Relationship between Ionic Conductivity and Composition of Li 2 O-ZrO 2 -SiO 2 Glasses Determined from Mixture Design. -SiO 2

Similar documents
Jeong-Ah Bang, Chui Im Choi, Wonho Choi, *, and Dae Hong Jeong*

A Study on Dental Hygiene Students' Knowledge, Attitude and Behavior towards the Elderly in Busan

Mi-Hyun Yoo*, Sang-Ihn Yeo, and Hun-Gi Hong

Effect of Aging Treatment on Shape Memory and Fatigue Properties in Ni-rich Ti-Ni Alloy

Mi-Ae Cho and Seong-Bae Moon*

Identification of High School Students' Understanding on the Reaction Rate Change During Chemical Equilibrium Shift

The Optimal Analytical Method of NDMA(N-Nitrodimethylamine) by Solid-Phase Microextraction Analysis (SPME)

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain

The Seventeen Plane Groups (Two-dimensional Space Groups)

A basic study on the animal welfare evaluation in Korean zoos

The Study for the Evaluation of the Method for 222 Rn in Water

Sportswear Purchase Decision Factors and Brand Preference among College Students

Determination of Size Distribution of Particles in Ground Water Using Flow Field-Flow Fractionation

Analysis of Pb, Cd and As in the Ambient Air of Residential Areas in the Vicinity of the Ulsan Industrial Complex

Analysis on Variations of Energy Load for Applications of Double Skin Envelope Systems in Buildings

치과의원에근무하는치과위생사의이직의도결정요인. The Determinants of Intent to Leave of Dental Hygienists at Dental Clinics

역산이론을이용한연안수질모형의매개변수추정 Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory

천연산점토광물을이용한폐 - 유기염료제거

Study of Mechanisms of Ion Transport in Ion Conducting Glasses

Jin Hee Kim, Ah Yeon Park, Eun Ha Jung, Cheol-Woo Lee, Tae Ho Lee and Jeong-Rok Youm

Molecular dynamics simulation of lithium diffusion in Li 2 O Al 2 O 3 SiO 2 glasses

Micronucleus Test of Wild Ginseng Culture Extract Using the Marrow Cells in ICR Mice

Department of Oceanography, Kunsan National University, Kunsan Korea. Korea Environmental Research Center for Hydrosphere, Ansan Korea

Environment Friendly Control of Gray Mold, a Ginseng Storage Disease Using Essential Oils

Surfactant Selection for the Enhanced Biological Degradation of Toluene

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte

Application of PSL and TL Detection Method by Irradiation doses on the Foods Approved to Irradiation in Korea

Analysis of Total Aflatoxins in Spices and Dried Fruits

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

A Study on the Hand Hygiene of Food Handlers of Food Court and Cafeteria in University Campus

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Solutions for Assignment-6

Al(lll)-Porphyrin 착물에의한올레핀산화반응메카니즘연구

ETIKA V PROFESII PSYCHOLÓGA

High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations

Simultaneous determination of amphetamine derivatives and norketamine in hair by GC-MS/MS

Analysis of Azodicarbonamide in Food Products by High Performance Liquid Chromatography

아산만해역중형동물플랑크톤의시공간적변동

Chapter 26 Multiple Regression, Logistic Regression, and Indicator Variables

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA

Comparative Analysis of Clinical and Histopathological Appearance Between Oral Leukoplakia and Lichen Planus

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Studies on Simultaneous Determination of Chlorophyll a and b, Pheophorbide a, and β-carotene in Chlorella and Spirulina Products

sociology 362 regression

Draft of an article prepared for the Encyclopedia of Social Science Research Methods, Sage Publications. Copyright by John Fox 2002

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals

Lecture 4: Multivariate Regression, Part 2

Monitoring of Heavy Metal Content in Alcoholic Beverages

Framework for functional tree simulation applied to 'golden delicious' apple trees

Electrochemistry. in situ in situ. in situ. Key Words. electrochemical surface science. flame annealing and quenching method.

Conductivity studies of lithium zinc silicate glasses with varying lithium contents

마이크로파를이용한간담도계영상방사성의약품 99m Tc-Mebrofenin 의합성

Reduction of Power Consumption of Counter Electrode Structure in AC-PDP

Transformation of Pd PdH 0.7 nanoparticles inside the mesoporous Zr-modified SiO 2 films in ambient conditions

A New Cathode Material for Potassium-Ion Batteries

Supporting Information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

Energy storage: high performance material engineering

Study on the Heavy Metal Contents in Fishes and Shellfishes of Gyeongsangnam-Do Coastal Area-Part 1

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long- Cycle and High-Rate Lithium Ion Batteries

