAL PROPERTIES OF LIQUID SOME PROPERTIES OF LIQUIDS 2014/08/08

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

Chem 1310 A/B 2005, Professor Williams Practice Exam 3 (chapters 10, 11 and 12) Chapter 10 Thermochemistry

Test #3 Last Name First Name November 13, atm = 760 mm Hg

Lecture 3 Evaluation of Entropy

3.20 Exam 1 Fall 2003 SOLUTIONS

Thermodynamics- Chapter 19 Schedule and Notes

Chapter 17: Spontaneity, Entropy, and Free Energy

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

Lecture Notes 1: Physical Equilibria Vapor Pressure

ANSWER KEY. Chemistry 25 (Spring term 2016) Midterm Examination

Chapter 19 Chemical Thermodynamics

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

Exam 1 Spring 2018 BCH Physical Chemistry with a Biological Focus Professor Jeff Yarger

1 of 8 Class notes lectures 6a, b, c

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

5. Internal energy: The total energy with a system.

6.Thermodynamics. Some Important Points and Terms of the Chapter

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

1.8 Thermodynamics. Lattice formation enthalpy Enthalpy change when 1 mole of a solid ionic compound is formed from its gaseous ions

THERMODYNAMICS CONTENTS

CHEM 305 Solutions for assignment #4

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamic Processes and Thermochemistry

Transcription:

Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell relations to determine which of the following equations is valid. Start with the definition of the Gibbs energy, (a ( S = ( S ( (b S = ( S ( S (c = ( (d ( S = ( G = H S. Given that G = H S, using the first and second laws we can write, dg =d(h S =dh ds Sd =d(u + ds Sd =du + ( d + d ds Sd =( ds d + ( d + d ds Sd = Sd + d and we can write the total derivative of G, dg = d + d in terms of its natural independent variables. We can compare terms in the two equations and see that

and = = S If we now take the cross derivatives of this result we have ( ( S = 2. Calculate vap Ḡ for benzene at 77 C and 1 bar given that the molar enthalpy of vaporization of benzene at its boiling point of 80.09 C and 1 bar is 30.72 kj mol 1. Assume that the values of vap H and vap S are constant over the temperature range considered here. Hint: You will first need to calculate vap S from the given information. (a G vap (350 K = 0.6512 kj/mol (b G vap (350 K = 0.2687 kj/mol (c G vap (350 K = 0.3414 J/mol (d G vap (350 K = 100.2 kj/mol (e G vap (350 K = 0.4414 kj/mol (f G vap (350 K = 3.04 10 4 kj/mol (g G vap (350 K = 3.04 10 4 kj/mol From lecture video 8.2, we know that G = H S. For a given H and S (assuming they are independent of we can compute G at different temperatures. We are given only vap H, so we first must determine vap S. At the boiling point (and 1 bar the liquid and gas phases are in equilibrium and thus G vap = 0. We can use this result to solve for vap S as follows: G vap = H vap S vap 0 =30.72 kj/mol [(80.09 + 273.15K] S vap 30.72 kj/mol S vap = (80.09 + 273.15 K S vap =0.08697 kj mol 1 K 1 Now we can compute G vap at 77 o C (which is 350.15 K: = 86.97 J mol 1 K 1 G vap (350.15 K = 30.72 kj/mol 350.15 K 0.08697 kj mol 1 K 1 G vap (350.15 K = 0.2687 kj/mol (result carries all digits from the above calculation

3. In lecture video 8.5, we derived for a thermoelastomer: ( U = ( S + f. For a weight suspended on a tense rubber band and resting on a scale, assuming that the rubber band acts as an ideal elastomer and does not change volume when stretched, which of the following statements is RUE if you increase the temperature of the rubber band? (a he force exerted by the rubber band, f, will not change. (b he force exerted by the rubber band, f, will decrease. (c he force exerted by the rubber band, f, will increase. In lecture video 8.5, we learned that the Helmholtz energy for the rubber band can be expressed as da = Sd + fdl. We can write the total derivative of A in terms of the natural, independent variables and L as da = And thus if we compare terms, and ( A d + L ( A = S L ( A If we determine the cross derivatives, i.e. and [( A ] L ( A dl. = f. = ( S [( ] ( A f =. L L hese two mixed partial derivatives must be equal to one another. And, we know that the entropy decreases with increasing length, so ( S must be a positive value. hus, ( f must be positive, which means f must increase with increasing temperature. (One can further manipulate the equations to show that the increase should be L linear in temperature, but we will not do that here.

A final, intuitive way to see the answer to this question is to recognize that increasing temperature will favor lengths having greater entropy, i.e., shorter lengths (where the polymer chains can twist and turn and are not pulled straight. So, there will be increased resistance to losing entropy by stretching, and this is reflected in a higher force constant. 4. One of the Maxwell relations derived in the lecture videos is, ( ( S =. Using this relationship, find the correct expression for the isothermal change in the entropy of a gas that obeys the van der Waals equation of state when you change the molar volume from 1 to 2. (a S ( = R ln 2 b 1 b (b S ( = R ln 2 1 (c S = R ln (d S = R ln ( 2 b 1 b ( 2 b 1 b ( 1 + 3aR 2 3 ar ( 2 2 1 2 1 3 1 From lecture video 2.2, we know that the van der Waals equation of state is, and therefore = ( R b ā 2 = R b. We can substitute into the Maxwell relation above to obtain, ( S = R b We can separate the variables and integrate this equation to yield ds = R b d S = R ln 2 b 1 b.

