SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF VANADIUM (V) USING SALICYLALDEHYDE ACETOACETIC ACID HYDRAZONE. APPLICATIONS

Similar documents
Available online Research Article

2-Hydroxy-4-n-propoxy-5-bromoacetophenone (HnPBAO) oxime as a gravimetric reagent for Ni(II) and Cu(II) and spectrophotometric study of the complexes

CHAPTER 6 SUMMARY & CONCLUSION. pollution. It was known that many analytical methods that are available for the

Journal of Chemical and Pharmaceutical Research

Cu-Creatinine- Metol system

Spectrophotometric determination of nickel(ii) with 2-hydroxy-3-methoxybenzaldehyde

Non-Extractive Spectrophotometric determination of Mo (VI) using 5-Bromosalicylaldehyde Isonicotinoyl

International Journal of Pharma and Bio Sciences V1(2)2010

Shigeya SnTO and SUIIllO UCHIKAWA. Faculty of Education, Kumamoto University, Kurokami, Kumamoto 860

ISSN: ; CODEN ECJHAO E-Journal of Chemistry , 8(2),

Derivative Spectrophotometric Determination of Mercury (II) Using Diacetyl Monoxime Isonicotinoyl Hydrazone (DMIH)

SIMULTANEOUS DETERMINATION OF PROCAINE AND BENZOIC ACID BY DERIVATIVE SPECTROMETRY

DIRECT, DERIVATIVE SPECTROPHOTOMETRIC DETERMINATION OF MICRO AMOUNTS OF THORIUM (IV) BY 2-AMINOACETYL-3-HYDROXY-2-NAPHTHOIC HYDRAZONE (AHNH)

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs

PointH Standard Addition Method for Simultaneous Determination of Zinc (II) and Aluminum (III) Ions

Department of Analytical Chemistry, University of Bucharest, road Panduri, Bucharest, ROMANIA

CHAPTER V ANALYTICAL METHODS ESTIMATION OF DICLOFENAC. Diclofenac (gift sample from M/s Micro Labs Ltd., Pondicherry)

Pelagia Research Library. Spectrophotometric determination of Ametoctradin and in its commercial formulations

Validated First Order Derivative Spectroscopic Method for the determination of Stavudine in Bulk and Pharmaceutical Dosage Forms

THE ASSOCIATION AND FORMATION CONSTANTS FOR NiCl 2 STOICHIOMETRIC COMPLEXES WITH (E)-3-(2-BENZYLIDENE HYDRAZINYL)-3-OXO-N-(THIAZOL-2-YL)PROPANAMIDE

A Simple, Sensitive Spectrophotometric Determination of Mosapride in Pharmaceutical Preparations Using Novel Reagent

Extractive Spectrophotometric Determination of Cu(II) with Phosphoryl Derivative of p-tert-butylthiacalix(4)arene

Available online at Universal Research Publications. All rights reserved. Original Article

Simultaneous determination of Zinc(II) and Cobalt(II) by First order derivative Spectrophotometry in Triton X-100 Micellar Media

Sensitive method of determination of gold (III) using diacetyl monoxime isonicotinoyl hydrazone (DMIH)

International Journal of

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Derivative spectrophotometric determination of uranium (VI) using diacetyl monoxime isonicotinoyl hydrazone (DMIH)

NEW SPECTROPHOTOMETRIC METHODS FOR THE QUANTITATIVE ESTIMATION OF OXOLAMINE IN FORMULATION

DERIVATIVE SPECTROPHOTOMETRIC DETERMINATION OF NICKEL (II) USING 3,5-DIMETHOXY-4-HYDROXY BENZALDEHYDE ISONICOTINOYL HYDRAZONE(DMHBIH)

SPECTROPHOTOMETRIC METHODS FOR ESTIMATION OF MIZOLASTINE IN PHARMACEUTICAL DOSAGE FORMS

Ketorolac tromethamine (KT)[1] is

NEW SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF DESLORATADINE IN PHARMACEUTICAL FORMULATIONS

CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF VANADIUM (IV) BASED ON THE OXIDATION OF ALKALI BLUE BY POTASSIUM BROMATE *

UV Spectrophotometric Estimation of Levoceterizine Dihydrochloride in Bulk and Dosage Form

Spectrophotometric determination of Vanadium with Acetophenone 2, 4 -Dihydroxy Thiosemicarbazone

Pelagia Research Library

Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins

Spectrophotometric Determination of Palladium(II) Using Thioglycollic Acid

Spectrophotometric determination of Iron(III)

Formation of self-inhibiting copper(ii) nanoparticles in an autocatalytic Fenton-like reaction

Spectrophotometric Estimation of Paracetamol in Bulk and Pharmaceutical Formulations

Author(s) Yuuroku; Tabushi, Masayuki; Kitayam.