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

SAMPLE ANSWERS TO HW SET 3B

Model Building Chap 5 p251

MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS. F. Chiaromonte 1

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries

Supporting Information. Lithium batteries: Improving solid-electrolyte interphases via. underpotential solvent electropolymerization

Electrocatalytic gas sensors based on Nasicon and Lisicon

Modeling Crystalline Electrolytes: Li 7 P 3 S 11 and Analogous Phosphates

póåíüéëáë ~åç `Ü~ê~ÅíÉêáò~íáçå çñ pê O pá R k U Wbì O müçëéüçê rëáåö píêçåíáìã `~êäçñóä~íé

Advanced Vitreous State - Physical Properties of Glass

Probing into the Electrical Double Layer Using a Potential Nano-Probe

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid

Electronic Supplementary Information (ESI)

Supplementary information

Effect of parasitic capacitances on impedance measurements in microsensors structures: a numerical study

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Data Set 8: Laysan Finch Beak Widths

STAT 420: Methods of Applied Statistics

Chapter 6 The 2 k Factorial Design Solutions

Supporting Information

Statistical Modeling and Differential Evolution Optimization of Reactive Extraction of Glycolic Acid

High-Energy Secondary Metal-Sulfur Batteries Cathode and Anode Solutions

Atomistic structure of calcium silicate intergranular films between prism and basal planes in silicon nitride: A molecular dynamics study

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries

Structure-Property Correlation [2] Atomic bonding and material properties

4. The 2 k Factorial Designs (Ch.6. Two-Level Factorial Designs)

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage

*Supported by NSF Grants DMR and DMR and WFU s Center for Energy, Environment, and Sustainability.

Formal Statement of Simple Linear Regression Model

Investigation of some estimators via taylor series approach and an application

Q Lecture Introduction to Regression

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is

Lecture 4: Multivariate Regression, Part 2

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6

Section Least Squares Regression

Potential Modulated Spectroscopy in Electrochemical Systems

Transcription:

Journal of the Korean Ceramic Society Vol. 44, No. 4, pp. 19~3, 007. Relationship between Ionic Conductivity and Composition of Glasses Determined from Mixture Design Eun-Tae Kang, Myoung-Joong Kim,* and Jae-Dong Kim** Division of Nano & Advanced Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju 660-701, Korea *R&D center, Gonggan Ceramic Co., Ltd., Ansung 456-84, Korea **ATT Ltd., Ansan 45-100, Korea (Received March, 007; Accepted March 6, 007) yw z w k Á½ *Á½ ** w ù Á œw, w œw *œ» **ATT (007 3 ; 007 3 6 ) ABSTRACT The ionic conductivity of glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for the activation energy and the ionic conductivity are as follows: QkJmol ( ) = 54.8565x 1 + 144.85x + 133.846x 3 170.908x 1 x 3 334.338x x 3 logσ( 300K) = 5.0045x 1 1.17876x 15.5173x 3 + 17.45x 1 x 3 The electrical properties are very sensitive to the ratio of O/SiO. The effect of is less than that of this ratio but component attributes to the reduction of the activation energy. The optimal composition for best ionic conduction based on these fitted models is 55 OÁ10 Á35SiO. Its activation energy and ionic conductivity at 300 K are 46.98 kj/mol and 1.08 10 5 Ω 1 Ácm 1, respectively. Key words : Experimental design, Mixture design, glass, Ionic conductivity, Optimal composition 1. p p š w ƒ w. p w, p x» ü pz k ƒ. w w» w wù r p 1) LIPON yd x k. ù RF rl w LIPON -3 +5¾ y k ùkü ³ w w»ƒ š. ) yd ̃ 1000ç 1 7.03 10 6 Ω 1 cm ƒ v w, ƒ Ì w w. 3) Corresponding author : Eun-Tae Kang E-mail : etkang gsnu.ac.kr Tel : +8-55-751-537 Fax : +8-55-758-1987 p» Li ƒ + ƒw w ù, yw ü y. 4,5) ƒ w yw ü y w. Oliveria 6) 30 O 70SiO ƒ yw ü w k š šw. w Miyauchi 7) lithium silicate zirconia ƒƒ ƒ k š w. l d w, w š x ƒ ww ù, w m w z ƒ š. Mazurin 8,9) w š y w w m w ƒ š šw. x p q w» w w w m ƒ ƒ w x z w. x z 19