5. Write the total derivative of H(, as dh = ( H d + ( H d (1 and determine another expression, derived with the use of Maxwell relations, that expresses dh in terms of readily measured quantities. (Hint: equations involving the differential of the Gibbs free energy are likely to be the most useful to you in seeking partial derivative equalities. (a dh = [ ( ] d + C d (b dh = [ ( ] d + C d (c dh = [ ( ] d + C d (d dh = [ ( ] d + C d (e dh = [ + ( ] d + C d (f dh = [ ( ] d + C d o solve this, we start with the definition of the Gibbs energy, G = H + S and differentiate this with respect to pressure at constant temperature to obtain an expression that contains the first term of the total derivative as written, ( H. We can then re-arrange this term using Maxwell relations to include and (. he second term of the original total derivative we can simply recognize as the definition of the constant pressure heat capacity. aking the derivative of the expression for G, ( ( G H = ( S We know we can combine the first and second laws to write, dg =d(h S =dh ds Sd =d(u + ds Sd =du + ( d + d ds Sd =( ds d + ( d + d ds Sd = Sd + d. (2 From writing the total derivative of G, dg = d + d in terms of its natural independent variables, we see that

and = = S. If we now take the cross derivatives of this result we have ( ( S = Now we can substitute these results into Eq. 2 to obtain, ( ( H = + which we can solve to get ( H = (. his result can now be substituted into the original total differential for H to yield, [ ( dh = using the definition that C = ( H. ] d + C d 6. Determine the Gibbs-Helmholtz equation for A, i.e determine, ( (A/ Hint: It was shown in lecture video 7.1 that (a G 2 H (b H 2 (c [ (S/ (d U 2 (e U (f G ] ( S = C

(g none of the above We can begin with the definition A = U S and determine the derivative after division by, and therefore, [ ] (A/ From the definition of C we know ( A = = U 2 + 1 1 ( U [ ] U S ( U = C and using the hint given in the question we can write [ ] (A/ = U 2 + C 7. For the following spontaneous endothermic reaction, ( S C = U 2 Ba(OH 2 (s 8 H 2 O + 2 NH 4 NO 3 (s Ba(NO 3 2 (s + 10 H 2 O(l + 2 NH 3 (aq at 300 K, r H = 60 kj and r S = 400 J K 1. What is the change in the Gibbs free energy, r G, for this reaction at 300 K? (a 0 kj (b 30 kj (c -30 kj (d 60 kj (e -60 kj (f 120 kj (g -120 kj (h none of the above We can apply the formula G = H S r G = 60 kj 300K 0.4 kj K 1 = 60 kj

8. Determine the molar free energy of vaporization, vap Ḡ, for benzene at 75 C and 1 bar given that the molar enthalpy of vaporization of benzene at its normal boiling point of 80.09 C and 1 bar is 30.72 kj mol 1. Unlike a previous homework problem, do not assume that the molar enthalpies and molar entropies of vaporization are constant over all temperatures. Instead, make use of the molar heat capacities of liquid and gaseous benzene, 136.3 and 82.4 J mol 1 K 1, respectively, to refine your answer. (a 40.2 kj mol 1 (b 20.80 kj mol 1 (c 0.102 kj mol 1 (d 2.480 kj mol 1 (e 0.282 kj mol 1 (f 0.445 kj mol 1 We are given only vap H, so we first must determine vap S. At the boiling point (and 1 bar the liquid and gas phases are in equilibrium and thus G vap = 0. We can use this result to solve for vap S as follows: G vap = H vap S vap 0 =30.72 kj/mol [(80.09 + 273.15K] S vap 30.72 kj/mol S vap = (80.09 + 273.15 K S vap =0.08697 kj mol 1 K 1 = 86.97 J mol 1 K 1 Figure 1: Scheme used to compute S as a function of 2 : Starting from the left bottom corner upwards, there is a change in entropy in the liquid due to the change in temperature of the liquid. hen at this temperature the entropy changes due to the vaporization of the liquid to yield gas at the same temperature. hen the entropy changes again due to a change in the gas temperature.