Spectrophotometric determination of hydroxylamine and its derivatives in drug formulation using methyl red

of nm throughout the experimental work.

Cyclic Voltammetric Determinations of Dart (Drug) and Cd(II) Ion in Pharmaceutical Preparations

NEW SPECTROPHOTOMETRIC METHODS FOR THE DETERMINATION OF PARACETAMOL IN PURE FORM AND PHARMACEUTICAL FORMULATIONS

Journal of Chemical and Pharmaceutical Research

Iron Catalyzed Chlorpromazine-Hydrogen

Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water. Jintana Klamtet

DISCLAIMER: This method:

PointH Standard Addition Method for Simultaneous Spectrophotometric Determination of Cobalt (II) and Zinc (II) Ions

Spectroscopic Method For Estimation of Atorvastatin Calcium in Tablet Dosage Form

International Journal of Pharma and Bio Sciences V1(2)2010 SOLVENT EXTRACTION OF CHROMIUM (VI) FROM MINERAL ACID SOLUTIONS BY TRIBUTYL AMINE

Spectrophotometric Determination of Lorsartan Potassium and its Dosage Form by Bromothymol Blue and Phosphate Buffer

Zero And First Order Derivative Spectrophotometric Methods For Determination Of Dronedarone In Pharmaceutical Formulation

Test Method: CPSC-CH-E

Received: ; Accepted:

PART I INTRODUCTION. A Brief review on Hydrazones as analytical reagents

LEAD (Colorimetric) 2. Muffle Furnace: Equipped with pyrometer and capable of operating at controlled temperatures up to 500 C

462 1 & (2&3 ( 4 5 6" 6 7 ' ("0 / L1 1 % FG &

SPECTROPHOTOMETRIC DETERMINATION OF URANIUM WITH DI-2-PYRIDYL KETONE BENZOYLHYDRAZONE

Answers to spectroscopy questions. 1. Consider the spectrum below. Questions a f refer to this spectrum.

Spectrophotometric Microdetermination of Fe(III) and V(V) Using Schiff Base Derived from Salicylhydroxamic Acid

Student s Journal of Chemistry SPECTROPHOTOMETRIC DETERMINATION OF CARBOFURAN IN COMMERCIAL SAMPLES BY OXIDATION WITH POTASSIUM FERRICYANIDE

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

Structural effects on catalytic activity of carbon-supported magnetite. nanocomposites in heterogeneous Fenton-like reactions

ANALYSIS OF AMISULPRIDE IN PHARMACEUTICAL DOSAGE FORMS BY NOVAL SPECTROPHOTOMETRIC METHODS

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC)

International Journal of Chemistry Research Vol 1, Issue 1, 2010

New Spectrophotometric Multicomponent Estimation of Ciprofloxacin and Tinidazole Tablets

Spectrophotometric Determination of Iron

Analytical method development and validation of gabapentin in bulk and tablet dosage form by using UV spectroscopic method

Development and Validation of Stability Indicating Assay Method of Etodolac by using UV-Visible Spectrophotometer

A sensitive spectrophotometric determination of ammonium molybdate as a residual catalyst in tinidazole bulk in parts per million levels

Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine.

New Simple UV Spectrophotometric Method for Determination of Mirtazapine in Bulk and pharmaceutical dosage forms

2 SPECTROSCOPIC ANALYSIS

International Journal of Advanced Technology in Engineering and Science Volume No.03, Issue No. 05, May 2015 ISSN (online):

Supporting Informations for. 1,8-Naphthyridine-based molecular clips for off-on fluorescence sensing

Experiment 1 (Part A): Plotting the Absorption Spectrum of Iron (II) Complex with 1,10- Phenanthroline

Electronic Supplementary Material

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used.

