SPECTROSCOPY OF THE EXTENDED ORION NEBULA. A Thesis. Submitted to the Graduate Faculty. Fisk University. Department of Physics. Jessica Anne Harris

Similar documents
M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

Interstellar Astrophysics Summary notes: Part 2

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT SUPERNOVA REMNANTS

Photoionized Gas Ionization Equilibrium

Lec. 4 Thermal Properties & Line Diagnostics for HII Regions

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Photoionization Modelling of H II Region for Oxygen Ions

The Interstellar Medium

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Notes on Photoionized Regions Wednesday, January 12, 2011

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Giant Star-Forming Regions

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

23 Astrophysics 23.5 Ionization of the Interstellar Gas near a Star

Lecture 3: Emission and absorption

The inverse process is recombination, and in equilibrium

(c) (a) 3kT/2. Cascade

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

arxiv: v1 [astro-ph.ga] 2 Sep 2009

Gas 1: Molecular clouds

Lecture 6: Continuum Opacity and Stellar Atmospheres

Components of Galaxies Gas The Importance of Gas

Astrophysics with the Computer: Propagation of Ionization Fronts in Interstellar Gas

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

II. HII Regions (Ionization State)

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

ASTR-1010: Astronomy I Course Notes Section IV

Review: Light and Spectra. Absorption and Emission Lines

Interstellar Medium and Star Birth

Theory of optically thin emission line spectroscopy

Comparison of H-alpha and H-beta Temperature Indices in the Hyades and Coma Star Clusters and Selected H-beta Standard Stars

Lec 3. Radiative Processes and HII Regions

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

FIA0221: Taller de Astronomía II. Lecture 14 Spectral Classification of Stars

Exploring Data. Keck LRIS spectra. Handbook of CCD Astronomy by Steve Howell Chap. 4, parts of 6

X-ray Radiation, Absorption, and Scattering

Chapter 4 Spectroscopy

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

HII regions. Massive (hot) stars produce large numbers of ionizing photons (energy above 13.6 ev) which ionize hydrogen in the vicinity.

Astrophysics of Gaseous Nebulae

Small-Scale Physical Properties of Nebulae in Nearby Disk Galaxies

Astr 2310 Thurs. March 23, 2017 Today s Topics

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

OPTICAL PHOTOMETRY. Observational Astronomy (2011) 1

PHYS 231 Lecture Notes Week 3

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H

Astronomy 421. Lecture 14: Stellar Atmospheres III

Astro 201 Radiative Processes Problem Set 6. Due in class.

Atomic Physics 3 ASTR 2110 Sarazin

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Halo Gas Velocities Using Multi-slit Spectroscopy

Revealing new optically-emitting extragalactic Supernova Remnants

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

Rb, which had been compressed to a density of 1013

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Lab 4: Stellar Spectroscopy

7. Non-LTE basic concepts

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

Problem Set 2 Solutions

Plasma Spectroscopy Inferences from Line Emission

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

Introduction and Fundamental Observations

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ)

Opacity and Optical Depth

You, too, can make useful and beautiful astronomical images at Mees: Lesson 3

Chapter 10 The Interstellar Medium

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

Taking fingerprints of stars, galaxies, and interstellar gas clouds

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

Answer Key Testname: MT S

EXPOSURE TIME ESTIMATION

Atoms and Spectroscopy

The Effective Spectral Resolution of the WFC and HRC Grism

Recombination onto Doubly-Ionized Carbon in M17

Model of Hydrogen Deficient Nebulae in H II Regions at High Temperature

Lecture 27 The Intergalactic Medium

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Astrophysical Spectra

Interstellar Dust and Gas

Topics ASTR 3730: Fall 2003

Effects of Massive Stars

Light and Atoms

Diffuse Interstellar Medium

Lab 4 Radial Velocity Determination of Membership in Open Clusters

AS750 Observational Astronomy

Astronomy 1 Winter 2011

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Transcription:

SPECTROSCOPY OF THE EXTENDED ORION NEBULA A Thesis Submitted to the Graduate Faculty of Fisk University Department of Physics by Jessica Anne Harris In Partial Fulfillment of the Requirements for the Degree of Master of Arts May 2010

FISK UNIVERSITY Approval Sheet for Thesis Submitted in Candidacy for the Degree of Master of Arts SPECTROSCOPY OF THE EXTENDED ORION NEBULA by Jessica Anne Harris B.S. Grambling State University, 2008 Grambling, Louisiana Approved by the Department of Physics Dr. C.R. O Dell Thesis Supervisor Date Dr. J. Kelly Holley-Bockelmann Committee Member Date Dr. Warren E. Collins Committee Member Date Dr. Steven H. Morgan Department Chair Date

Contents 1 Introduction 1 2 Physics Applications of Nebulae 2 2.1 Explanation of Photoionization Equilibrium: Hydrogen Only Nebula. 2 2.2 Explanation of the Photoionization Equilibrium with other Elements 4 2.3 Stromgren s Boundary.......................... 5 2.4 Ionization Zones of He +, He 0, and Ionization Front.......... 8 2.5 Thermal Equilibrium: The Process of Heating............. 11 2.6 Cooling Process.............................. 13 2.7 Interpretation of Emission Line Spectra................. 15 2.8 Explanation of Interstellar Extinction.................. 22 3 Data Reduction Analysis 25 3.1 Spectroscopic Observation........................ 25 3.2 Initial Processing of Raw Data...................... 32 3.3 Detailed Explanation of Various IRAF Tasks.............. 36 4 Results of Temperatures and Densities Derived From TEMDEN 106 4.1 Explanation of TEMDEN........................ 106 4.2 Electron Temperatures and Densities Calculated from TEMDEN... 113 5 Conclusion 127 Bibliography 128

List of Figures 2.1 Absorption coefficient vs. Energy.................... 4 2.2 Flux distribution............................. 6 2.3 Flux of the star vs. the energy...................... 7 2.4 Ion Ratio vs. Stromgren s boundary of Hydrogen........... 7 2.5 Ion Ratio vs. Stromgren s boundary of Helium............ 8 2.6 A cartoon illustration of the line of sight into the nebula....... 9 2.7 Radiation Hardening........................... 12 2.8 Heating Curve............................... 12 2.9 Excitation Energy Diagram....................... 13 2.10 Rate of Cooling.............................. 14 2.11 Equilibrium Rate of Heating and Cooling................ 15 2.12 Energy Level Diagrams of [O III] and [N II].............. 16 2.13 Energy Level Diagrams of [S II] and [Cl III].............. 18 2.14 Emissivity Ratio vs. Density....................... 20 2.15 Quantum Efficiency vs. Wavelength................... 22 2.16 Optical Depth vs. Wavelength...................... 23 3.1 Gendler 2arcsec:Slits........................... 26 3.2 Flow Chart of Spectrophotometric Calibration............. 33 3.3 Spectrum of Nebula............................ 35 3.4 One Dimensional Image of A Star Before Removal........... 38 3.5 One Dimensional Image of A Star After Removal........... 39 4.1 Distance vs. Electron Temperatures of [N II] and [O III]....... 121 4.2 Distance vs. Electron Densities of [S II] and [Cl III].......... 122 4.3 Electron Temperature of [N II] on Gendler Image........... 123 4.4 Electron Densities of [O III] on Gendler Image............. 124 4.5 Electron Densities of [S II] on Gendler Image.............. 125 4.6 Electron Densities of [Cl III] Gendler Image.............. 126

List of Tables 2.1 Ionization Potentials of the Ions..................... 10 2.2 Ionization Zones.............................. 10 2.3 Critical Densities of [S II] and [Cl III].................. 20 3.1 Observational Log Data*........................ 28 3.2 Positions of Samples........................... 29 3.2 Positions of Samples........................... 30 3.2 Positions of Samples........................... 31 3.3 Samples of Star Removed Data*.................... 39 3.4 Observed and Extinction Corrected Line Ratios: 1east........ 41 3.5 Observed and Extinction Corrected Line Ratios: 1west........ 42 3.6 Observed and Extinction Corrected Line Ratios: 2east........ 43 3.7 Observed and Extinction Corrected Line Ratios: 2mid........ 44 3.8 Observed and Extinction Corrected Line Ratios: 2west........ 45 3.9 Observed and Extinction Corrected Line Ratios: 3east........ 46 3.10 Observed and Extinction Corrected Line Ratios: 3mid........ 47 3.11 Observed and Extinction Corrected Line Ratios: 3west........ 48 3.12 Observed and Extinction Corrected Line Ratios: 4east........ 49 3.13 Observed and Extinction Corrected Line Ratios: 4mid........ 50 3.14 Observed and Extinction Corrected Line Ratios: 4west........ 51 3.15 Observed and Extinction Corrected Line Ratios: 5east........ 52 3.16 Observed and Extinction Corrected Line Ratios: 5mid........ 53 3.17 Observed and Extinction Corrected Line Ratios: 5west........ 54 3.18 Observed and Extinction Corrected Line Ratios: 6east........ 55 3.19 Observed and Extinction Corrected Line Ratios: 6mid........ 56 3.20 Observed and Extinction Corrected Line Ratios: 6west........ 57 3.21 Observed and Extinction Corrected Line Ratios: 7east........ 58 3.22 Observed and Extinction Corrected Line Ratios: 7mid........ 59 3.23 Observed and Extinction Corrected Line Ratios: 7west........ 60 3.24 Observed and Extinction Corrected Line Ratios: 8east........ 61 3.25 Observed and Extinction Corrected Line Ratios: 8mid........ 62 3.26 Observed and Extinction Corrected Line Ratios: 8west........ 63 3.27 Observed and Extinction Corrected Line Ratios: 9east........ 64 3.28 Observed and Extinction Corrected Line Ratios: 9mid........ 65 3.29 Observed and Extinction Corrected Line Ratios: 9west........ 66 3.30 Observed and Extinction Corrected Line Ratios: 10east....... 67 3.31 Observed and Extinction Corrected Line Ratios: 10mid....... 68 3.32 Observed and Extinction Corrected Line Ratios: 10west....... 69 3.33 Observed and Extinction Corrected Line Ratios: 11east....... 70 3.34 Observed and Extinction Corrected Line Ratios: 11mid....... 71 3.35 Observed and Extinction Corrected Line Ratios: 11west....... 72 3.36 Observed and Extinction Corrected Line Ratios: 12east....... 73

LIST OF TABLES vi 3.37 Observed and Extinction Corrected Line Ratios: 12mid....... 74 3.38 Observed and Extinction Corrected Line Ratios: 12west....... 75 3.39 Observed and Extinction Corrected Line Ratios: 13east....... 76 3.40 Observed and Extinction Corrected Line Ratios: 13mid....... 77 3.41 Observed and Extinction Corrected Line Ratios: 13west....... 78 3.42 Observed and Extinction Corrected Line Ratios: 14east....... 79 3.43 Observed and Extinction Corrected Line Ratios: 14mid....... 80 3.44 Observed and Extinction Corrected Line Ratios: 14west....... 81 3.45 Observed and Extinction Corrected Line Ratios: 15east....... 82 3.46 Observed and Extinction Corrected Line Ratios: 15mid....... 83 3.47 Observed and Extinction Corrected Line Ratios: 15west....... 84 3.48 Observed and Extinction Corrected Line Ratios: 16east....... 85 3.49 Observed and Extinction Corrected Line Ratios: 16mid....... 86 3.50 Observed and Extinction Corrected Line Ratios: 16west....... 87 3.51 Observed and Extinction Corrected Line Ratios: 17.......... 88 3.52 Observed and Extinction Corrected Line Ratios: 18.......... 89 3.53 Observed and Extinction Corrected Line Ratios: 19east....... 90 3.54 Observed and Extinction Corrected Line Ratios: 19west....... 91 3.55 Observed and Extinction Corrected Line Ratios: 20.......... 92 3.56 Observed and Extinction Corrected Line Ratios: 21.......... 93 3.57 Observed and Extinction Corrected Line Ratios: 22.......... 94 3.58 Observed and Extinction Corrected Line Ratios: 23.......... 95 3.59 Observed and Extinction Corrected Line Ratios: 24north....... 96 3.60 Observed and Extinction Corrected Line Ratios: 24south....... 97 3.61 Observed and Extinction Corrected Line Ratios: 25north....... 98 3.62 Observed and Extinction Corrected Line Ratios: 25south....... 99 3.63 Observed and Extinction Corrected Line Ratios: 26north....... 100 3.64 Observed and Extinction Corrected Line Ratios: 26south....... 101 3.65 Observed and Extinction Corrected Line Ratios: 27east....... 102 3.66 Observed and Extinction Corrected Line Ratios: 27west....... 103 3.67 Observed and Extinction Corrected Line Ratios: 28east....... 104 3.68 Observed and Extinction Corrected Line Ratios: 28west....... 105 4.1 Flux Ratios of [N II], [O III], [Cl III], [S II] for TEMDEN...... 108 4.1 Flux Ratios of [N II], [O III], [Cl III], [S II] for TEMDEN...... 109 4.1 Flux Ratios of [N II], [O III], [Cl III], [S II] for TEMDEN...... 110 4.2 Corrected Flux Values.......................... 114 4.2 Corrected Flux Values.......................... 115 4.2 Corrected Flux Values.......................... 116 4.3 Electron Temperatures and Densities*................. 118 4.3 Electron Temperatures and Densities*................. 119 4.3 Electron Temperatures and Densities*................. 120

1. Introduction The Extended Orion Nebula (EON) is an ionized region of the dominant molecular cloud in the constellation Orion (O Dell, 2001). Even though the Orion Nebula is the most studied nebula, our research is the first time the Extended Orion Nebula has been spectroscopically observed. The EON is dominantly ionized by θ 1 Ori C, which is the dominant photo-ionizing star in the Orion Nebula (O Dell and Goss, 2009). Little is known about the structure of the EON. The EON has the form of an ellipse on the plane of the sky. With the study of the EON, we can obtain a more comprehensive understanding of the Orion Nebula. We will give a detailed explanation of the physical processes in a nebula. If this physics can be applied to our closet nebula, Orion, then we hope to apply these concepts to various nebulae in the universe. This is done to create a foundation of theoretical concepts which will explain the data reduction analysis. Spectroscopic observations were taken from Cerro Tololo Inter-American Observatory (CTIO) 1.5m in December 2008. Further, we will explain the process of photoionization and recombination to explain the process of photoionization equilibrium which occurs throughout nebulae. We will then explain Stromgren s boundaries and ionization zones to illustrate a line of sight into a nebula. This will help identify the specific ions that contribute in the determination of electron temperature and densities. In addition, the process of heating and cooling is explained to illustrate the effects the distance of an ionizing star has upon determining electron temperatures and densities. Finally, we will explain how we use the emission line spectra of [O III], [N II], [S II], and [Cl III] ions to determine electron temperatures and densities.