0 ká½ Á½ Fig. 1. Glass compositions determined by extreme vertices design. w yw z w - SiO q wš, y ww w ü ƒ w.. x x 10) Kitaigorodskii w 10 O 55, 0 14, 35 SiO 60(mol%). ù ww : 30 O 55, 0 14, 35 SiO 60. w yw z w Fig. 1 ƒx Õ 6, ü ƒx Õ 6 ƒx sww 13 w. Table 1 ùkü, y w. CO 3 (Aldrich, 99.99%), (Aldrich, 99.5%), SiO (junsei) w ƒ s w z, 1 yww e. e ƒ» 1400~1600 o C 1~1.5 w z, þƒ q w w. y q w 1µm j» ù ¾ w. r rl w z, HP 419A Impedance Analyzer w 5Hz~10MHz q 50 C¾ y gƒ o d w. d v x 11) fittingw w. 3. š d ü ùkü, σt = σ 0 exp( Q RT). Table 1 ƒ w, y y (Q) š ü 300 K ùkü. y y m q w» w z sƒw. x l 6 w, O,, SiO, ( O ), ( ), ( O ) m z fitw. t y y ( O ) y w 300 K ( O ) ( ) y w. wr z w Table 1. Glass Compositions Determined by DOE, Its Ionic Conduction Parameters (log σ 0 and Q) and Its Conductivities at 300 K O w wz SiO log σ 0 (Ω 1 cm 1 K) Q (kj/mol) Q pred (kj/mol) Log σ 300K Log σ 300K (pred.) Log σ 300K * 41.75 4 54.5 5.63 55.89 55.10 6.581 6.601 6.779 51 14 35 5.71 48.0 48.61 5.14 5.03 5.409 36.75 9 54.5 4.96 54.03 55.16 6.9 6.883 6.455 55 0 45 5.61 49.4 48.65 5.445 5.415 5.6 36.75 11 5.5 5.3 54.65 54.04 6.764 6.75 6.564 49.5 9 41.75 5.38 47.39 47.99 5.345 5.460 5.99 30 14 56 5.00 57.13 57.40 7.49 7.43 6.995 55 10 35 5.69 46.98 46.51 4.97 4.941 5.7 43.5 8 48.5 5.3 5.0 51.09 6.14 6.114 6.104 49.5 4 46.75 5.19 47.63 49.64 5.583 5.747 5.341 47.5 11 41.75 5.65 49.74 48.67 5.484 5.59 5.709 40 0 60 5.94 61.38 61.44 7.30 7.13 7.736 30 10 60 5.8 60.7 60.07 7.690 7.788 7.541

yw z w 1 Table. Estimated Regression Coefficients for Activation Energy Term Coef. SE Coef. T P VIF O 43.6.680 * * 13.69 55.09 5.019 * * 16.17 SiO 74.6.646 * * 13.34 O 0.94 8.776.39 0.044 11.88 40.96 11.146 3.67 0.006 14.54 S=1.17839 R =96.7% R a =94.40% Coef.: Least square estimator of regression coefficient, T: Test statistic, P: p-value, VIF: variance inflation factor, s= MSE (error mean of squares), R p : predicted R, R a : adjusted R Table 3. Analysis of Variance for Activation Energy Source DF Seq SS Adj SS Adj MS F P Regression Linear Quadratic 4 86.569 58.04 8.57 86.569 170.918 8.57 71.64 85.459 14.64 51.59 61.54 10.7 0.006 Residual error 8 11.109 11.109 1.389 - - Total 1 97.678 - - - - DF: Degrees of freedom, SS: Sum of squares, MS: Mean square, F: Test statistic, P: p-value» x 1, x, x 3 ƒ» O,, SiO. l d y y 300 K» Table 1 6 8 ùkü. Table 1 5 7 d d ew. Tables ~5 d z m t ùkü. z w ùkü R. y y 300 K w ƒ» 96.7% 99.18%. y y 300 K l ƒ» 96.7% 99.18%ƒ z w. v w w ƒ j R f, w m R w. d š w d w R w. y y 300 K w z ƒ» 94.40% 98.91% w š. z l dw w R d R y y 300 K w ƒ» 91.1% Table 4. Estimated Regression Coefficients for Ionic Conductivity at 300 K Term Coef. SE Coef. T P VIF O 4.71 0.1833 * * 9.188 5.51 0.808 * * 7.66 SiO 8.698 0.1833 * * 9.188 O.138 0.7306.93 0.017 11.80 S=0.098 R =99.18% R a =98.91% Table 5. Analysis of Variance for Conductivity at o C Source DF Seq SS Adj SS Adj MS F P Regression Linear Quadratic 3 1 10.5466 10.4637 10.5466 10.539 3.5155 5.665 363.45 544.46 8.56. x x z fitting (pseudo) w, l z y g. z. QkJmol ( ) = 54.8565x 1 + 144.85x + 133.846x 3 170.908x 1 x 3 334.338x x 3 0.017 Residual error 15 0.0871 0.0871 0.0097 - - Total 18 10.6336 - - - - logσ( 300K) = 5.0045x 1 1.17876x 15.5173x 3 +17.45x 1 x 3 Fig.. Cox response trace plots for (a) activation energy and (b) log σ at 300 K. 44«4y(007)