(DMF) by dissolving appropriate quantity of each reagent substance separately. (i) 2,4-Dimethoxybenzaldehyde-4-hydroxybenzoylhydrazone (DMBHBH)

International Journal of Pharma and Bio Sciences

SUPPORTING INFORMATION. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on Distyryl-Bodipy Fluorophore

H-Point Standard Addition Method for Simultaneous Determination of Zinc and Nickel in Micellar Media

National standard of People s Republic of China

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

DETERMINATION OF SERUM ALBUMIN WITH TRIBROMOARSENAZO BY SPECTROPHOTOMETRY

Research Article Spectrophotometric Estimation of Didanosine in Bulk Drug and its Formulation

New Derivative Spectrophotometric Methods for the Determination of Fluoxetine - An Antidepressant Drug

Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples

Lab #12: Determination of a Chemical Equilibrium Constant

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

Application of Azure A in the Spectrophotometric Determination of Penicillin Drugs

Subhadip Roy * et al. /International Journal Of Pharmacy&Technology

Energy transfer process in the reaction system NH 2 OH-NaOH-Cu(II)-Eu(III)/thenoyltrifluoroacetone

Electropolymerization of cobalto(5,10,15-tris(4-aminophenyl)- 20-phenylporphyrin) for electrochemical detection of antioxidant-antipyrine

Transcription:

Department of Physical Chemistry 4-12 Regina Elisabeta Blvd, District 3, Bucharest phone: +40-21-3143508; fax: +40-21-3159249 pissn: 1220-871X eissn: 1844-0401 ARS DOCENDI PUBLISHING HOUSE Sos. Panduri 90, District 5 Bucharest phone/fax: +40-21-4102575 e-mail: arsdocendi@yahoo.com SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF VANADIUM (V) USING SALICYLALDEHYDE ACETOACETIC ACID HYDRAZONE. APPLICATIONS V. Srilalitha, A. Raghavendra Guru Prasad V. Seshagiri and L. K. Ravindranath abstract: Simple, sensitive and accurate spectrophotometric method was proposed for the micro determination of vanadium (V) using salicylaldehyde acetoacetic acid hydrazone (SAAH) as a reagent. The method was based on the formation of 1:2 complex between the metal and SAAH. The optimum conditions for the determination were established. The Beer s law was applicable in the range of 0.243-2.438 µg/ml. The method detection limit, limit of quantification, molar absorptivity, Sandell s sensitivity and stability constant (β) were reported. The method is free from common interferences. The method was successfully applied for the determination of vanadium (V) in tap water samples, plant tissues and alloys. key words: spectrophotometric; vanadium (V); salicylaldehyde acetoacetic acid hydrazone; tap water; plant material; alloys. received: October 16, 2010 accepted: December 15, 2010 1. Introduction Vanadium is a trace element and is of great industrial, ecological, biological and pharmacological importance. Vanadium metal is present in different alloys and is an important element present in steels. In view of crucial role in different fields, it is necessary to develop sensitive analytical procedures for the determination of trace amounts of vanadium. Survey of literature reveals that several procedures have been reported for the determination of vanadium. The procedures include high performance liquid chromatography (HPLC) [1], electrochemical [2, 3], spectrofluorimetry [3], neutron activation analysis [4], AAS [5], ICP-AES [6], ICP-MS [7, 8], ion chromatography inductively coupled plasma optical emission spectrometry [9], spectrophotometry [10, 11], C.M.R. Institute of Technology, Hyderabad, A.P., India ICFAI Foundation for Higher Education, Hyderabad, A.P., India corresponding author e-mail: guruprasadar@yahoo.co.in, Phone: 91 9849694428 Sri Krishnadevaraya University, Anantapur, A.P., India. Analele UniversităŃii din Bucureşti Chimie (serie nouă), vol 19 no. 2, pag. 69 76 2010 Analele UniversităŃii din Bucureşti