2. Physics Applications of Nebulae In this section, we will give a detailed explanation of the physical processes that occur in a nebula, with the main goal to highlight certain physical processes in Orion (M 42). This will initially involve the explanation of photoionization equilibrium (for hydrogen only), defining and explaining photoionization and recombination, and an explanation of the balance between photoionization and recombination. This section will also explain the line of sight into a nebula through a detailed explanation of the Stromgren s boundary and ionization zones of He +, He 0, and ionization front. We will include the physical process of the rate of heating and cooling as well as an in depth explanation of how the emissivity ratios [S II], [N II], [O III, and [Cl III] are calculated. The process of interstellar extinction will be introduced to explain its effects upon the observed ratio of intensities. 2.1 Explanation of Photoionization Equilibrium: Hydrogen Only Nebula Photoionization (PI) Equilibrium is a balance of the rate of photoionization and recombination which occurs throughout a nebula. Since hydrogen is the most abundant element in a nebula, we will construct an idealized nebula of hydrogen only. Consider a volume of hydrogen gas illuminated by a distant hot star, such as an O or B star. For a volume of gas in a constant state of photoionization equilibrium, the rate of photoionizations is equal to the rate of recombinations. Photoionization is the process of converting an ion to a higher ionization state, through the absorption of a photon. An energy of 13.6 ev, the ionization potential for hydrogen, is required to move an electron from a ground state to an unbound state. If an incident photon has an energy less than 13.6 ev, then the electron will not be removed from the atom. The electron can be excited to another energy state, but then will come back down to the ground state (hydrogen will remain neutral). Recombination is the process of recreating a hydrogen atom. Hydrogen atoms are formed from free electrons into

2. Physics Applications of Nebulae 3 an excited state that can then cascade down by radiative transitions to the ground state. The general behavior of recombination is determined by temperature. The recombination coefficient to a particular atomic level n 2 L can be written as: α n 2 L(H 0 )= + 0 vσ nl (H 0, ν) f(ν) dν (2.1) f(ν) = 4 ( m π 2kT ) 3 2 ν 2 e mv 2 2kT (2.2) is the Maxwellian-Boltzmann distribution function for the electrons, and σ nl (H 0, ν) is the recombination cross section to the term n 2 L in H 0 for electrons with velocity, ν (Osterbrock, 1989). There is a greater chance of an electron and proton recombining when moving at slow velocities than at higher velocities, which means recombinations are also most likely to occur at lower temperatures than high temperatures. If the cross section σ is proportional to v 2, then the recombination coefficient will be proportional to 1/T 1 2. The balance of photoionization and recombination is stated best in the photoionization equilibrium equation: + ν 0 L ν 4πr 2 e τν hν N H 0α ν(h 0 )dν = α B (T )N H +N e (2.3) In the left hand side of the equation, the integral is the photon energy over all frequencies than can cause ionization. L ν is the total luminosity of the star; e τν is the attenuation and τ ν is the optical depth. The number of neutral hydrogen atoms is N H 0 ; α ν is the absorption coefficient and N H 0α ν is the probability of an electron being absorbed over a given area. Hence, the left hand side can be considered the photoionization per unit time and volume. The right hand side of the equation is the

2. Physics Applications of Nebulae 4 number of recombinations per unit time and volume. α B is the recombination coefficient; N H + the number of photons; N e is the number of elections (Osterbrock, 1989). In a plot of absorption coefficient verses energy one would notice the absorption coefficient is zero until one reaches the ionization potential and then rapidly decreases with increasing energy. Figure 2.1 Absorption coefficient vs. Energy 2.2 Explanation of the Photoionization Equilibrium with other Elements For completeness in the explanation of the photoionization equilibrium we must include heavier elements than hydrogen. The first element to consider is helium, helium being the second most abundant element in a nebula. The photoionization equilibrium equation for singly ionized helium is: + and for doubly ionized helium: ν 0 L ν 4πr 2 e τν hν N He 0α ν(he 0 )dν = α B (T )N He +N e (2.4) + ν 0 L ν 4πr 2 e τν hν N He +α ν(h 0 )dν = α B (T )N He +2N e (2.5) Note that the above equations are very similar to the previous photoionization

2. Physics Applications of Nebulae 5 equilibrium for hydrogen, note however N He 0 is the number density of neutral helium, N He + is the number density of singly ionized helium, and N He +2 is the number density of doubly ionized helium. Helium has an ionization potential of 24.6eV and 54.4 ev, meaning a photon of an energy greater than 24.6 ev can singly ionize helium and a photon of an energy greater than 54.4 ev can doubly ionize helium. A photon of an energy greater than 24.6 ev can either ionize hydrogen or helium. Within Orion, there is no temperature which will produce a photon of an energy 54.4 ev, therefore, doubly ionized helium will be omitted in any further explanation of photoionization equilibrium. 2.3 Stromgren s Boundary To better understand a line of sight into a nebula it will be useful to explain Stromgren boundaries, radiation fields seen in different layers in a nebula, and the ionization zones in the nebula. Stromgrens boundary is the point at which an ion goes from one state of ionization to the next lower state of ionization. The Stromgren boundary of hydrogen, r s (H), is the point at which the completely singly ionized hydrogen rapidly changes to completely neutral hydrogen. Similarly, the Stromgren boundary of helium, r s (He), is the point at which completely singly ionized helium rapidly changes to completely neutral helium. Below is a sketch of the flux of the hot star versus energy:

2. Physics Applications of Nebulae 6 Figure 2.2 Flux distribution closest to the star vs. energy An illustration of the flux distribution that would be seen by material closest to the hot star is shown in Figure 2.2, highlighting the ionizations that can occur at either an energy of 13.6 ev or 24.6 ev. At each Stromgrens boundary the radiation field changes. The Stromgren boundary of helium Figure (2.5) will rapidly change from being completely singly ionized to completely neutral and hydrogen will continue to remain completely singly ionized. At this Stromgren boundary, photons at an energy greater than 24.6 ev can be removed through photoionization. In the further most region from the star Figure (2.3) only an energy of 13.6 ev or less will be seen; any energy greater than this will have been absorbed by the intervening medium. Helium will remain completely neutral in this region. Hydrogen will rapidly change from being completely singly ionized to completely neutral. Only photons of an energy greater than 13.6 ev can be removed through photoionization at this Stromgrens boundary. Below are figures of the flux distribution of the star versus energy highlighting the radiation fields at various Stromgrens boundaries.

2. Physics Applications of Nebulae 7 Figure 2.3 Figure to the left is the region of the solid horizontal lines is an illustration of the cut of He 0 photoionization and the figure to the right is the outer region from the star, the dashed horizontal lines illustrate the cut off by He 0 and H 0 photoionization. The Stromgrens boundaries are related to the distance to a hot star. Close to the star atoms are almost completely ionized and become progressively neutral at a distance away from the star, eventually becoming completely neutral at the Stromgrens boundary. In a plot of ion ratios versus the distance of the Stromgrens boundaries to the star one will notice a rapid decrease in the ion ratios as it approaches distance of the Stromgrens boundaries of either hydrogen d s (H) or helium d s (He) to the star. The figures are illustrated below: Figure 2.4 Illustration of the ion ratio of the number of ionized hydrogen to the number of neutral hydrogen vs. distance of the Stromgren s boundary of hydrogen from the star.

2. Physics Applications of Nebulae 8 Figure 2.5 Illustration of the abundance ratio of the number of singly ionized helium to the number of neutral helium vs. distance of the Stromgren s boundary of helium from the star. This rapid decrease can be best explained when referring back to the photoionization equilibrium equation. In the photoionization equilibrium equation (2.4) and (2.5), if the r in the left hand side of the equation is small (meaning close to the star) the flux of the star (L ν /4πr 2 ) is going to be large, meaning to balance the left hand side of the equation N He 0 must be small. The fraction of neutral hydrogen is small. The optical depth is going to be close to zero so e τν goes to 1. Note that the flux of the star is the dominating factor in the determination of the abundance of neutral hydrogen or helium. However, if r is large (further away from the star) the flux of the star is smaller, to balance the equation the fraction of neutral hydrogen must be large, thus causing the optical depth to become larger, the attenuation now being the dominate factor. 2.4 Ionization Zones of He +, He 0, and Ionization Front It is important to elaborate on the determination of the ionization structure specifically within Orion for ions hydrogen, helium, oxygen, nitrogen, sulfur and chlorine. The photoionization equilibrium equation holds true for all ions as in hydrogen and

2. Physics Applications of Nebulae 9 helium. The radiation field however is determined by the most abundant elements hydrogen and helium. A line of sight into the nebula from the star then passes through various ionization zones. The ionization zone closest to the star is the He + zone, where helium is completely singly ionized. The Stromgren boundary of He 0, r s (He 0 ), separates the He + and He 0 zones. The He 0 zone is where helium is completely neutral. The Stromgren boundary of H 0, r s (H 0 ), also known as the ionization front, is the last boundary one will see in the further-most region from the star. A cartoon illustration of the line of sight into the nebula is shown below. Figure 2.6 A cartoon illustration of the line of sight into the nebula

2. Physics Applications of Nebulae 10 The ionization potentials of the ions allow one to determine whether or not an ion is in the He +, He 0, H 0 zone. A table of the ionization potentials is below: Table 2.1 Ionization Potentials of the Elements (in volts) Element 0 to + + to +2 +2 to +3 +3 to +4 +4 to +5 2 He 24.581 54.405 - - - 7 N 14.545 29.606 47.609 77.4 97.87 8 O 13.615 35.082 55.118 77.28 113.7 16 S 10.357 23.405 35.048 47.294 62.2 17 Cl 12.959 23.405 35.048 47.294 62.2 The He + zone, is a volume of gas which contains H +, N +2, O +2, S +3, and Cl +3. At the Stromgren boundary of He 0, r s (He 0 ), helium transitions from being completely singly ionized to neutral, N +2 to N +, O +2 to O +, S +3 to S +2, Cl +3 to Cl +2. In the further most region from the star is the H 0 zone. At the ionization front, H + can transition to H 0, N + to N 0, O + to O 0, S +2 to S +, and Cl +2 to Cl +. A table of the ionization zones is illustrated in the table below, highlighting ions in each zone and the transition the ions go through at the ionization front. Table 2.2 Ionization Zones Element He + Zone He 0 Zone Ionization Front (I.F.) Hydrogen H + H + H + to H 0 Nitrogen N +2 N + N + to N 0 Oxygen O +2 O + O + to O 0 Sulfur S +3 S +2 S +2 to S + Chlorine Cl +3 Cl +2 Cl +2 to Cl + Tracer [0 III] [N II], [Cl III] [S II]

2. Physics Applications of Nebulae 11 With this knowledge of the ionization zones, can use [O III] in the He + zone to determine temperature. In the He 0 zone one is able to use [N II] and [Cl III] to determine temperature and density, respectively. [S II] in the ionization front can be used to determine temperature and density. To determine how this is done one will need to evaluate thermal equilibrium, the processes of heating and cooling. 2.5 Thermal Equilibrium: The Process of Heating The process of heating occurs by photoionization. One need only consider heating in a pure hydrogen nebula. The energy created through heating occurs after the process of photoionization. The difference between hν (the energy of the electron coming in) and hν 0 (the ionization potential energy of the ion to be ionized) is the total amount of energy given into the gas through photoionization. The rate of heating, G(H), is equal to the energy input through photoionization per unit time and volume. If one solves the photoionization equilibrium equation for the number of neutral hydrogen N H0 and substitutes it into the rate of heating equation, then one would notice N H 0 is eliminated from the equation. This substitution can be done because the nebula is in ionization equilibrium. The resulting equation is the product of the recombination rate N p N e α B (H 0,T) and the recombination coefficient α(h 0,T), where N p is the number of protons and N e is the number of electron. 1 2 mv2 = h(ν ν 0 ) (2.6) G(H) =N H 0 + ν 0 L ν 4πr 2 hν α νh(ν ν 0 )dν (2.7) G(H) =N p N e α B (H 0,T) <h(ν ν 0 ) > (2.8)

2. Physics Applications of Nebulae 12 Interestingly, the rate of heating is independent of the distance to the star. The heating rate is constant up until the Stromgren edge, where radiation hardening becomes important. Radiation hardening can be best explained when introducing the absorption coefficient versus energy plot (refer to Figure 2.1). This means that the lowest energy photons are removed closest to the star, leaving only higher energy photons. When these higher energy photons are absorbed, the energy of their photoelectrons is greater. The result of radiation hardening is plotted below: Figure 2.7 Radiation Hardening In the heating rate equation, since the α B increases with decreasing temperature, the heating curve takes the form: Figure 2.8 Heating Curve The heating rate decreases with increasing temperature; this is due to the prob-

2. Physics Applications of Nebulae 13 ability of recombination. The excess energy from ionization continues to become greater as more hydrogen atoms are ionized. 2.6 Cooling Process Radiative decays from collisionally excited states produce cooling. In low density regions, every collisional excitation is followed by radiative decay. All heavy ions in low quantum states can be collisionally excited by the electrons produced through photoionization. In the low densities of nebulae, these collisional excitations are followed by radiative decays by photons that escape and cool the gas. The excitation energy, x 12 is the energy required to move an electron from a lower energy state to a higher energy state. If the incoming electron energy is greater than the excitation energy, then the electron will be moved to the next energy level. Figure 2.9 Excitation Energy Diagram The cross-sectional area from state 1 to 2 is defined as σ 12. If the kinetic energy of the free electron is greater than the excitation energy of 1 to 2, then σ 12 = π h2 m 2 v 2 Ω(1, 2) w 1 for 1 2 mv2 >x 12 (2.9) The impact parameter is defined by Ω(1, 2) (Osterbrock, 1989), a quantum mechanic dimensionless factor, which is approximately constant near the threshold. The statistical weight is defined by w 1, m is the mass of the electron, ν is the velocity before collision. The cross-sectional area from state l to 2 is zero however, if the

2. Physics Applications of Nebulae 14 kinetic energy of the free electron is less than the excitation energy of 1 to 2, then σ 12 =0for 1 2 mv2 <x 12 (2.10) The collisional excitation rate per unit time and volume is q 12 N 1 N e, where q 12 is q 12 = 8.63 10 8 Ω(1, 2) t 1/2 w 1 e x 12/kT (2.11) where N 1, is the number density target ion and N e is the number of electrons. The constant t is used to defined T/10 4 and the Boltzmann constant (κ) has the value κ = 1 ev 11, 606 K (2.12) Thus the rate at which cooling occurs through collisions is: L 12 = q 12 x 12 N 1 N e (2.13) L 12 = 8.63 10 8 t 1/2 Ω(1, 2) w 1 e x 12/kT x 12 N 1 N e (2.14) The rate of cooling plot is: Figure 2.10 Rate of Cooling

2. Physics Applications of Nebulae 15 The equilibrium temperature, T e, is the point at which the rate of heating is equal to the rate of cooling. This is plotted below: Figure 2.11 Equilibrium Rate of Heating and Cooling 2.7 Interpretation of Emission Line Spectra The emission line of an ion with a large difference in the third and second energy level can determine temperature. If the difference in the third and second energy level is small one can use these ions to determine density. Consider a three level ion, where the energy levels between 1 and 2 are known as the nebula lines, the energy levels between 2 and 3 are known as the auroral lines, and the energy levels between 1 to 3 are known as the trans-auroral lines. In the energy level diagrams of [O III] and [N II], there is a large difference between the auroral lines (Osterbrock, 1989).