ká½ Á½ Fig. 3. Mixture contour plots for (a) activation energy and (b) log σ at 300 K. 98.15%. fit de sƒ w 1) m VIF(variance inflation factor)ƒ. Marquardt VIFƒ 10 j deƒ š 13) w ù, Cornell j VIF z d e x ü d w ù d t x w j VIF w š w. y y 300 K w 10 w ù j š ù, (response trace) ùkü ù š ùkü š. t F wwš l p w z m w z w w. y y 300 K w z y y 300 K z ƒ w. Tables 3 5 α=0.05 w p 0.05 z w š. Fig. x» w ƒ e w. O SiO ƒ» j z ùkü w z ƒ j. w ƒ» w z ùký š. Fig. 3 y y 300 K š. Ow 65 mol% w š ƒ ƒ w p š dw, t ü x ƒ w w O w w p w š. z» p yw w w. w z yw D- y 14) w x ü w. 55 O 10 35SiO, y y 300K ƒ» 45.40 kj/mol 1.15 10 5 Ω 1 cm 1. d t w (desirability) 0.993. d y y 300K ƒ» 46.98 kj/mol 1.08 10 5 Ω 1 cm 1. y d x ü û y y w. 4. w, 30 O 55, 0 14, 35 SiO 60 w p x z yw z w m w. y y 300 K z ù, m. z w m O SiO w p j w e w O SiO w p w» w. y mw d 55 O 10 35SiO, y y 300 K ƒ» 45.40 kj/mol 1.15 10 5 Ω 1 cm 1 d 46.98 kj/mol 1.08 10 5 Ω 1 cm 1 yw ew. w wz

yw z w 3 Acknowledgment 004 w w w. REFERENCES 1. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Roberston, Electrical Properties of Amorphous Lithium Electrolyte Thin Films, Solid State Ionics, 53 647-54 (199).. P. Birke, W. F. Chu, and W. Weppner, Materials for Lithium Thin-Film Batteries for Application in Silicon Technology, Solid State Ionics, 93 1-15 (1997). 3. S. J. Visco and M. Y. Chu, Protective Coatings for Negative Electrodes, U.S. Patent 6, 05, 094 (000). 4. M. Yoshiyagawa and M. Tomozawa, Electrical Properties of Rapidly Quenched Lithium-Silicate Glasses, J. de Phys., C9 411-14 (198). 5. M. Tatsumisago, K. Yoneda, N. Machida, and T. Minami, Ionic Conductivity of Rapidly Quenched Glasses with High Concentration of Lithium Ions, J. Non-Cryst. Solids, 95 & 96 857-64 (1987). 6. A. P. Novaes de Oliveira, C. Leonelli, T. Manfredini, G. C. Pellacani, C. Ramis, M. Trombetta, and G. Busca, Properties of Glasses belonging to the System, Phys. Chem. Glasses, 39 [4] 13-1 (1998). 7. K. Miyauchi, K. Matsumoto, K. Kanehori, and T. Kudo, New Amorphous Thin Films Ion Conductive Solid Electrolyte, Solid State Ionics, 9&10 1469-7 (1983). 8. O. V. Mazurin, M. V. Strel tsina, T. P. Shvaiko-Shvaik- Ovskaya, and A. O. Mazurina, Determination of the Most Probable Concentration Dependences of the Properties of Binary Glasses with the Use of the SciGlass Information System, Glass Physics and Chemistry, 9 [6] 555-70 (003). 9. O. V. Mazurin, Glass Properties: Compliation, Evaluation, and Prediction, J. Non-Cryst. Solids, 351 1103-1 (005). 10. I. I. Kitaigorodskii, I. I., and G. A. Ellern, Research of the Glass Formations B Alkaline Zirconium Silicate Systems, Tr. Mosk. Khim. Teknol. Inst., 50 6-31 (1966). 11. J. R. Macdonald, and J. A. Garber, Analysis of Impedance and Admittance Data for Solids and Liquids, J. Electrochem. Soc., 14 [7] 10-30 (1977). 1. D. W. Marquardt, Generalized Inverses, Ridge Regression, Biased Linear Estimation and Nonlinear Estimation, Technometrics, 1 591-61 (1970). 13. J. A. Cornell, Experimental with Mixture; pp. 481, Wiley- Interscience Publication, 1990. 14. T. J. Mitchell, An Algorithm for Construction of Doptimal Experimental Designs, Technometrics, 16 03-10 (1974). 44«4y(007)