70 V. SRILALITHA A.R. GURU PRASAD V. SESHAGIRI L.K. RAVINDRANATH chemiluminescence [12] etc. Although these techniques are sensitive, inconvenient, expensive and time consuming. Many of these procedures are complicated [13] and involve preliminary isolation and pre-concentration procedures. Especially for vanadium, the technique of atomic absorption has drawbacks [14]. However ICP MS cannot be used for the determination of low concentrations of vanadium because of spectral and non-spectral interferences [15]. Several kinetic methods based on its catalytic action on the oxidation of organic compounds have been reported in literature [16 18]. The bromates have been extensively used as the oxidizing agents [17, 18], although hydrogen peroxide and potassium chlorate have also been used for the same purpose [19]. Many of these procedures are time sensitive procedures. In the present work, simple, rapid, selective and sensitive spectrophotometric method is reported for the micro determination of vanadium (v) by complexing with SAAH. 2. Experimental 2.1. Instrumentation The absorbance measurements were made on a Shimadzu UV-visible spectrophotometer (Model UV-160A). ph measurements were made using ELICO ph meter Model L1-10, ELICO Private Limited, Hyderabad, India. 2.2. Reagents and chemicals All the chemicals and reagents used were of analytical grade. A 0.01M solution of SAAH in dimethyl formamide was employed for the studies. Vanadium (V) solution of concentration 0.01M was prepared by dissolving requisite amount of sodium metavanadate in distilled water. Working solutions of vanadium were prepared before use by diluting appropriate volumes of stock solution with distilled water. The buffer solutions were prepared by mixing 1M hydrochloric acid and 1M sodium acetate (ph 1.0-3.0) and 0.2M acetic acid and 0.2M sodium acetate (ph 3.5-7.0). 2.3. Synthesis of SAAH Equimolar solutions of acetoacetic acid hydrazide and salicylaldehyde prepared in aqueous methanol were refluxed for two hours. The contents were allowed to cool to the room temperature and the product was separated by filtration. The crude product obtained was filtered, washed with water, dried and recrystallised from hot aqueous methanol to get pure light yellowish crystals of salicylaldehyde acetoacetic acid hydrazone (SAAH). C H 3 C C H 2 C N H N C H O O HO Fig 1 Structural formula of Salicylaldehyde acetoacetic acid hydrazone.

SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF VANADIUM 71 2.4. Procedure 2.4.1. General procedure for the determination of vanadium (V) Required aliquots of solution containing different amounts (0.243-2.438 µg/ml) of vanadium (V) were transferred into a series of 10 ml standard flasks. 5 ml of buffer solution of required ph, required volume of the SAAH solution of concentration 1 10 3 M, 1 ml of dimethylformamide were added to the flask and the contents were made up to the mark with distilled water. The absorbance of the solutions was measured at 460 nm against the reagent blank and the calibration graph was constructed. 2.4.2. Determination of vanadium (V) in tap water Tap water samples were spiked with known amounts of vanadium (V) and analyzed by the proposed general procedure. 2.4.3. Preparation of sample solutions of plant tissue The samples of plants tissue were washed with distilled water. The wet weight was taken after they were wiped with filter paper. The samples were then dried and brought into solution by acid treatment [20, 21], neutralized with dilute NH 4 OH and diluted to a known volume with distilled water. Since the vanadium (V) content in samples used was negligible, synthetic samples were prepared by the addition of known amounts of vanadium (V) and analyzed according to the general procedure. 2.4.4. Preparation of alloy sample solutions Accurately weighted amount of the alloy sample was dissolved in a mixture of 2 ml of concentrated hydrochloric acid and 10 ml of concentrated nitric acid. The solution was evaporated to a small volume, 1:1 sulphuric acid was added and the solution was then evaporated to dryness. The residue was dissolved in 15 ml of distilled water and filtered. The filtrate was transferred into a 100 ml standard flask and diluted to the mark with distilled water. This serves as stock solution. The stock solution was appropriately diluted to obtain the metal ion solution in the required concentration range. 3. Results and Discussion The proposed method involved the formation of a brownish yellow color between vanadium (V) and SAAH in a medium of ph 2. The absorption spectra of solution containing V(V)-SAAH complex against the reagent blank, that of SAAH solution against corresponding buffer blank and that of metal solution against the respective buffer blank is shown in the Fig. 2. The figure revealed that V(V)-SAAH complex has maximum absorbance at 460 nm. Neither the metal ion nor the reagent has appreciable absorbance at specified wavelengths. Hence further studies were carried out at 460 nm. The color reaction was instantaneous and the absorbance of the complex solution was found to remain constant for at least five hours.