2. Physics Applications of Nebulae 16 Figure 2.12 Energy Level Diagrams of [O III] and [N II] The collisional excitation rate per unit time and volume between state 1 and 2 is q 12 N 1 N e = 8.63 10 8 t 1/2 Ω(1, 2) w 1 e x 12/kT N 1 N e (2.15) and the excitation rate per unit time and volume between state 1 and 3 is q 13 N 1 N e = 8.63 10 8 t 1/2 Ω(1, 3) w 1 e x 13/kT N 1 N e (2.16) Each collisional excitation is followed by a radiative decay. Since the photons can be observed and the collisional excitation rates are dependent on temperature, we can use observations of the radiation to determine the temperatures. F 12 F 32 = q 13N 1 N e q 13 N 1 N e hν 12 hν 32 1 [A 32 /(A 32 + A 31 )] (2.17) The rate of collisions up from state 1 to 2 is: L 12 = 8.63 10 8 t 1/2 Ω(1, 2) ω 1 e x 12/kT N 1 N e (2.18)

2. Physics Applications of Nebulae 17 The rate of the collisions up from state 1 to 2 is L 12 = 8.63 10 8 t 1/2 Ω(1, 3) ω 1 e x 13/kT N 1 N e (2.19) The rate of collisions up the nebula lines and the rate of collisions from the transauroral lines is similar to equation (1.14) minus the excitation energy, x 12 and x 13, respectively. The emissivity ratio being emitted by transitions: j 2,1 = Ω 12 e x12/kt hν 12 1 j 3,2 Ω 13 e x 13/kT hν 32 [A 32 /(A 32 + A 31 )] (2.20) where the first two terms are the comparison of collisions from state 1 to 2, and state 1 to 3. The factor of e (x 13 x 12 )/kt highlights that temperature, T, is the only non-constant in the rate of energy equation. Branching is the fraction of all the decays from state 3 that will produce an observable 3,2 photon, [A 32 /(A 32 + A 31 )]. The emissivity ratio for [O III] is j 4959 j 5007 = and the emissivity ratio for [N II] is 7.73e 3.29/t 1 (2.21) 1+4.5 10 6 (N e /t 1/2 ) j 6548 + j 6583 j 5755 = 6.91e 2.50/t 2 (2.22) 1+2.5 10 5 (N e /t 1/2 ) Consider a three level ion, where the energy states between the 2 and 3 level is very small. The energy level diagrams of [Cl III] and [S II] are shown below: 1 Equation (5.4), except t= T/10 4. (Osterbrock, 1989) 2 Equation (5.5), except t= T/10 4.(Osterbrock, 1989)

2. Physics Applications of Nebulae 18 Figure 2.13 Energy Level Diagrams of [S II] and [Cl III] The collisional excitation per unit time and volume will not depend on temperature. In a high density case the collisional excitation can be determined by the Boltzmann equations, the ratio of N 2 to N 1 is N 2 N 1 = ω 2 ω 1 e x 12/kT (2.23) and the ratio from N 3 to N 1 is: N 3 N 1 = ω 3 ω 1 e x 13/kT (2.24) The quotient of these two ratios equals the ratio of N 3 to N 2 N 3 N 2 = ω 3 ω 2 e x12/kt e x 13/kT (2.25) The difference in the excitation energies is very small, one will consider it to be zero, so the ratio of N 3 to N 2 becomes N 3 N 2 = ω 3 ω 2 (2.26)

2. Physics Applications of Nebulae 19 Thus the emissivity ratio is j 3,1 j 2,1 = ω 3A 31 hν 31 ω 2 A 21 hν 21 (2.27) The emissivity ratio for [S II] is and the emissivity for [Cl III] j 6731 j 6713 = ω 3A 6731 hν 31 ω 3 A 6716 hν 21 (2.28) j 5531 j 5518 = ω 3A 5531 hν 31 ω 3 A 5518 hν 21 (2.29) In a low density case every collisional excitation is followed by radiative decay. Thus the emissivity ratio is j 3,1 j 2,1 = ω 3A 31 hν 31 ω 3 A 31 hν 21 = ω 3 ω 2 hν 31 hν 21 (2.30) The collisional excitation is directly related to the statistical weights. Critical density (N c ) is the density at which the probability of radiative decay equals the collisional de-excitation of an electron in an excited state. Electrons bound in an excited state can quantum mechanically emit a photon, causing radiative decay. Alternatively, an electron can be collisionally de-excited mechanically. An electron in its bound excited state can collide with a free electron, causing it to lose its energy to the free electron and de-excite to a lower energy state. The critical density is N 2 A 21 = q 21 N 2 N e N e = ω 2A 21 t 1/2 8.63 10 8 Ω 12 (2.31) Below is a table of the critical densities of [S II] and [Cl III]

2. Physics Applications of Nebulae 20 Table 2.3 Critical Densities of [S II] and [Cl III] Ions N c (cm 3 ) Range [S II] 4,000 200-12,000 [Cl III] 10,000 600-20,000 If the density is much greater than the critical density, then the equilibrium between the excitation and de-excitation in the upper state is N 2 N 1 q 12 = N e N 2 q 21 + N 2 A 21 (2.32) thus, N 2 N 1 = N eq 12 A 21 1 1 + [(N e q 21 )/(A 21 )] (2.33) The emissivity ratio versus density is sketeched below Figure 2.14 Emissivity Ratio vs. Density In the plot above the critical density occurs at the midpoint of the high and low density cases. This also accounts for the correction term in the emissivity of [O III] 1+4.5 10 6 (N e /t 1/2 ) (2.34)

2. Physics Applications of Nebulae 21 and [N II] 1+2.5 10 5 (N e /t 1/2 ) (2.35)

2. Physics Applications of Nebulae 22 2.8 Explanation of Interstellar Extinction The observed ratio of intensities of emission lines will vary from the intrinsic ratio of intensities from the nebula; thus corrections for interstellar extinction is needed. The extinction is due to intervening dust particles which causes the light to be absorbed and scattered. If this correction is made we can derive accurate values of temperature and density, because the ratios of intensities will not be the intrinsic values being produced by the nebula. The obscurity in the observed ratio of intensities of emission lines can be explained in the following equation: I I 0 = e τ (2.36) I 0 is the intensity we would observe in the absence of interstellar extinction and I is the intensity we actually observe. τ, is the optical depth, which is the product of the column density of particles and their effective cross section. If the diameter of the dust particles is much much greater than the wavelength of light, then what is observed is grey extinction. Grey is seen because no light is able to pass through the particle. However, if the diameter of the particle is much much smaller than the wavelength of light, Rayleigh scattering applies. The quantum efficiency is the ratio of the effective cross-section and geometric cross-section. Figure 2.15 Quantum Efficiency vs. Wavelength

2. Physics Applications of Nebulae 23 Figure 2.16 Optical Depth vs. Wavelength The sketch in Figure (1.15) is a plot of the quantum efficiency plotted over a given wavelength. This will help us determine the amount of light being transmitted (a ratio of the output of light to input of light). The second sketch Figure (1.16) is a plot of optical depth vs. wavelength: the optical depth decreases as the wavelength increases. Shorter wavelengths of light have a higher optical depth, while higher wavelengths of the light have a lower optical depth. To calculate interstellar extinction: F obs (Hα) F obs (Hβ) = I(Hα) + function (2.37) I(Hβ) F obs (Hα) is the observed 6563 line and F obs (Hβ) is the observed 4861 line. Take the log of each ratio and solve for function: log I(Hα) I(Hβ) log F obs(hα) F obs (Hβ) = c Hβ f Hα (2.38) log I(Hα) log F obs(hα) I(Hβ) F obs (Hβ) = c Hβ (2.39) f Hα f Hα is a function that is the same for all wavelengths and c Hβ is the interstellar extinction for Hβ. We assumed f Hα to be -0.220 and ratio of F obs(hα) F obs (Hβ) is 2.89, which is appropriate value for a 9,000 K gas. No reddening correction were made for Hα

2. Physics Applications of Nebulae 24 flux ratios less than 2.89. The nomenclature we adopted was F obs (λ) is the observed line ratio and I(λ) is the reddening corrected line ratio. For all wavelengths: log I(λ) I(Hβ) log F obs(λ) F obs (Hβ) = c Hβ f λ (2.40) log I(λ) I(Hβ) = log F obs(λ) F obs (Hβ) + c Hβ f λ (2.41) We needed to calculate how bright (the intensity) of Hα would be in the absence of extinction. logi(λ) logf obs (Hβ) =c Hβ f(λ) (2.42) logi(λ) =c Hβ f(λ)+logf obs (Hβ) (2.43) Therefore, I(λ) = 10 c Hβ f(λ) F obs (Hβ) (2.44) Equation (2.44) is used to calculate the reddening corrected values in Tables 3.2-3.66. f(λ) is the shape of extinction curve related to Hβ and c Hβ is calculated by The values of c Hβ are in Table (4.2). c Hβ =(logi(hα) log( F obs(hλ)) )/ 0.22 (2.45) F obs (Hβ)

3. Data Reduction Analysis A brief explanation of the spectroscopic observations from the observation run in December 2008 at Cerro Tololo Inter-American Observatory (CTIO) with the 1.5 m telescope and Cassegrain Spectrograph are presented in this section. A thorough presentation of the data from the observational run is included. A total of 28 samples were observed and we will discuss the various parameters for each sample. We will identify the slit width, exposure times, positions, distance and location in RA and DEC for each sample. We will briefly explain the data analysis process from telescope to calibrated nebular spectra. After this analysis we will explain through various IRAF task such as IMSTAT, IMEXAM, IMEDIT, and SPLOT how we were able to determine flux ratios for the spectrum of each sample. 3.1 Spectroscopic Observation Spectroscopic observations of the Extended Orion Nebula (EON) were made at Cerro Tololo Inter-American Observatory (CTIO) 1.5m telescope. The instrument used was the Cassegrain Spectrograph telescope. Observations were taken on 2008 November 19, 2008 November 21-23, and 2009 January 16 by C.R. O Dell. The filter used was the GG385 and the CCD used was the Loral 1K. The wavelength range was 3800-7100 Å. One pixel is equivalent to the height along the slit. The slit width was 144µ, which is 2.6 arcsec; 1 arcsecond corresponds to about 55 µ. 1 1 From manual Observer s Manual of the R-C Spectrograph for the 1.5m Telescope (www.ctio.noao.edu/spectrographs/60spec/manual/node4.html, 2010)

3. Data Reduction Analysis 26 Figure 3.1 Gendler 2arcsec:Slits

3. Data Reduction Analysis 27 The slit width was 2.6 arcsecs for all samples except P1772, P1660, P1605, JW75, and P1353 (renamed 24, 25, 26, 27, 28, respectively) which were 110 µ (2 arcsecs). The slits are specified in Figure (3.1). The slit length for each sample is in Table (3.1). The slits orientation are east to west for samples 1-23 and 27-28 and north to south for samples 24, 25, 26. Each sample was separated into as many as three regions: east, mid, or west. East is to the left and west is to the right. Multiple exposures for the brightest region samples JW337, P1772, P1660 (sample 9, 24, 25, respectively) were taken. This is because these sample would become saturated at long exposure times. The exposure times for each spectrum were, for sample 9: 30, 120, 300, and 1200 sec; for sample 24: 300, 1800sec; for sample 25, 100, 600, 1800 secs. Exposure times were repeated twice for each sample, i.e. 2*30 secs for sample 9; this is done to eliminate the effects of cosmic rays. The exact length in arcsecs, location in RA and DEC, and distance from θ 1 Ori C are listed in Table (3.2).

3. Data Reduction Analysis 28 Table 3.1. Observational Log Data* Original Sample Name New Sample Name Date-Observation Exposure Time (sec) Slit Width N240 1 11-25-08 300 144 N210 2 11-25-08 60 144 N180 3 11-25-08 300 144 N150 4 11-25-08 90 144 N120 5 11-25-08 60 144 N90 6 11-25-08 60 144 N60 7 11-25-08 30 144 N30 8 11-25-08 30 144 JW337 9 11-19-08 30,120,300,1200 110 S30 10 11-25-08 30 144 S60 11 11-25-08 30 144 S90 12 11-25-08 60 144 S120 13 11-25-08 60 144 S150 14 11-25-08 120 144 S180 15 11-25-08 180 144 S240 16 11-25-08 300 144 S360 17 11-25-08 300 144 S420 18 01-16-09 300 144 JW887 19 11-23-09 900 110 S480 20 01-16-09 600 144 S600 21 01-16-09 600 144 S720 22 01-16-09 600 144 S840 23 01-16-09 600 144 P1772 24 11-21-08 100,600,1800 110 P1660 25 11-21-08 300,1800 110 P1605 26 11-22-08 1800 110 JW75 27 11-23-08 900 110 P1353 28 11-22-08 1800 110. Note. *This information was acquired through the IRAF task IMHEADER