If we take S vap as an illustration, we can think about this problem as is shown in figure 1. From figure 1, using the fact that S is a state function, S vap ( 2 = 1 2 C p, liquid d + S vap ( 1 + 2 1 C p, gas d. he first and third terms are the changes in entropy (for the liquid and gas, respectively due to simply a change in, and have been obtained from the definition of entropy and the fact that dq = C p d. We will take 2 to be the for which we want to compute S vap (and then G vap, and 1 to be that for which S vap is known, i.e. the boiling point of benzene in our case. he same idea from figure 1 can be used for H vap. Now the change in enthalpy due to the change in of a phase is given by H = C p, which is obtained by using the fact that H is the heat exchanged at constant pressure, and the definition of C p. So, on the whole, for enthalpy we obtain: H vap ( 2 = C p, liquid 2 1 + H vap ( 1 + C p, gas 1 2 So now we have all we need to compute G vap at 75 C. Let s first compute S vap, 353.24 348.15 136.3 J mol 1 K 1 S vap (348.15 K = d + 86.97 J mol 1 K 1 82.4 J mol 1 K 1 + d 348.15 353.24 = 136.3 J mol 1 K 1 ln 353.24 348.15 + 86.97 J mol 1 K 1 + 82.4 J mol 1 K 1 ln 348.15 353.24 = 87.75 J mol 1 K 1 Next we ll compute H vap at 348.15 K: H vap (348.15 = 136.3 J mol 1 K 1 [(353.24 348.15 K] + 30.72 kj mol 1 + +82.4 J mol 1 K 1 [(348.15 353.24 K] = 30.99 kj mol 1 And finally we can compute G vap, G vap (348.15 K = H vap (348.15 K 348.15 K S vap (348.15 K = 30.99 kj mol 1 348.15 K 87.75 J mol 1 K 1 = 0.445 kj mol 1 (result carries all digits from the above calculations

9. In a Joule-homson device, a constant pressure, 1, is applied to a gas in a cylindrical chamber, with volume 1, so that the gas flows through a porous plug into another chamber where a lower constant pressure, 2, is maintained. In the initial state 1 > 0 and 2 = 0. In the final state 1 = 0 and 2 > 0, i.e., all of the gas is transferred from the first chamber to the second in the course of a compression cycle. he apparatus is constructed such that the entire process is adiabatic. he so-called Joule-hompson coefficient is defined as ( = 1 ( H H C and is a measure of the change in temperature of a gas with respect to the change in the pressure. Which of the following Joule-hompson coefficients applies to the case of an ideal gas being used in the device. (a ( = 1 H (b ( = 1 H (c ( = nr H (d ( (e ( (f ( H = 1 C C C = 0 H = ( A H S ( G ( H here is an easy way to do this problem, and a hard way. he hard way is completely general, so let s do it first, and then we can note the easy way. Start with the definition of the Gibbs energy, G = H S and differentiate this with respect to pressure at constant temperature to obtain an expression that contains the first term of the total derivative as written, ( H. We can then try to solve for this term using a Maxwell relation. aking the derivative of G with respect to pressure at constant temperature, ( ( ( G H S = Now combining the first and second laws, dg =d(h S =dh ds Sd =d(u + ds Sd =du + ( d + d ds Sd =( ds d + ( d + d ds Sd = Sd + d. (3

he total derivative of G, dg = d + d is written in terms of its natural independent variables, such that and = = S. aking cross derivatives of this result yields ( ( S =. Now we can substitute these various results into Eq. 3 to obtain, ( ( H = + which we can solve to get ( H = (. If we substitute this into the definition for the Joule-hompson coefficient, we obtain ( = 1 H C his is completely general. But, for an ideal gas, so ( ( = 1 H C [ ( ]. = nr, [ nr ] = 0. And the easy way? Remembering that the enthalpy of an ideal gas depends only on temperature, in which case ( H must be zero, and so the Joule-hompson coefficient is zero. 10. A hand warmer produces heat when a concentrated sodium acetate solution crystallizes spontaneously at constant pressure. he observed spontaneity of the reaction implies...

(a exothermic release of heat reduces the energy of the universe. (b exothermic release of heat increases the energy of the universe. (c exothermic release of heat reduces the enthalpy of the universe. (d exothermic release of heat increases the enthalpy of the universe. (e exothermic release of heat reduces the entropy of the universe. (f exothermic release of heat increases the entropy of the universe. (g crystallization reduces the entropy of the universe (h crystallization reduces the entropy of the system (i none of the above As the sodium acetate crystallizes, the entropy of the system (the sodium acetate does decrease, i.e, S for the system is negative, but spontaneous processes do not occur simply to reduce the entropy of an isolated system (to the contrary, they occur to increase the entropy of an isolated system, and, in any case, this system is not isolated. As this is a constant pressure process for a non-isolated system, the relevant state function is the Gibbs free energy. Given that G = H S, and that S is negative, it must be the negative change in enthalpy, which is associated with the liberation of heat, that causes the free energy to be negative and makes this process spontaneous. his exothermic release of heat, released spontaneously to the surrounding universe, contributes to the increase in entropy of the universe. Indeed, all spontaneous processes increase the entropy of the universe, because the universe is the ultimate isolated system, and the Second Law says spontaneous processes occur to increase the entropy of isolated systems. (Note that it is not enough simply to be exothermic to be spontaneous; if the entropy of a system decreases by more than the entropy increase of the rest of the universe provided by an exotherm, that process will not be spontaneous.