72 V. SRILALITHA A.R. GURU PRASAD V. SESHAGIRI L.K. RAVINDRANATH Fig. 2 Absorption spectra of a) SAAH against buffer blank, [SAAH] = 2 10-4 M; b) V (V) against buffer blank, [V (V)] = 2 10-5 M; c)v (V)-SAAH complex against reagent blank, [V (V)]=2 10-5 M, [SAAH]=2 10-4 M. The authors conducted following studies in order to optimize the experimental variables. 3.1. Effect of ph The effect of ph on the intensity of the color reaction is shown in the Fig. 3. The absorbance was found to be maximum in the ph range 1-3. Hence further analytical investigations were carried out in media of ph 2. Fig. 3 Effect of ph on absorbance. [V (V)] = 2 10-5 M; [SAAH] = 2 10-4 M. 3.2. Effect of reagent (SAAH) concentration The studies on effect of various concentrations of the reagent on the color reaction reveal that, a reagent excess of 5 fold was required for the V(V)-SAAH color reaction. However it was found that the presence of excess of the reagent solution does not alter the absorbance of the color reaction.

SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF VANADIUM 73 3.3. Effect of vanadium (V) concentration The adherence to Beer s law was studied by measuring the absorbance value of the series of solutions containing different concentrations of the metal ion. A linear calibration graph drawn between absorbance and the metal ion concentration indicates that V(V) may be determined in the range 0.243-2.438 µg/ml. The pertaining calibration graph is shown in the Fig. 4. Fig. 4 Analytical determination of V (V); [SAAH] = 1 10-4 M; ph = 2; λ max = 460 nm 3.4. Stoichiometry of the V(V)-SAAH complex The stoichiometry of the complex was determined by Job s method of continuous variation and by mole ratio method. It was found to be 1:2 (Metal : Ligand). The stability constant determined by Job s method was found to be 1.683 10 10. The corresponding plots are shown in the Figs. 5 and 6 respectively. Fig. 5 Job s method of continuous variation, Concentration of V (V) solution and SAAH solution taken in different aliquots = 2 10-4 M; ph = 2; λ max = 460 nm.

74 V. SRILALITHA A.R. GURU PRASAD V. SESHAGIRI L.K. RAVINDRANATH Fig. 6 Molar ratio method; [V (V)] = 2 10-4 M; Concentration of SAAH solution taken in different aliquots = 2 10-3 M; ph = 2; λ max = 460 nm. In conclusion the analytical parameters pertaining to the proposed method are given in the Table 1. Table 1 Analytical parameters pertaining to the proposed method. Parameter Value Method detection limit 0.053 Limit of quantification 0.107 Molar absorptivity 22.000 10 3 L mol 1 cm 1 Sandell s sensitivity 0.002315 µg cm 2 Stability constant (β) 1.683 x 10 10 Beer s law range 0.243 2.438 µg/ml Regression equation Y = 0.1788X + 0.0013 Correlation coefficient 0.9993 3.5. Effect of diverse ions The effect of interfering ions on the proposed method was investigated. The tolerance limit was considered to be the amount that caused a ±1% deviation in the absorbance value. The results are summarized in Table 2. These results reveal that various cations and anions can be tolerated at satisfactory levels. Anion added Table 2 Tolerance limit of diverse ions, [V(V)] = 0.408 ppm Tolerance limit (ppm) Cation added Tolerance limit (ppm) Citrate 756.00 Bi(III) 125.39 Tartrate 740.00 W(VI) 3.68 Iodide 571.05 Mo(VI) 5.76 Hypo 744.54 Fe(III) 4.47

SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF VANADIUM 75 Oxalate 484.00 Mn(II) 1.10 Bromide 175.80 Ag(I) 43.15 Thiourea 190.30 Al(III) 53.96 Nitrate 279.00 Cu(II) 2.54 Urea 150.00 Pb(II) 4.14 Acetate 147.50 Hg(II) 4.01 Thiocyanate 290.00 Zn(II) 1.27 Chloride 70.90 Fe(II) 0.45 Phosphate 47.49 Fluoride 47.50 3.6. Analytical Applications The proposed method under the already established optimum conditions was applied for the determination of V(V) in tap water, plant tissues and alloys. The results presented in Table 3 indicate the successful applicability of the proposed method to real sample analysis. Table 3 Determination of vanadium in various samples a)tap water and plant material Vanadium Vanadium found (µg/ml) Sample added (µg/ml) Standard Method 22 Proposed method a Tap water 1.0 1.04 1.063±0.017 2.0 2.08 2.11±0.03 Plant material 1.0 1.07 1.07±0.02 Cabbage (5g) 2.0 2.09 2.10±0.034 a: t value at 95% confidence level is 2.26. Sample name/number b) Alloy sample Composition Recovery (%) 106.3 105.5 107 105 SD (%) 2.35 4.13 2.74 4.77 Vanadium (V)% Certified Found RSD (%) 2.22 1.96 2.57 2.27 Oakay alloy Ni = 60.00%; Pt = 20.00%; V = 9.50%; Pd = 10.50%. 9.50 9.39 0.11 7110 T032 C = 0.18%; Si = 0.34%; Mn = 0.33%; Ni = 0.12%; Cr = 1.08%; Mn = 0.85%; V = 0.87%; Cu = 0.22%; P = 0.018%; S = 0.012%; Ti = 0.11%; Al = 0.042%; B = 0.0009%. C = 0.056%; Si = 0.24%; Mn = 0.91%; Ni = 0.23%; Cr = 1.03%; Mo = 0.04%; V = 0.12%; Cu = 0.19%; P = 0.002%; S = 0.018%. Error (%) 0.87 0.86 0.01 0.12 0.11 0.01 4. Conclusion A simple, rapid and sensitive method is reported for the determination of trace amounts of vanadium (V). The described method was successfully applied for the determination of V(V) in tap water, plant tissues and alloys.