3. Data Reduction Analysis 29 Table 3.2. Positions of Samples Original Name New Name Length( ) RA DEC Distance( ) from θ 1 Ori C N240low 1east 214 5:35:23.7-5:19:23 4.5 N240high 1west 214 5:35:09.3-5:19:23 4.3 N210low 2east 130 5:35:26.5-5:19:53 4.5 N210mid 2mid 130 5:35:16.5-5:19:53 3.5 N210high 2west 130 5:35:09.3-5:19:53 4.1 N180low 3east 130 5:35:26.5-5:20:23 4.1 N180mid 3mid 130 5:35:16.5-5:20:23 3.0 N180high 3west 130 5:35:09.3-5:20:23 3.7 N150low 4east 130 5:35:26.5-5:20:53 3.7 N150mid 4mid 130 5:35:16.5-5:20:53 2.5 N150high 4west 130 5:35:09.3-5:20:53 3.3 N120low 5east 70 5:35:28.5-5:21:23 3.8 N120mid 5mid 263 5:35:17.3-5:21:23 2.0 N120high 5west 96 5:35:05.3-5:21:23 3.2 N90low 6east 70 5:35:28.5-5:21:53 3.6 N90mid 6mid 263 5:35:17.3-5:21:53 1.5 N90high 6west 96 5:35:05.3-5:21:53 2.9 N60low 7east 178 5:35:24.9-5:22:23 2.5 N60mid 7mid 126 5:35:14.7-5:22:23 1.0 N60high 7west 125 5:35:06.3-5:22:23 2.5 N30low 8east 178 5:35:25.1-5:22:53 2.3 N30mid 8mid 126 5:35:14.7-5:22:53 0.5 N30high 8west 125 5:35:06.3-5:22:53 2.3 JW337low 9east 90 5:35:14.4-5:23:27 1.3 JW337mid 9mid 52 5:35:05.7-5:23:27 1.0 JW337high 9west 198 5:34:55.3-5:23:27 3.6 S30low 10east 143 5:35:26.1-5:23:53 2.5 S30mid 10mid 143 5:35:16.5-5:23:53 0.5 S30high 10west 143 5:35:06.9-5:23:53 2.3 S60low 11east 143 5:35:26.1-5:24:23 2.8 S60mid 11mid 143 5:35:16.5-5:24:23 1.0 S60high 11west 143 5:35:06.9-5:24:23 2.4

3. Data Reduction Analysis 30 Table 3.2 (cont d) Original Name New Name Length( ) RA DEC Distance( ) from θ 1 Ori C S90low 12east 111 5:35:27.2-5:24:53 3.0 S90mid 12mid 139 5:35:16.4-5:24:53 1.5 S90high 12west 143 5:35:06.9-5:24:53 2.6 S120low 13east 143 5:35:26.1-5:25:23 3.4 S120mid 13mid 143 5:35:16.5-5:25:23 2.0 S120high 13west 143 5:35:06.9-5:25:23 2.9 S150low 14east 143 5:35:26.1-5:25:53 3.6 S150mid 14mid 143 5:35:16.5-5:25:53 2.5 S150high 14west 143 5:35:06.9-5:25:53 3.3 S180low 15east 143 5:35:26.1-5:26:23 3.9 S180mid 15mid 143 5:35:16.5-5:26:23 3.0 S180high 15west 143 5:35:06.9-5:26:23 3.7 S240low 16east 143 5:35:26.1-5:27:23 4.8 S240mid 16mid 143 5:35:16.5-5:27:23 4.0 S240high 16west 143 5:35:06.9-5:27:23 4.5 S360 17 429 5:35:16.5-5:29:23 6.0 S420 18 429 5:35:13.6-5:30:23 7.0 JW887east 19east 168 5:35:48.7-5:31:23 11.3 JW887west 19west 261 5:35:34.3-5:31:23 9.1 S480 20 429 5:35:13.6-5:31:23 8.0 S600 21 429 5:35:13.6-5:33:23 10.0 S720 22 429 5:35:13.6-5:35:23 12.0 S840 23 429 5:35:13.6-5:37:23 14.0 P1772low 24north 156 5:35:13.0-5:25:54 2.5 P1772high 24south 168 5:35:06.7-5:30:03 7.0 P1660low 25north 120 5:35:01.4-5:28:26 6.2 P1660high 25south 116 5:34:48.6-5:32:35 11.4 P1605low 26north 111 5:34:46.9-5:32:24 11.0 P1605high 26south 77 5:34:46.9-5:36:59 15.6 JW75low 27east 234 5:34:48.0-5:25:14 7.5 JW75high 27west 195 5:34:33.6-5:25:14 10.9 P1353low 28east 195 5:34:14.8-5:26:02 16.0

3. Data Reduction Analysis 31 Table 3.2 (cont d) Original Name New Name Length( ) RA DEC Distance( ) from θ 1 Ori C P1353high 28west 209 5:33:59.6-5:26:02 19.6

3. Data Reduction Analysis 32 3.2 Initial Processing of Raw Data There was a significant amount of data reduction calibration prior to my analysis of the data. Dr. C.R. O Dell made this calibrations through a series of steps highlighted in the diagram below.

3. Data Reduction Analysis 33 Figure 3.2 Flow Chart of Spectrophotometric Calibration

3. Data Reduction Analysis 34 After the data from the telescope to raw image is produced, bias must be taken. Bias also known as zeros are read outs of the background detector. An average of bias images are calculated for accuracy and then subtracted from images made. It is assumed that the sky is homogeneous along the slit. If there is a perfect image, then this image would appear smooth. It is not so we have to divide all corrected bias images by curve. The image produced is a plot of x-axis wavelength and y-axis the slits, which is the position on the sky. The reference star spectrum is already calibrated know flux at various wavelength. This helps in making comparison of spectra. Vertical cut of image along slit is in counts versus y and the horizontal cut of image along slit is counts versus x. Comparison are then done with the HeAr lamp. These are done periodically throughout the night between collecting data at different slit widths. HeAr lamp have known wavelength of lines. This information is feed into an IRAF task which converts x(direction along slit) to x as a function of wavelength. Wavelength is a function of x. With this information we can go back to reference star image and convert counts versus x into counts versus wavelength. We will then take the reference values of flux versus wavelength and divide counts versus wavelength by flux versus wavelength, which produces counts per erg versus wavelength. The ratio of counts versus wavelength and flux versus wavelength is the measurement of sensitivity at each wavelength. This is done every y-value in CCD. With counts versus wavelength we will subtract out the bias, conduct a flat field correction. This is done by dividing the counts versus y by the flat field and dividing image by sensitivity. The result is flux at each pixel versus wavelength.

3. Data Reduction Analysis 35 Flux (ergs cm -2 s -1 A -1 pixel -1 ) -13.5-14.0-14.5-15.0-15.5 H$ H# HeI H! [OIII] [NII] HeI H" [SII] 4000 4500 5000 5500 6000 6500 7000 Wavelength (Angstroms) Figure 3.3 Spectrum of Nebula

3. Data Reduction Analysis 36 3.3 Detailed Explanation of Various IRAF Tasks After the calibration of data we were able to go through a series of IRAF task to ultimately calculate the temperatures and densities. IMSTAT is used to compute and print image pixel statistics. This task is located in images.imutil in IRAF. This task produces in columns the npix, mean, stddev, min, and max values. #IMAGE NPIX Mean STDDEV MIN MAX JW337.1200.fits 891330 5.203E-15 1.928E-14 5.245E-13 npix, is the number of pixels used to do the statistics, mean is the mean of the pixel distribution, stddev, is the standard deviation of the pixel distribution, min is the minimum pixel value and max is the maximum pixel values. For previous data analysis flux at each pixel versus wavelength was calculated. With this task we are able to know exactly the statistical information for each image. 2 IMEXAM is used to examine images using image display, graphics, and text. IMEXAM is located in images.tv of IRAF and images are viewed in a ds9 window. (DS9 is a IRAF image display server). Of the various parameters in this task the most significant are the ncstat and nlstat. The ncstat is the number of columns for statistics and nlstat is the number of lines for statistics. This will give a clear indication of the area of which the sample was taken. Various commands produce different outputs. The command a post results of R, Mag, Flux, Sky, Peak, E, PA, Beta, Enclosed, moffat, and Direct All in the command line. The command c plots columns (pixel value) versus line (pixels). The command e plots line versus column. l plots a line of pixel value versus column pixel value; b allows you to select 2 (http://iraf.noao.edu/scripts/irafhelp?imstatistics, 2010)

3. Data Reduction Analysis 37 a region; m prints on the command line: section, npix, mean, medium, stddev, min, and max. x prints on the command line the x-coordinates, like wise y the y- coordinates. For the command a, R is the radius for photometry and fitting, PA is in degrees -90 and +90 with zero along the x-axis, Beta is the Moffat beta value if a Moffat profiles fit, and Direct All are three measurements of the full width half-max (FWHM), corrected FWHM for the specified profile type. 3 DISPLAY function is to load images in an image display, e.g. DS9. This task was used in the aid of removing stars in various samples. DISPLAY allows for multiple images to be viewed in different frames between 8-16 frames. We are able to blink frames at various intervals of seconds. DISPLAY is located in images.tv of IRAF. 4 Block average or sum n-dimensional image blkavg is used to convert 2D images to 1D. blkavg is located in images.imgeom. To make this conversion we have to supply the task with specific commands. The form is as followed: blkavg input ouput b1 b2 b3 b4 b5 b6 b7 We must supply an input which is a list of images to be block averaged and an output is a list of output image names. We only used the parameters b1 and b2. b1 is the number of columns to be block averaged and b2 is the number of lines to be blocked averaged. b1 and b2 where determined from the imheader of each fit unless other modifications were identified, i.e. avoiding regions of star emissions. A brief list of samples that had star removal are in Table (3.1). An example of the use of blkavg can be shown in N210.300.fits. This image was divided into three regions: 1:100, 101:230, and 231:330. For the first region the input name was N240.300.fits with parameters [1:1701,1:100] and the output name was onedn120.300low.fits. The 3 (http://iraf.noao.edu/scripts/irafhelp?imexamine, 2010) 4 (http://iraf.noao.edu/scripts/irafhelp?display, 2010)

3. Data Reduction Analysis 38 last number at the end of the command it the number of pixels being averaged over. 5 blkavg N240.300.fits[1:1701,1:100] onedn120.300low.fits 1 100 This task was used to allow for the task splot to be used to evaluate the spectra lines of each image. IMEDIT is located in images.tv and the purpose of this task is to examine and edit pixels in images. We used this task to edit out stars from the nebula. The images to be edited must be two dimensional. The format to edit images was imedit input output. input is the list of images to be edited and output is a list of output images. The actual removal of the star pixels was done with a series of cursor commands. When the pixels have been removed they are replaced with the nearest interpolated background column or line. The c cursor and l replace rectangular or line regions with interpolated data from the nearest background columns or line. 6 Figure 3.4 One Dimensional Image of A Star Before Removal 5 (ttp://iraf.noao.edu/scripts/irafhelp?blkavg, 2010) 6 (http://iraf.noao.edu/scripts/irafhelp?imedit, 2010)

3. Data Reduction Analysis 39 Table 3.3. Samples of Star Removed Data* Old Sample Name New Sample Name y-range 1 y-range 2 N240.300high 1west 166 N150.90mid 4mid 151-159 123-131 N90.30mid 6mid 236-244 118-125 N60.30mid 7mid 180-188 N30.30mid 8mid 181-189 JW75low 27east 24 P1660.1800low 25north 42 P1660.1800high 25south 42. Note. *Does not include all y-values for each removed star Figure 3.5 One Dimensional Image of A Star After Removal The images displayed above are of N150.90.fits and N150.90ed.fits. SPLOT is located through noao.onedspec. The purpose of SPLOT is to plot and analyze one-dimensional spectra. The most significant parameters of this task are the input images and save_fi. images are the name of the input images and save_fi is the name of the file were information from SPLOT is stored. The output in save_fi prints: center, cont, flux, eqw, core, gfwhm,1fwhm. The most used cursor commands are a,b, k, v, d, q, and r. The a zooms in on selected region between cursor commands. b sets the plot base level to zero; c will clear all windowing and reset image to the full spectrum; q will quit function mode. To set a fit to the spectra lines we used k,v and d. In the k,v series of cursor commands, the v represents the viogt

3. Data Reduction Analysis 40 fit and d was used for deblending. 7 Deblending allowed for fits to be determined for multiple spectra lines at once. We used the wavelength of lines identified by C. Esteban et al. in 2004 to differentiate which lines to deblend. There was a sequence of steps to the process of deblending: the first step was to zoom into selected region with a, select to the left and right of region with d, mark middle peak of each line with v, q quit selection, a fit positions for all, a fit Lorentzian width for all, n no fit background, and +,- to shift between fits. In the display window only center of line, eqw, gfwhm, and fwhm shows in deblending. These fits were calculated for all 29 lines from 3869[Ne III] - 7136[Ar III] of each sample. (Except when some spectra lines were too faint). From the output information we were able to determine the ratio of flux(λ)/flux(hβ) for each ion in each fit file. 7 (http://iraf.noao.edu/scripts/irafhelp?splot, 2010)

3. Data Reduction Analysis 41 Table 3.4. Observed and Extinction Corrected Line Ratios: 1east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 [Ne III] 0.0793 0.1450 0.0941 4069+76 [SII] 0.0308 0.1220 0.0356 4102 HI 0.1862 0.1170 0.2138 4340 Hgama 0.4162 0.0860 0.4607 4363 [O III] 0.0143 0.0820 0.0158 4471 He I 0.0063 0.0640 0.0068 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.2662-0.0150 0.2615 5199 [N I] 0.0240-0.0520 0.0226 5261+70+73 [Fe II] 0.0074-0.0650 0.0069 5518 [Cl III] 0.0034-0.0930 0.0030 5538 [Cl III] 0.0037-0.0960 0.0033 5755 [N II] 0.0106-0.1230 0.0092 5876 HeI 0.0476-0.1380 0.0404 5979 SiII 0.0036-0.1500 0.0030 6300 [OI] 0.0139-0.1900 0.0111 6312 [S III] 0.0120-0.1900 0.0096 6348+71 SiII 0.0083-0.1950 0.0066 6363 [OI] 0.0052-0.1950 0.0041 6548 [N II] 0.5212-0.2180 0.4030 6563 Halpha 3.7476-0.2200 2.8907 6583 [N II] 1.4091-0.2220 1.0843 6678 HeI 0.0172-0.2330 0.0131 6716 [S II] 0.3750-0.2380 0.2832 6731 [S II] 0.3423-0.2390 0.2582 7065 He I 0.0189-0.2780 0.0136 7136 [Ar III] 0.0479-0.2860 0.0342

3. Data Reduction Analysis 42 Table 3.5. Observed and Extinction Corrected Line Ratios: 1west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0988 0.1450 0.1105 4069+76 [SII] 0.0261 0.1220 0.0287 4102 H I 0.2096 0.1170 0.2295 4340 Hgama 0.4317 0.0860 0.4614 4363 [O III] 0.0044 0.0820 0.0047 4471 He I 0.0332 0.0640 0.0349 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7048-0.0150 0.6967 5007 [O III] 2.1532-0.0220 2.1169 5199 [N I] 0.0111-0.0520 0.0107 5261+70+73 [Fe II] 0.0041-0.0650 0.0039 5518 [Cl III] 0.0038-0.0930 0.0035 5538 [Cl III] 0.0043-0.0960 0.0040 5755 [N II] 0.0104-0.1230 0.0095 5876 He I 0.1260-0.1380 0.1132 5979 Si II 0.0016-0.1500 0.0014 6300 [O I] 0.0086-0.1900 0.0074 6312 [S III] 0.0168-0.1900 0.0145 6348+71 Si II 0.0057-0.1950 0.0049 6363 [O I] 0.0035-0.1950 0.0030 6548 [N II] 0.2457-0.2180 0.2076 6563 Halpha 3.4268-0.2200 2.8906 6583 [N II] 0.8642-0.2220 0.7279 6678 He I 0.0378-0.2330 0.0316 6716 [S II] 0.1299-0.2380 0.1081 6731 [S II] 0.1366-0.2390 0.1135 7075 He I 0.0529-0.2780 0.0427 7136 [Ar III] 0.1362-0.2860 0.1092

3. Data Reduction Analysis 43 Table 3.6. Observed and Extinction Corrected Line Ratios: 2east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1227 0.1450 0.1385 4069+76 [SII] 0.0241 0.1220 0.0267 4102 H I 0.2043 0.1170 0.2253 4340 Hgama 0.4425 0.0860 0.4755 4363 [O III] 0.0106 0.0820 0.0114 4471 He I 0.0381 0.0640 0.0402 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7111-0.0150 0.7022 5007 [O III] 2.0933-0.0220 2.0551 5199 [N I] 0.0055-0.0520 0.0053 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0029-0.0930 0.0027 5538 [Cl III] 0.0086-0.0960 0.0079 5755 [N II] 0.0122-0.1230 0.0110 5876 He I 0.1263-0.1380 0.1125 5979 Si II -0.1500 6300 [O I] 0.0102-0.1900 0.0087 6312 [S III] 0.0195-0.1900 0.0166 6348+71 Si II 0.0061-0.1950 0.0052 6363 [O I] 0.0060-0.1950 0.0051 6548 [N II] 0.2661-0.2180 0.2218 6563 Halpha 3.4799-0.2200 2.8952 6583 [N II] 0.8361-0.2220 0.6945 6678 He I 0.0345-0.2330 0.0284 6716 [S II] 0.1454-0.2380 0.1192 6731 [S II] 0.1354-0.2390 0.1109 7075 He I 0.0507-0.2780 0.0402 7136 [Ar III] 0.1431-0.2860 0.1127

3. Data Reduction Analysis 44 Table 3.7. Observed and Extinction Corrected Line Ratios: 2mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0784 0.1450 0.0903 4069+76 [SII] 0.0186 0.1220 0.0210 4102 H I 0.2119 0.1170 0.2375 4340 Hgama 0.4350 0.0860 0.4731 4363 [O III] 0.0061 0.0820 0.0066 4471 He I 0.0338 0.0640 0.0360 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5154-0.0150 0.5079 5007 [O III] 1.6213-0.0220 1.5868 5199 [N I] 0.0081-0.0520 0.0077 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0049-0.0930 0.0045 5538 [Cl III] 0.0040-0.0960 0.0036 5755 [N II] 0.0122-0.1230 0.0108 5876 He I 0.1005-0.1380 0.0878 5979 Si II 0.0021-0.1500 0.0018 6300 [O I] 0.0127-0.1900 0.0105 6312 [S III] 0.0172-0.1900 0.0143 6348+71 Si II 0.0056-0.1950 0.0046 6363 [O I] 0.0040-0.1950 0.0033 6548 [N II] 0.3804-0.2180 0.3075 6563 Halpha 3.5835-0.2200 2.8907 6583 [N II] 1.1813-0.2220 0.9511 6678 He I 0.0370-0.2330 0.0295 6716 [S II] 0.1679-0.2380 0.1331 6731 [S II] 0.1740-0.2390 0.1378 7075 He I 0.0466-0.2780 0.0355 7136 [Ar III] 0.1333-0.2860 0.1008

3. Data Reduction Analysis 45 Table 3.8. Observed and Extinction Corrected Line Ratios: 2west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0781 0.1450 0.0821 4069+76 [SII] 0.0191 0.1220 0.0199 4102 H I 0.2258 0.1170 0.2350 4340 Hgama 0.4452 0.0860 0.4585 4363 [O III] 0.0052 0.0820 0.0053 4471 He I 0.0380 0.0640 0.0388 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5315-0.0150 0.5288 5007 [O III] 1.6190-0.0220 1.6069 5199 [N I] 0.0065-0.0520 0.0064 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0042-0.0930 0.0041 5538 [Cl III] 0.0038-0.0960 0.0037 5755 [N II] 0.0080-0.1230 0.0077 5876 He I 0.1230-0.1380 0.1173 5979 Si II 0.0016-0.1500 0.0015 6300 [O I] 0.0089-0.1900 0.0083 6312 [S III] 0.0153-0.1900 0.0143 6348+71 Si II 0.0043-0.1950 0.0040 6363 [O I] 0.0031-0.1950 0.0029 6548 [N II] 0.2712-0.2180 0.2517 6563 Halpha 3.1163-0.2200 2.8906 6583 [N II] 0.8710-0.2220 0.8074 6678 He I 0.0366-0.2330 0.0338 6716 [S II] 0.1387-0.2380 0.1279 6731 [S II] 0.1359-0.2390 0.1252 7075 He I 0.0336-0.2780 0.0306 7136 [Ar III] 0.1254-0.2860 0.1137

3. Data Reduction Analysis 46 Table 3.9. Observed and Extinction Corrected Line Ratios: 3east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1256 0.1450 0.1602 4069+76 [SII] 0.0240 0.1220 0.0294 4102 H I 0.2016 0.1170 0.2453 4340 Hgama 0.4290 0.0860 0.4955 4363 [O III] 0.0074 0.0820 0.0085 4471 He I 0.0311 0.0640 0.0346 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7625-0.0150 0.7436 5007 [O III] 2.3486-0.0220 2.2636 5199 [N I] 0.0082-0.0520 0.0075 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0067-0.0930 0.0057 5538 [Cl III] 0.0050-0.0960 0.0043 5755 [N II] 0.0098-0.1230 0.0080 5876 He I 0.1336-0.1380 0.1060 5979 Si II 0.0030-0.1500 0.0023 6300 [O I] 0.0090-0.1900 0.0065 6312 [S III] 0.0229-0.1900 0.0167 6348+71 Si II 0.0060-0.1950 0.0043 6363 [O I] 0.0047-0.1950 0.0034 6548 [N II] 0.2562-0.2180 0.1778 6563 Halpha 3.5335-0.2200 2.4436 6583 [N II] 0.7680-0.2220 0.5293 6678 He I 0.0378-0.2330 0.0256 6716 [S II] 0.1114-0.2380 0.0747 6731 [S II] 0.1143-0.2390 0.0766 7075 He I 0.0590-0.2780 0.0370 7136 [Ar III] 0.1515-0.2860 0.0938

3. Data Reduction Analysis 47 Table 3.10. Observed and Extinction Corrected Line Ratios: 3mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0834 0.1450 0.0997 4069+76 [SII] 0.0239 0.1220 0.0278 4102 H I 0.2120 0.1170 0.2448 4340 Hgama 0.4268 0.0860 0.4744 4363 [O III] 0.0062 0.0820 0.0069 4471 He I 0.0360 0.0640 0.0389 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5921-0.0150 0.5813 5007 [O III] 1.8169-0.0220 1.7684 5199 [N I] 0.0070-0.0520 0.0066 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0050-0.0930 0.0045 5538 [Cl III] 0.0043-0.0960 0.0038 5755 [N II] 0.0110-0.1230 0.0095 5876 He I 0.1333-0.1380 0.1125 5979 Si II 0.0020-0.1500 0.0017 6300 [O I] 0.0154-0.1900 0.0122 6312 [S III] 0.0181-0.1900 0.0143 6348+71 Si II 0.0051-0.1950 0.0040 6363 [O I] 0.0049-0.1950 0.0039 6548 [N II] 0.3544-0.2180 0.2711 6563 Halpha 3.7884-0.2200 2.8907 6583 [N II] 1.0863-0.2220 0.8268 6678 He I 0.0417-0.2330 0.0313 6716 [S II] 0.1452-0.2380 0.1084 6731 [S II] 0.1658-0.2390 0.1236 7075 He I 0.0530-0.2780 0.0377 7136 [Ar III] 0.1580-0.2860 0.1112

3. Data Reduction Analysis 48 Table 3.11. Observed and Extinction Corrected Line Ratios: 3west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0832 0.1450 0.0889 4069+76 [SII] 0.0136 0.1220 0.0144 4102 H I 0.2202 0.1170 0.2324 4340 Hgama 0.4446 0.0860 0.4626 4363 [O III] 0.0056 0.0820 0.0058 4471 He I 0.0393 0.0640 0.0405 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6226-0.0150 0.6183 5007 [O III] 1.8896-0.0220 1.8706 5199 [N I] 0.0052-0.0520 0.0051 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0039-0.0930 0.0037 5538 [Cl III] 0.0041-0.0960 0.0039 5755 [N II] 0.0062-0.1230 0.0059 5876 He I 0.1299-0.1380 0.1219 5979 Si II 0.0017-0.1500 0.0016 6300 [O I] 0.0076-0.1900 0.0070 6312 [S III] 0.0134-0.1900 0.0123 6348+71 Si II 0.0036-0.1950 0.0033 6363 [O I] 0.0026-0.1950 0.0024 6548 [N II] 0.2064-0.2180 0.1867 6563 Halpha 3.2083-0.2200 2.8993 6583 [N II] 0.6892-0.2220 0.6223 6678 He I 0.0385-0.2330 0.0346 6716 [S II] 0.1011-0.2380 0.0906 6731 [S II] 0.1012-0.2390 0.0907 7075 He I 0.0377-0.2780 0.0332 7136 [Ar III] 0.1325-0.2860 0.1162

3. Data Reduction Analysis 49 Table 3.12. Observed and Extinction Corrected Line Ratios: 4east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1169 0.1450 0.1373 4069+76 [SII] 0.0260 0.1220 0.0298 4102 H I 0.1941 0.1170 0.2210 4340 Hgama 0.4176 0.0860 0.4594 4363 [O III] 0.0138 0.0820 0.0151 4471 He I 0.0334 0.0640 0.0359 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7696-0.0150 0.7569 5007 [O III] 2.3850-0.0220 2.3275 5199 [N I] 0.0065-0.0520 0.0061 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 0.0037 5538 [Cl III] 0.0047-0.0960 0.0042 5755 [N II] 0.0091-0.1230 0.0079 5876 He I 0.1449-0.1380 0.1243 5979 Si II 0.0016-0.1500 0.0014 6300 [O I] 0.0105-0.1900 0.0085 6312 [S III] 0.0195-0.1900 0.0158 6348+71 Si II 0.0068-0.1950 0.0055 6363 [O I] 0.0071-0.1950 0.0057 6548 [N II] 0.2687-0.2180 0.2110 6563 Halpha 3.6901-0.2200 2.8907 6583 [N II] 0.8206-0.2220 0.6414 6678 He I 0.0390-0.2330 0.0301 6716 [S II] 0.0963-0.2380 0.0739 6731 [S II] 0.1241-0.2390 0.0952 7075 He I 0.0625-0.2780 0.0459 7136 [Ar III] 0.1641-0.2860 0.1195

3. Data Reduction Analysis 50 Table 3.13. Observed and Extinction Corrected Line Ratios: 4mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0879 0.1450 0.1051 4069+76 [SII] 0.0145 0.1220 0.0169 4102 H I 0.2161 0.1170 0.2496 4340 Hgama 0.4248 0.0860 0.4723 4363 [O III] 0.0069 0.0820 0.0076 4471 He I 0.0383 0.0640 0.0414 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6908-0.0150 0.6781 5007 [O III] 2.0852-0.0220 2.0294 5199 [N I] 0.0067-0.0520 0.0063 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0050-0.0930 0.0045 5538 [Cl III] 0.0038-0.0960 0.0034 5755 [N II] 0.0086-0.1230 0.0074 5876 He I 0.1415-0.1380 0.1194 5979 Si II 0.0017-0.1500 0.0014 6300 [O I] 0.0121-0.1900 0.0096 6312 [S III] 0.1774-0.1900 0.1404 6348+71 Si II 0.0085-0.1950 0.0067 6363 [O I] 0.0036-0.1950 0.0028 6548 [N II] 0.2517-0.2180 0.1924 6563 Halpha 3.7913-0.2200 2.8907 6583 [N II] 0.8211-0.2220 0.6245 6678 He I 0.0417-0.2330 0.0313 6716 [S II] 0.1056-0.2380 0.0787 6731 [S II] 0.1222-0.2390 0.0910 7075 He I 0.0559-0.2780 0.0397 7136 [Ar III] 0.1707-0.2860 0.1200

3. Data Reduction Analysis 51 Table 3.14. Observed and Extinction Corrected Line Ratios: 4west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0884 0.1450 0.0964 4069+76 [SII] 0.0117 0.1220 0.0126 4102 H I 0.2136 0.1170 0.2290 4340 Hgama 0.4392 0.0860 0.4623 4363 [O III] 0.0075 0.0820 0.0079 4471 He I 0.0387 0.0640 0.0402 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6475-0.0150 0.6417 5007 [O III] 1.9644-0.0220 1.9388 5199 [N I] 0.0070-0.0520 0.0068 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 0.0039 5538 [Cl III] 0.0046-0.0960 0.0043 5755 [N II] 0.0073-0.1230 0.0068 5876 He I 0.1342-0.1380 0.1236 5979 Si II 0.0016-0.1500 0.0015 6300 [O I] 0.0077-0.1900 0.0069 6312 [S III] 0.0148-0.1900 0.0132 6348+71 Si II 0.0051-0.1950 0.0045 6363 [O I] 0.0036-0.1950 0.0032 6548 [N II] 0.2077-0.2180 0.1824 6563 Halpha 3.2961-0.2200 2.8907 6583 [N II] 0.6991-0.2220 0.6124 6678 He I 0.0384-0.2330 0.0334 6716 [S II] 0.0888-0.2380 0.0770 6731 [S II] 0.0952-0.2390 0.0825 7075 He I 0.0385-0.2780 0.0326 7136 [Ar III] 0.1347-0.2860 0.1136

3. Data Reduction Analysis 52 Table 3.15. Observed and Extinction Corrected Line Ratios: 5east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1972 0.1170 0.2481 4340 Hgama 0.3936 0.0860 0.4660 4363 [O III] 0.0820 4471 He I 0.0640 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7339-0.0150 0.7126 5007 [O III] 2.2516-0.0220 2.1564 5199 [N I] -0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0097-0.1230 0.0076 5876 He I 0.1696-0.1380 0.1293 5979 Si II -0.1500 6300 [O I] -0.1900 6312 [S III] -0.1900 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3646-0.2180 0.2376 6563 Halpha 4.4528-0.2200 2.8906 6583 [N II] 1.0897-0.2220 0.7046 6678 He I 0.0601-0.2330 0.0380 6716 [S II] 0.1341-0.2380 0.0840 6731 [S II] 0.1734-0.2390 0.1084 7075 He I 0.0816-0.2780 0.0473 7136 [Ar III] 0.2153-0.2860 0.1228