76 V. SRILALITHA A.R. GURU PRASAD V. SESHAGIRI L.K. RAVINDRANATH REFERENCES 1. Vachirapatama, N. and Dicinoski, G. W., Townsend, A. T. and Haddad, P. R. (2002) Journal of Chromatography A 956(1-2), 221-7. 2. Ensafia, A. and Naderi, B. (1997) Fresenius J. Anal. Chem. 358, 480-4. 3. Pei-hong Deng, Jun-jie Fei and Yong-lan Feng. (2010) Journal of Electroanalytical Chemistry 648(2), 85-91. 4. Kawakubo, S., Ogihara, K. and Iwatsuki, M. (1995) Analyst 120, 2719-23. 5. Greenberg, R. R. and Kingston, H. M. (1983) Anal. Chem. 55, 1160-5. 6. Gaspar, A. and Posta, J. (1998) Fresenius J Anal Chem. 360, 179-83. 7. Danzaki, Y. (1992) Fresenius J Anal Chem. 342, 103-7. 8. L. Yang, R, E., Sturgeon, D. Prince and S. Gabos. (2002) J. Anal. At. Spectrom. 17, 1300-3. 9. H. Tatsuya, H. Hitoma, T. Koji and S. Yoshiyuki. (1999) Biomed Res Trace Elem. 10(3), 273-4. 10. Coetzee, P. P., Fischer, J. L and, Mingsong, H. (2002) Water SA 28, 37-44. 11. Gavazov, K., Lekova, V., Patronov, G. and Turkyilmaz, M. (2006) Chem. Anal. (Warsaw) 51, 221-7. 12. Chauhan, R. S, Kakkar, L. R. (1992) Bull Chem Soc Jpn. 65, 1033-8. 13. Jianbo Liu, Bo Qiao, Ni Zhang and Li He. (2009) Journal of Geochemical Exploration 103(1), 45-9. 14. Sumaira Khan, Tasneem, G. Kazi, Jameel, A. Baig, Nida, F. Kolachi, Hassan, I. Afridi, Sham Kumar Wadhwa, Abdul, Q. Shah, Ghulam, A. Kandhro and Faheem Shah, (2010) Journal of Hazardous Materials, 182(1-3), 371-376. 15. Dean, J. A. and Rains, T. C. (1975) Flame Emission and Atomic Absorption Spectroscopy, Volume III, Marcel Dekker Inc., New York, ch. 7. 16. Richard, F. J. Dams, Jan Goossens and Luc Moens. (1995) Microchimica Acta 119(3-4), 277-86. 17. Kawakubo, S., Tsuchiya, Y. and Iwatsuki, M. (1995) Anal. Chim. Acta 310, 501-7. 18. Mohamad, A. S. and Fawy, K. H. (2000). Mikrochim. Acta 134, 229-34. 19. Ensafi, A. A., Amini, M. K. and Mazloum, M. (1999) Anal. Lett. 32, 1927-37. 20. Pyrzynska, K. (2005) Microchim. Acta 149, 159-64. 21. Abbasi, S. A. (1987) Anal Lett. 20, 1347-61. 22. Glick, D. (1973) Methods of Biochemical Analysis, Vol. 21, John Wiley, 39. 23. Marczenko, Z. (1986) Separation and Spectrophotometric Determination of Elements, 2nd Edn., Ellis Harwood Ltd., Chickester, England, 627.