3. Data Reduction Analysis 53 Table 3.16. Observed and Extinction Corrected Line Ratios: 5mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0879 0.1450 0.1065 4069+76 [SII] 0.0183 0.1220 0.0215 4102 H I 0.2073 0.1170 0.2421 4340 Hgama 0.4234 0.0860 0.4746 4363 [O III] 0.0081 0.0820 0.0090 4471 He I 0.0396 0.0640 0.0431 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7021-0.0150 0.6883 5007 [O III] 2.1770-0.0220 2.1143 5199 [N I] 0.0065-0.0520 0.0061 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0042-0.0930 0.0037 5538 [Cl III] 0.0039-0.0960 0.0034 5755 [N II] 0.0094-0.1230 0.0080 5876 He I 0.1483-0.1380 0.1235 5979 Si II 0.0016-0.1500 0.0013 6300 [O I] 0.0110-0.1900 0.0085 6312 [S III] 0.0191-0.1900 0.0148 6348+71 Si II 0.0065-0.1950 0.0050 6363 [O I] 0.0043-0.1950 0.0033 6548 [N II] 0.3214-0.2180 0.2406 6563 Halpha 3.8711-0.2200 2.8907 6583 [N II] 0.8947-0.2220 0.6663 6678 He I 0.9950-0.2330 0.7303 6716 [S II] 0.0914-0.2380 0.0666 6731 [S II] 0.1194-0.2390 0.0869 7075 He I 0.0653-0.2780 0.0451 7136 [Ar III] 0.1775-0.2860 0.1214

3. Data Reduction Analysis 54 Table 3.17. Observed and Extinction Corrected Line Ratios: 5west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0850 0.1450 0.0911 4069+76 [SII] 0.0031 0.1220 0.0033 4102 H I 0.2237 0.1170 0.2365 4340 Hgama 0.4506 0.0860 0.4694 4363 [O III] 0.0072 0.0820 0.0075 4471 He I 0.0366 0.0640 0.0377 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6194-0.0150 0.6150 5007 [O III] 1.9083-0.0220 1.8885 5199 [N I] 0.0067-0.0520 0.0065 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0036-0.0930 0.0034 5538 [Cl III] 0.0056-0.0960 0.0054 5755 [N II] 0.0067-0.1230 0.0063 5876 He I 0.1232-0.1380 0.1154 5979 Si II 6.4992-0.1500 6.0520 6300 [O I] 0.0097-0.1900 0.0089 6312 [S III] 0.0157-0.1900 0.0143 6348+71 Si II 0.0033-0.1950 0.0030 6363 [O I] 3.2093-0.1950 2.9252 6548 [N II] 0.2249-0.2180 0.2028 6563 Halpha 3.2093-0.2200 2.8907 6583 [N II] 0.7782-0.2220 0.7003 6678 He I 0.0369-0.2330 0.0330 6716 [S II] 0.0984-0.2380 0.0879 6731 [S II] 0.1091-0.2390 0.0974 7075 He I 0.0335-0.2780 0.0294 7136 [Ar III] 0.1232-0.2860 0.1075

3. Data Reduction Analysis 55 Table 3.18. Observed and Extinction Corrected Line Ratios: 6east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4169 0.0860 0.4949 4363 [O III] 0.0103 0.0820 0.0121 4471 He I 0.0534 0.0640 0.0607 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7022-0.0150 0.6815 5007 [O III] 2.0428-0.0220 1.9551 5199 [N I] 0.0117-0.0520 0.0105 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0142-0.1230 0.0111 5876 He I 0.1704-0.1380 0.1294 5979 Si II -0.1500 6300 [O I] 0.0134-0.1900 0.0092 6312 [S III] 0.0222-0.1900 0.0152 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3628-0.2180 0.2349 6563 Halpha 4.4823-0.2200 2.8907 6583 [N II] 1.1683-0.2220 0.7505 6678 He I 0.0526-0.2330 0.0331 6716 [S II] 0.1694-0.2380 0.1054 6731 [S II] 0.1598-0.2390 0.0992 7075 He I 0.0806-0.2780 0.0463 7136 [Ar III] 0.2230-0.2860 0.1261

3. Data Reduction Analysis 56 Table 3.19. Observed and Extinction Corrected Line Ratios: 6mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0976 0.1450 0.1230 4069+76 [SII] 0.0044 0.1220 0.0053 4102 H I 0.2081 0.1170 0.2509 4340 Hgama 0.4292 0.0860 0.4924 4363 [O III] 0.0069 0.0820 0.0079 4471 He I 0.0405 0.0640 0.0449 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8662-0.0150 0.8457 5007 [O III] 2.5799-0.0220 2.4908 5199 [N I] 0.0057-0.0520 0.0052 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0051-0.0930 0.0044 5538 [Cl III] 0.0048-0.0960 0.0041 5755 [N II] 0.0093-0.1230 0.0076 5876 He I 0.0016-0.1380 0.0013 5979 Si II 0.0017-0.1500 0.0013 6300 [O I] 0.0176-0.1900 0.0130 6312 [S III] 0.0222-0.1900 0.0164 6348+71 Si II 0.0046-0.1950 0.0034 6363 [O I] 0.0068-0.1950 0.0050 6548 [N II] 0.2471-0.2180 0.1744 6563 Halpha 4.1079-0.2200 2.8907 6583 [N II] 0.8210-0.2220 0.5759 6678 He I 0.0504-0.2330 0.0347 6716 [S II] 0.0775-0.2380 0.0530 6731 [S II] 0.1082-0.2390 0.0739 7075 He I 0.0808-0.2780 0.0518 7136 [Ar III] 0.0209-0.2860 0.0132

3. Data Reduction Analysis 57 Table 3.20. Observed and Extinction Corrected Line Ratios: 6west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0982 0.1450 0.1062 4069+76 [SII] 0.0158 0.1220 0.0169 4102 H I 0.2269 0.1170 0.2418 4340 Hgama 0.4509 0.0860 0.4724 4363 [O III] 0.0065 0.0820 0.0068 4471 He I 0.0380 0.0640 0.0393 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6609-0.0150 0.6555 5007 [O III] 2.0287-0.0220 2.0046 5199 [N I] 0.0065-0.0520 0.0063 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0040-0.0930 0.0038 5538 [Cl III] 0.0040-0.0960 0.0038 5755 [N II] 0.0073-0.1230 0.0068 5876 He I 0.1298-0.1380 0.1204 5979 Si II 0.0018-0.1500 0.0017 6300 [O I] 0.0086-0.1900 0.0078 6312 [S III] 0.0146-0.1900 0.0132 6348+71 Si II 0.0030-0.1950 0.0027 6363 [O I] 0.0070-0.1950 0.0063 6548 [N II] 0.2262-0.2180 0.2010 6563 Halpha 3.2571-0.2200 2.8907 6583 [N II] 0.7552-0.2220 0.6695 6678 He I 0.0359-0.2330 0.0316 6716 [S II] 0.0859-0.2380 0.0755 6731 [S II] 0.0950-0.2390 0.0834 7075 He I 0.0368-0.2780 0.0316 7136 [Ar III] 0.1331-0.2860 0.1140

3. Data Reduction Analysis 58 Table 3.21. Observed and Extinction Corrected Line Ratios: 7east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0827 0.1450 0.1185 4069+76 [SII] 0.0200 0.1220 0.0271 4102 H I 0.1948 0.1170 0.2604 4340 Hgama 0.4265 0.0860 0.5279 4363 [O III] 0.0065 0.0820 0.0080 4471 He I 0.0344 0.0640 0.0403 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8302-0.0150 0.7999 5007 [O III] 2.4593-0.0220 2.3287 5199 [N I] 0.0186-0.0520 0.0163 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0066-0.1230 0.0049 5876 He I 0.1744-0.1380 0.1239 5979 Si II -0.1500 6300 [O I] 0.0062-0.1900 0.0039 6312 [S III] 0.0103-0.1900 0.0064 6348+71 Si II 0.0022-0.1950 0.0014 6363 [O I] 0.0060-0.1950 0.0037 6548 [N II] 0.3505-0.2180 0.2041 6563 Halpha 4.9883-0.2200 2.8906 6583 [N II] 1.1477-0.2220 0.6618 6678 He I 0.0577-0.2330 0.0324 6716 [S II] 0.1162-0.2380 0.0644 6731 [S II] 0.1594-0.2390 0.0881 7075 He I 0.1049-0.2780 0.0526 7136 [Ar III] 0.2623-0.2860 0.1290

3. Data Reduction Analysis 59 Table 3.22. Observed and Extinction Corrected Line Ratios: 7mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1223 0.1450 0.1550 4069+76 [SII] 0.0157 0.1220 0.0192 4102 H I 0.2100 0.1170 0.2542 4340 Hgama 0.4282 0.0860 0.4928 4363 [O III] 0.0081 0.0820 0.0093 4471 He I 0.0396 0.0640 0.0440 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.9514-0.0150 0.9284 5007 [O III] 2.9142-0.0220 2.8113 5199 [N I] 0.0044-0.0520 0.0040 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0050-0.0930 0.0043 5538 [Cl III] 0.0057-0.0960 0.0049 5755 [N II] 0.0108-0.1230 0.0088 5876 He I 0.1599-0.1380 0.1276 5979 Si II 0.0016-0.1500 0.0013 6300 [O I] 0.0125-0.1900 0.0092 6312 [S III] 0.0233-0.1900 0.0171 6348+71 Si II 0.0058-0.1950 0.0042 6363 [O I] 0.0043-0.1950 0.0031 6548 [N II] 0.2705-0.2180 0.1894 6563 Halpha 4.1412-0.2200 2.8906 6583 [N II] 0.8111-0.2220 0.5643 6678 He I 0.0510-0.2330 0.0349 6716 [S II] 0.0566-0.2380 0.0384 6731 [S II] 0.0847-0.2390 0.0573 7075 He I 0.1004-0.2780 0.0637 7136 [Ar III] 0.2225-0.2860 0.1394

3. Data Reduction Analysis 60 Table 3.23. Observed and Extinction Corrected Line Ratios: 7west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0902 0.1450 0.0988 4069+76 [SII] 0.0128 0.1220 0.0138 4102 H I 0.2375 0.1170 0.2555 4340 Hgama 0.4540 0.0860 0.4791 4363 [O III] 0.0068 0.0820 0.0072 4471 He I 0.0488 0.0640 0.0508 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7837-0.0150 0.7764 5007 [O III] 2.3810-0.0220 2.3485 5199 [N I] 0.0049-0.0520 0.0047 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 0.0039 5538 [Cl III] 0.0042-0.0960 0.0040 5755 [N II] 0.0069-0.1230 0.0064 5876 He I 0.1413-0.1380 0.1296 5979 Si II 0.0011-0.1500 0.0010 6300 [O I] 0.0073-0.1900 0.0065 6312 [S III] 0.0181-0.1900 0.0161 6348+71 Si II 0.0035-0.1950 0.0031 6363 [O I] 0.0044-0.1950 0.0039 6548 [N II] 0.1844-0.2180 0.1609 6563 Halpha 3.3166-0.2200 2.8907 6583 [N II] 0.6132-0.2220 0.5338 6678 He I 0.0422-0.2330 0.0365 6716 [S II] 0.0692-0.2380 0.0596 6731 [S II] 0.0862-0.2390 0.0742 7075 He I 0.0448-0.2780 0.0377 7136 [Ar III] 0.1565-0.2860 0.1309

3. Data Reduction Analysis 61 Table 3.24. Observed and Extinction Corrected Line Ratios: 8east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 4069+76 [SII] 0.1220 4102 H I 0.2028 0.1170 0.2066 4340 Hgama 0.3955 0.0860 0.4009 4363 [O III] 0.0820 4471 He I 0.0355 0.0640 0.0359 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7683-0.0150 0.7665 5007 [O III] 2.3356-0.0220 2.3275 5199 [N I] 1.0000-0.0520 0.9918 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0079-0.1230 0.0077 5876 He I 0.1650-0.1380 0.1614 5979 Si II -0.1500 6300 [O I] 0.0125-0.1900 0.0121 6312 [S III] 0.0303-0.1900 0.0294 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3214-0.2180 0.3105 6563 Halpha 4.7376-0.2200 4.5756 6583 [N II] 0.9975-0.2220 0.9631 6678 He I 0.0585-0.2330 0.0564 6716 [S II] 0.1157-0.2380 0.1114 6731 [S II] 0.1415-0.2390 0.1363 7075 He I 0.0934-0.2780 0.0894 7136 [Ar III] 0.2336-0.2860 0.2233

3. Data Reduction Analysis 62 Table 3.25. Observed and Extinction Corrected Line Ratios: 8mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1547 0.1450 0.1887 4069+76 [SII] 0.0150 0.1220 0.0177 4102 H I 0.2134 0.1170 0.2505 4340 Hgama 0.4359 0.0860 0.4905 4363 [O III] 0.0115 0.0820 0.0129 4471 He I 0.0436 0.0640 0.0476 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 1.1503-0.0150 1.1269 5007 [O III] 3.5059-0.0220 3.4017 5199 [N I] 0.0029-0.0520 0.0027 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0049-0.0930 0.0043 5538 [Cl III] 0.0053-0.0960 0.0046 5755 [N II] 0.0075-0.1230 0.0063 5876 He I 0.1622-0.1380 0.1342 5979 Si II 0.0011-0.1500 0.0009 6300 [O I] 0.0091-0.1900 0.0070 6312 [S III] 0.0213-0.1900 0.0164 6348+71 Si II 0.0041-0.1950 0.0031 6363 [O I] 0.0035-0.1950 0.0027 6548 [N II] 0.1702-0.2180 0.1262 6563 Halpha 3.9089-0.2200 2.8907 6583 [N II] 0.5418-0.2220 0.3996 6678 He I 0.0498-0.2330 0.0362 6716 [S II] 0.0368-0.2380 0.0266 6731 [S II] 0.0584-0.2390 0.0421 7075 He I 0.0988-0.2780 0.0675 7136 [Ar III] 0.2202-0.2860 0.1487

3. Data Reduction Analysis 63 Table 3.26. Observed and Extinction Corrected Line Ratios: 8west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1119 0.1450 0.1219 4069+76 [SII] 0.0180 0.1220 0.0193 4102 H I 0.2317 0.1170 0.2483 4340 Hgama 0.4416 0.0860 0.4647 4363 [O III] 0.0097 0.0820 0.0102 4471 He I 0.0401 0.0640 0.0416 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8492-0.0150 0.8417 5007 [O III] 2.5766-0.0220 2.5433 5199 [N I] 0.0040-0.0520 0.0039 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0043-0.0930 0.0041 5538 [Cl III] 0.0068-0.0960 0.0064 5755 [N II] 0.0056-0.1230 0.0052 5876 He I 0.1406-0.1380 0.1296 5979 Si II -0.1500 6300 [O I] 0.0060-0.1900 0.0054 6312 [S III] 0.0167-0.1900 0.0149 6348+71 Si II 0.0026-0.1950 0.0023 6363 [O I] 0.0028-0.1950 0.0025 6548 [N II] 0.1699-0.2180 0.1493 6563 Halpha 3.2926-0.2200 2.8907 6583 [N II] 0.5708-0.2220 0.5005 6678 He I 0.0404-0.2330 0.0352 6716 [S II] 0.0563-0.2380 0.0489 6731 [S II] 0.0750-0.2390 0.0651 7075 He I 0.0486-0.2780 0.0412 7136 [Ar III] 0.1571-0.2860 0.1326

3. Data Reduction Analysis 64 Table 3.27. Observed and Extinction Corrected Line Ratios: 9east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4026 0.0860 0.4852 4363 [O III] 0.0131 0.0820 0.0157 4471 He I 0.0402 0.0640 0.0462 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 1.0774-0.0150 1.0429 5007 [O III] 3.3697-0.0220 3.2126 5199 [N I] 0.0035-0.0520 0.0031 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0049-0.0930 0.0040 5538 [Cl III] 0.0059-0.0960 0.0048 5755 [N II] 0.0066-0.1230 0.0051 5876 He I 0.1804-0.1380 0.1337 5979 Si II 0.0013-0.1500 0.0009 6300 [O I] 0.0060-0.1900 0.0040 6312 [S III] 0.0246-0.1900 0.0163 6348+71 Si II 0.0043-0.1950 0.0028 6363 [O I] 0.0020-0.1950 0.0013 6548 [N II] 0.2402-0.2180 0.1497 6563 Halpha 4.6590-0.2200 2.8907 6583 [N II] 0.6479-0.2220 0.4003 6678 He I 0.0563-0.2330 0.0340 6716 [S II] 0.0571-0.2380 0.0341 6731 [S II] 0.0759-0.2390 0.0452 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 65 Table 3.28. Observed and Extinction Corrected Line Ratios: 9mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4399 0.0860 0.4698 4363 [O III] 0.0097 0.0820 0.0103 4471 He I 0.0423 0.0640 0.0444 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 1.1132-0.0150 1.1005 5007 [O III] 3.3292-0.0220 3.2736 5199 [N I] 0.0030-0.0520 0.0029 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0049-0.0930 0.0046 5538 [Cl III] 0.0054-0.0960 0.0050 5755 [N II] 0.0087-0.1230 0.0079 5876 He I 0.1469-0.1380 0.1322 5979 Si II 0.0011-0.1500 0.0010 6300 [O I] 0.0106-0.1900 0.0092 6312 [S III] 0.0215-0.1900 0.0186 6348+71 Si II 0.0030-0.1950 0.0026 6363 [O I] 0.0036-0.1950 0.0031 6548 [N II] 0.1899-0.2180 0.1607 6563 Halpha 3.4208-0.2200 2.8907 6583 [N II] 0.5806-0.2220 0.4899 6678 He I 0.0396-0.2330 0.0331 6716 [S II] 0.0355-0.2380 0.0296 6731 [S II] 0.0625-0.2390 0.0521 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 66 Table 3.29. Observed and Extinction Corrected Line Ratios: 9west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4556 0.0860 0.4754 4363 [O III] 0.0056 0.0820 0.0058 4471 He I 0.0416 0.0640 0.0429 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7970-0.0150 0.7911 5007 [O III] 2.4290-0.0220 2.4027 5199 [N I] 0.0040-0.0520 0.0039 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0046-0.0930 0.0044 5538 [Cl III] 0.0040-0.0960 0.0038 5755 [N II] 0.0047-0.1230 0.0044 5876 He I 0.1373-0.1380 0.1282 5979 Si II 0.0010-0.1500 0.0009 6300 [O I] 0.0042-0.1900 0.0038 6312 [S III] 0.0133-0.1900 0.0121 6348+71 Si II 0.0026-0.1950 0.0024 6363 [O I] 0.0016-0.1950 0.0015 6548 [N II] 0.1633-0.2180 0.1466 6563 Halpha 3.2228-0.2200 2.8907 6583 [N II] 0.4639-0.2220 0.4157 6678 He I 0.0380-0.2330 0.0339 6716 [S II] 0.0788-0.2380 0.0701 6731 [S II] 0.0776-0.2390 0.0690 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 67 Table 3.30. Observed and Extinction Corrected Line Ratios: 10east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0898 0.1450 0.1038 4069+76 [SII] 0.0136 0.1220 0.0154 4102 H I 0.2109 0.1170 0.2371 4340 Hgama 0.4246 0.0860 0.4628 4363 [O III] 0.0055 0.0820 0.0060 4471 He I 0.0386 0.0640 0.0412 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6836-0.0150 0.6734 5007 [O III] 2.2016-0.0220 2.1536 5199 [N I] 0.0047-0.0520 0.0045 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0047-0.0930 0.0043 5538 [Cl III] 0.0039-0.0960 0.0035 5755 [N II] 0.0076-0.1230 0.0067 5876 He I 0.1367-0.1380 0.1190 5979 Si II 0.0017-0.1500 0.0015 6300 [O I] 0.0069-0.1900 0.0057 6312 [S III] 0.0178-0.1900 0.0147 6348+71 Si II 0.0057-0.1950 0.0047 6363 [O I] 0.0041-0.1950 0.0034 6548 [N II] 0.2677-0.2180 0.2152 6563 Halpha 3.6039-0.2200 2.8907 6583 [N II] 0.7871-0.2220 0.6301 6678 He I 0.0406-0.2330 0.0321 6716 [S II] 0.0795-0.2380 0.0626 6731 [S II] 0.1044-0.2390 0.0822 7075 He I 0.0665-0.2780 0.0503 7136 [Ar III] 0.1649-0.2860 0.1238

3. Data Reduction Analysis 68 Table 3.31. Observed and Extinction Corrected Line Ratios: 10mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1500 0.1450 0.1831 4069+76 [SII] 0.0269 0.1220 0.0318 4102 H I 0.2145 0.1170 0.2519 4340 Hgama 0.4309 0.0860 0.4850 4363 [O III] 0.0097 0.0820 0.0109 4471 He I 0.0398 0.0640 0.0435 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 1.0345-0.0150 1.0134 5007 [O III] 3.1581-0.0220 3.0640 5199 [N I] 0.0032-0.0520 0.0030 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0040 5538 [Cl III] 0.0053-0.0960 0.0046 5755 [N II] 0.0127-0.1230 0.0107 5876 He I 0.0160-0.1380 0.0132 5979 Si II 0.0010-0.1500 0.0008 6300 [O I] 0.0159-0.1900 0.0122 6312 [S III] 0.0228-0.1900 0.0176 6348+71 Si II 0.0036-0.1950 0.0028 6363 [O I] 0.0045-0.1950 0.0034 6548 [N II] 0.2156-0.2180 0.1597 6563 Halpha 3.9120-0.2200 2.8906 6583 [N II] 0.6726-0.2220 0.4956 6678 He I 0.0501-0.2330 0.0364 6716 [S II] 0.0384-0.2380 0.0277 6731 [S II] 0.0680-0.2390 0.0490 7075 He I 0.0947-0.2780 0.0646 7136 [Ar III] 0.2200-0.2860 0.1485

3. Data Reduction Analysis 69 Table 3.32. Observed and Extinction Corrected Line Ratios: 10west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1285 0.1450 0.1417 4069+76 [SII] 0.0143 0.1220 0.0155 4102 H I 0.2310 0.1170 0.2500 4340 Hgama 0.4493 0.0860 0.4762 4363 [O III] 0.0072 0.0820 0.0076 4471 He I 0.0423 0.0640 0.0442 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.9147-0.0150 0.9055 5007 [O III] 2.7471-0.0220 2.7066 5199 [N I] 0.0035-0.0520 0.0034 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0037-0.0930 0.0035 5538 [Cl III] 0.0046-0.0960 0.0043 5755 [N II] 0.0058-0.1230 0.0053 5876 He I 0.1425-0.1380 0.1298 5979 Si II -0.1500 6300 [O I] 0.0082-0.1900 0.0072 6312 [S III] 0.0159-0.1900 0.0140 6348+71 Si II 0.0034-0.1950 0.0030 6363 [O I] 0.0035-0.1950 0.0031 6548 [N II] 0.1473-0.2180 0.1271 6563 Halpha 3.3537-0.2200 2.8907 6583 [N II] 0.5141-0.2220 0.4425 6678 He I 0.0404-0.2330 0.0345 6716 [S II] 0.0558-0.2380 0.0475 6731 [S II] 0.0727-0.2390 0.0619 7075 He I 0.0510-0.2780 0.0423 7136 [Ar III] 0.1572-0.2860 0.1296

3. Data Reduction Analysis 70 Table 3.33. Observed and Extinction Corrected Line Ratios: 11east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0815 0.1450 0.0934 4069+76 [SII] 0.0194 0.1220 0.0218 4102 H I 0.2186 0.1170 0.2441 4340 Hgama 0.4466 0.0860 0.4843 4363 [O III] 0.0066 0.0820 0.0071 4471 He I 0.0377 0.0640 0.0400 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5878-0.0150 0.5795 5007 [O III] 1.7840-0.0220 1.7474 5199 [N I] 0.0046-0.0520 0.0044 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0041 5538 [Cl III] 0.0043-0.0960 0.0039 5755 [N II] 0.0108-0.1230 0.0096 5876 He I 0.1263-0.1380 0.1109 5979 Si II 0.0027-0.1500 0.0023 6300 [O I] 0.0079-0.1900 0.0066 6312 [S III] 0.0188-0.1900 0.0157 6348+71 Si II 0.0100-0.1950 0.0083 6363 [O I] 0.0020-0.1950 0.0017 6548 [N II] 0.3142-0.2180 0.2558 6563 Halpha 3.5572-0.2200 2.8907 6583 [N II] 0.9682-0.2220 0.7853 6678 He I 0.0394-0.2330 0.0316 6716 [S II] 0.0990-0.2380 0.0791 6731 [S II] 0.1332-0.2390 0.1063 7075 He I 0.0592-0.2780 0.0455 7136 [Ar III] 0.2486-0.2860 0.1898

3. Data Reduction Analysis 71 Table 3.34. Observed and Extinction Corrected Line Ratios: 11mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1411 0.1450 0.1700 4069+76 [SII] 0.0152 0.1220 0.0178 4102 H I 0.2154 0.1170 0.2503 4340 Hgama 0.4254 0.0860 0.4751 4363 [O III] 0.0079 0.0820 0.0088 4471 He I 0.0404 0.0640 0.0439 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 1.0081-0.0150 0.9889 5007 [O III] 3.0624-0.0220 2.9771 5199 [N I] 0.0032-0.0520 0.0030 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0039-0.0930 0.0035 5538 [Cl III] 0.0055-0.0960 0.0049 5755 [N II] 0.0082-0.1230 0.0070 5876 He I 0.1570-0.1380 0.1315 5979 Si II 0.0014-0.1500 0.0012 6300 [O I] 0.0088-0.1900 0.0069 6312 [S III] 0.0185-0.1900 0.0145 6348+71 Si II 0.0048-0.1950 0.0037 6363 [O I] 0.0029-0.1950 0.0023 6548 [N II] 0.1666-0.2180 0.1259 6563 Halpha 3.8345-0.2200 2.8906 6583 [N II] 0.5414-0.2220 0.4071 6678 He I 0.0470-0.2330 0.0348 6716 [S II] 0.0401-0.2380 0.0295 6731 [S II] 0.0654-0.2390 0.0481 7075 He I 0.0879-0.2780 0.0615 7136 [Ar III] 0.2033-0.2860 0.1408

3. Data Reduction Analysis 72 Table 3.35. Observed and Extinction Corrected Line Ratios: 11west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1265 0.1450 0.1378 4069+76 [SII] 0.0124 0.1220 0.0133 4102 H I 0.2366 0.1170 0.2535 4340 Hgama 0.4600 0.0860 0.4840 4363 [O III] 0.0064 0.0820 0.0067 4471 He I 0.0408 0.0640 0.0424 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8867-0.0150 0.8789 5007 [O III] 2.7010-0.0220 2.6661 5199 [N I] 0.0031-0.0520 0.0030 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0030-0.0930 0.0028 5538 [Cl III] 0.0048-0.0960 0.0045 5755 [N II] 0.0042-0.1230 0.0039 5876 He I 0.1422-0.1380 0.1311 5979 Si II -0.1500 6300 [O I] 0.0059-0.1900 0.0053 6312 [S III] 0.0138-0.1900 0.0123 6348+71 Si II 0.0024-0.1950 0.0021 6363 [O I] 0.0032-0.1950 0.0029 6548 [N II] 0.1268-0.2180 0.1115 6563 Halpha 3.2919-0.2200 2.8906 6583 [N II] 0.4323-0.2220 0.3792 6678 He I 0.0411-0.2330 0.0358 6716 [S II] 0.0551-0.2380 0.0479 6731 [S II] 0.0665-0.2390 0.0577 7075 He I 0.0519-0.2780 0.0440 7136 [Ar III] 0.1563-0.2860 0.1320

3. Data Reduction Analysis 73 Table 3.36. Observed and Extinction Corrected Line Ratios: 12east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0608 0.1450 0.0647 4069+76 [SII] 0.0168 0.1220 0.0177 4102 H I 0.2205 0.1170 0.2319 4340 Hgama 0.4474 0.0860 0.4643 4363 [O III] 0.0046 0.0820 0.0048 4471 He I 0.0245 0.0640 0.0252 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3645-0.0150 0.3622 5007 [O III] 1.1045-0.0220 1.0941 5199 [N I] 0.0085-0.0520 0.0083 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0043-0.0930 0.0041 5538 [Cl III] 0.0027-0.0960 0.0026 5755 [N II] 0.0073-0.1230 0.0069 5876 He I 0.0943-0.1380 0.0889 5979 Si II 0.0027-0.1500 0.0025 6300 [O I] 0.0056-0.1900 0.0052 6312 [S III] 0.0130-0.1900 0.0120 6348+71 Si II 0.0066-0.1950 0.0061 6363 [O I] 0.0029-0.1950 0.0027 6548 [N II] 0.3212-0.2180 0.2925 6563 Halpha 3.1775-0.2200 2.8906 6583 [N II] 0.9084-0.2220 0.8257 6678 He I 0.0252-0.2330 0.0228 6716 [S II] 0.1229-0.2380 0.1109 6731 [S II] 0.1345-0.2390 0.1214 7075 He I 0.0290-0.2780 0.0257 7136 [Ar III] 0.0875-0.2860 0.0774

3. Data Reduction Analysis 74 Table 3.37. Observed and Extinction Corrected Line Ratios: 12mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0114 0.1450 0.0139 4069+76 [SII] 0.0157 0.1220 0.0186 4102 H I 0.2168 0.1170 0.2548 4340 Hgama 0.4361 0.0860 0.4911 4363 [O III] 0.0058 0.0820 0.0065 4471 He I 0.0412 0.0640 0.0450 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.9327-0.0150 0.9136 5007 [O III] 2.8192-0.0220 2.7348 5199 [N I] 0.0028-0.0520 0.0026 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 0.0036 5538 [Cl III] 0.0047-0.0960 0.0041 5755 [N II] 0.0074-0.1230 0.0062 5876 He I 0.1589-0.1380 0.1313 5979 Si II 0.0013-0.1500 0.0011 6300 [O I] 0.0080-0.1900 0.0062 6312 [S III] 0.0198-0.1900 0.0152 6348+71 Si II 0.0047-0.1950 0.0036 6363 [O I] 0.0025-0.1950 0.0019 6548 [N II] 0.2035-0.2180 0.1506 6563 Halpha 3.9173-0.2200 2.8907 6583 [N II] 0.6074-0.2220 0.4470 6678 He I 0.0488-0.2330 0.0354 6716 [S II] 0.0522-0.2380 0.0376 6731 [S II] 0.0803-0.2390 0.0577 7075 He I 0.0835-0.2780 0.0569 7136 [Ar III] 0.2060-0.2860 0.1388

3. Data Reduction Analysis 75 Table 3.38. Observed and Extinction Corrected Line Ratios: 12west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1158 0.1450 0.1310 4069+76 [SII] 0.0089 0.1220 0.0099 4102 H I 0.2308 0.1170 0.2549 4340 Hgama 0.4478 0.0860 0.4818 4363 [O III] 0.0066 0.0820 0.0071 4471 He I 0.0407 0.0640 0.0430 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8970-0.0150 0.8856 5007 [O III] 2.7469-0.0220 2.6960 5199 [N I] 0.0019-0.0520 0.0018 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0036-0.0930 0.0033 5538 [Cl III] 0.0052-0.0960 0.0048 5755 [N II] 0.0035-0.1230 0.0032 5876 He I 0.1498-0.1380 0.1332 5979 Si II -0.1500 6300 [O I] 0.0026-0.1900 0.0022 6312 [S III] 0.0151-0.1900 0.0128 6348+71 Si II 0.0032-0.1950 0.0027 6363 [O I] 0.0016-0.1950 0.0014 6548 [N II] 0.1021-0.2180 0.0848 6563 Halpha 3.4853-0.2200 2.8906 6583 [N II] 0.3580-0.2220 0.2964 6678 He I 0.0424-0.2330 0.0348 6716 [S II] 0.0458-0.2380 0.0374 6731 [S II] 0.0527-0.2390 0.0430 7075 He I 0.0517-0.2780 0.0408 7136 [Ar III] 0.1700-0.2860 0.1333

3. Data Reduction Analysis 76 Table 3.39. Observed and Extinction Corrected Line Ratios: 13east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0881 0.1450 0.0948 4069+76 [SII] 0.0221 0.1220 0.0235 4102 H I 0.2085 0.1170 0.2212 4340 Hgama 0.4455 0.0860 0.4652 4363 [O III] 0.0036 0.0820 0.0038 4471 He I 0.0259 0.0640 0.0267 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3684-0.0150 0.3656 5007 [O III] 1.1289-0.0220 1.1165 5199 [N I] 0.0041-0.0520 0.0040 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0034-0.0930 0.0032 5538 [Cl III] 0.0040-0.0960 0.0038 5755 [N II] 0.0077-0.1230 0.0072 5876 He I 0.1018-0.1380 0.0950 5979 Si II 0.0019-0.1500 0.0018 6300 [O I] 0.0072-0.1900 0.0065 6312 [S III] 0.0142-0.1900 0.0129 6348+71 Si II 0.0080-0.1950 0.0073 6363 [O I] 0.0038-0.1950 0.0034 6548 [N II] 0.3091-0.2180 0.2770 6563 Halpha 3.2293-0.2200 2.8906 6583 [N II] 0.9229-0.2220 0.8253 6678 He I 0.0290-0.2330 0.0258 6716 [S II] 0.1140-0.2380 0.1011 6731 [S II] 0.1315-0.2390 0.1166 7075 He I 0.0339-0.2780 0.0295 7136 [Ar III] 0.0946-0.2860 0.0819

3. Data Reduction Analysis 77 Table 3.40. Observed and Extinction Corrected Line Ratios: 13mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0793 0.1450 0.0949 4069+76 [SII] 0.1840 0.1220 0.2140 4102 H I 0.2186 0.1170 0.2527 4340 Hgama 0.4336 0.0860 0.4823 4363 [O III] 0.0056 0.0820 0.0062 4471 He I 0.0384 0.0640 0.0416 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.7151-0.0150 0.7019 5007 [O III] 2.1891-0.0220 2.1303 5199 [N I] 0.0028-0.0520 0.0026 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0044-0.0930 0.0039 5538 [Cl III] 0.0052-0.0960 0.0046 5755 [N II] 0.0097-0.1230 0.0083 5876 He I 0.1484-0.1380 0.1251 5979 Si II 0.0013-0.1500 0.0011 6300 [O I] 0.0085-0.1900 0.0067 6312 [S III] 0.0202-0.1900 0.0160 6348+71 Si II 0.0045-0.1950 0.0035 6363 [O I] 0.0027-0.1950 0.0021 6548 [N II] 0.2825-0.2180 0.2157 6563 Halpha 3.7955-0.2200 2.8907 6583 [N II] 0.8505-0.2220 0.6461 6678 He I 0.0461-0.2330 0.0345 6716 [S II] 0.0793-0.2380 0.0591 6731 [S II] 0.1098-0.2390 0.0817 7075 He I 0.0714-0.2780 0.0506 7136 [Ar III] 0.1892-0.2860 0.1328

3. Data Reduction Analysis 78 Table 3.41. Observed and Extinction Corrected Line Ratios: 13west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0878 0.1450 0.0986 4069+76 [SII] 0.0153 0.1220 0.0169 4102 H I 0.2306 0.1170 0.2533 4340 Hgama 0.4528 0.0860 0.4852 4363 [O III] 0.0066 0.0820 0.0070 4471 He I 0.0427 0.0640 0.0450 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8184-0.0150 0.8086 5007 [O III] 2.4678-0.0220 2.4246 5199 [N I] -0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0042 5538 [Cl III] 0.0061-0.0960 0.0056 5755 [N II] 0.0049-0.1230 0.0044 5876 He I 0.1491-0.1380 0.1335 5979 Si II -0.1500 6300 [O I] 0.0031-0.1900 0.0027 6312 [S III] 0.0167-0.1900 0.0143 6348+71 Si II 0.0048-0.1950 0.0041 6363 [O I] 0.0009-0.1950 0.0008 6548 [N II] 0.1385-0.2180 0.1163 6563 Halpha 3.4489-0.2200 2.8908 6583 [N II] 0.4931-0.2220 0.4126 6678 He I 0.0420-0.2330 0.0348 6716 [S II] 0.0578-0.2380 0.0478 6731 [S II] 0.0671-0.2390 0.0554 7075 He I 0.0479-0.2780 0.0383 7136 [Ar III] 0.1719-0.2860 0.1366

3. Data Reduction Analysis 79 Table 3.42. Observed and Extinction Corrected Line Ratios: 14east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0591 0.1450 0.0626 4069+76 [SII] 0.0128 0.1220 0.0134 4102 H I 0.2221 0.1170 0.2327 4340 Hgama 0.4498 0.0860 0.4654 4363 [O III] 0.0038 0.0820 0.0039 4471 He I 0.0327 0.0640 0.0335 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3897-0.0150 0.3874 5007 [O III] 1.2119-0.0220 1.2014 5199 [N I] 0.0057-0.0520 0.0056 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0042-0.0930 0.0040 5538 [Cl III] 0.0030-0.0960 0.0029 5755 [N II] 0.0063-0.1230 0.0060 5876 He I 0.1064-0.1380 0.1007 5979 Si II 0.0016-0.1500 0.0015 6300 [O I] 0.0056-0.1900 0.0052 6312 [S III] 0.0120-0.1900 0.0111 6348+71 Si II 0.0054-0.1950 0.0050 6363 [O I] 0.0021-0.1950 0.0019 6548 [N II] 0.2382-0.2180 0.2184 6563 Halpha 3.1547-0.2200 2.8907 6583 [N II] 0.7327-0.2220 0.6709 6678 He I 0.0295-0.2330 0.0269 6716 [S II] 0.1135-0.2380 0.1033 6731 [S II] 0.1165-0.2390 0.1059 7075 He I 0.0320-0.2780 0.0287 7136 [Ar III] 0.1015-0.2860 0.0906

3. Data Reduction Analysis 80 Table 3.43. Observed and Extinction Corrected Line Ratios: 14mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0707 0.1450 0.0824 4069+76 [SII] 0.0189 0.1220 0.0215 4102 H I 0.2164 0.1170 0.2447 4340 Hgama 0.4409 0.0860 0.4827 4363 [O III] 0.0050 0.0820 0.0055 4471 He I 0.0353 0.0640 0.0378 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5587-0.0150 0.5500 5007 [O III] 1.7209-0.0220 1.6815 5199 [N I] 0.0045-0.0520 0.0043 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0053-0.0930 0.0048 5538 [Cl III] 0.0039-0.0960 0.0035 5755 [N II] 0.0091-0.1230 0.0080 5876 He I 0.1320-0.1380 0.1142 5979 Si II 0.0015-0.1500 0.0013 6300 [O I] 0.0088-0.1900 0.0072 6312 [S III] 0.0172-0.1900 0.0141 6348+71 Si II 0.0049-0.1950 0.0040 6363 [O I] 0.0030-0.1950 0.0024 6548 [N II] 0.2809-0.2180 0.2233 6563 Halpha 3.6435-0.2200 2.8907 6583 [N II] 0.8846-0.2220 0.7004 6678 He I 0.0391-0.2330 0.0306 6716 [S II] 0.0991-0.2380 0.0771 6731 [S II] 0.1266-0.2390 0.0985 7075 He I 0.0491-0.2780 0.0366 7136 [Ar III] 0.1461-0.2860 0.1081

3. Data Reduction Analysis 81 Table 3.44. Observed and Extinction Corrected Line Ratios: 14west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0814 0.1450 0.0873 4069+76 [SII] 0.0119 0.1220 0.0126 4102 H I 0.2309 0.1170 0.2444 4340 Hgama 0.4560 0.0860 0.4755 4363 [O III] 0.0050 0.0820 0.0052 4471 He I 0.0414 0.0640 0.0427 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.6809-0.0150 0.6760 5007 [O III] 2.0478-0.0220 2.0260 5199 [N I] 0.0026-0.0520 0.0025 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0043 5538 [Cl III] 0.0045-0.0960 0.0043 5755 [N II] 0.0061-0.1230 0.0057 5876 He I 0.1360-0.1380 0.1272 5979 Si II 0.0012-0.1500 0.0011 6300 [O I] 0.0062-0.1900 0.0057 6312 [S III] 0.0158-0.1900 0.0144 6348+71 Si II 0.0020-0.1950 0.0018 6363 [O I] 0.0023-0.1950 0.0021 6548 [N II] 0.1943-0.2180 0.1748 6563 Halpha 3.2168-0.2200 2.8907 6583 [N II] 0.6477-0.2220 0.5815 6678 He I 0.0385-0.2330 0.0344 6716 [S II] 0.0873-0.2380 0.0778 6731 [S II] 0.0931-0.2390 0.0829 7075 He I 0.0372-0.2780 0.0325 7136 [Ar III] 0.1490-0.2860 0.1297

3. Data Reduction Analysis 82 Table 3.45. Observed and Extinction Corrected Line Ratios: 15east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0567 0.1450 0.0602 4069+76 [SII] 0.0136 0.1220 0.0167 4102 H I 0.2225 0.1170 0.2702 4340 Hgama 0.4468 0.0860 0.5153 4363 [O III] 0.0041 0.0820 0.0047 4471 He I 0.0347 0.0640 0.0386 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3360-0.0150 0.3277 5007 [O III] 1.0364-0.0220 0.9992 5199 [N I] 0.0062-0.0520 0.0057 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0043-0.0930 0.0037 5538 [Cl III] 0.0034-0.0960 0.0029 5755 [N II] 0.0060-0.1230 0.0049 5876 He I 0.1073-0.1380 0.0853 5979 Si II 0.0015-0.1500 0.0012 6300 [O I] 0.0054-0.1900 0.0039 6312 [S III] 0.0117-0.1900 0.0085 6348+71 Si II 0.0057-0.1950 0.0041 6363 [O I] 0.0013-0.1950 0.0009 6548 [N II] 0.2995-0.2180 0.2086 6563 Halpha 3.1649-0.2200 2.1968 6583 [N II] 0.7753-0.2220 0.5364 6678 He I 0.0303-0.2330 0.0206 6716 [S II] 0.1162-0.2380 0.0783 6731 [S II] 0.1165-0.2390 0.0784 7075 He I 0.0307-0.2780 0.0194 7136 [Ar III] 0.1015-0.2860 0.0631

3. Data Reduction Analysis 83 Table 3.46. Observed and Extinction Corrected Line Ratios: 15mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0686 0.1450 0.0789 4069+76 [SII] 0.0143 0.1220 0.0161 4102 H I 0.2212 0.1170 0.2476 4340 Hgama 0.4451 0.0860 0.4836 4363 [O III] 0.0045 0.0820 0.0049 4471 He I 0.0353 0.0640 0.0375 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.4804-0.0150 0.4735 5007 [O III] 1.4649-0.0220 1.4341 5199 [N I] 0.0051-0.0520 0.0049 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0048-0.0930 0.0044 5538 [Cl III] 0.0035-0.0960 0.0032 5755 [N II] 0.0075-0.1230 0.0067 5876 He I 0.1230-0.1380 0.1077 5979 Si II 0.0012-0.1500 0.0010 6300 [O I] 0.0075-0.1900 0.0062 6312 [S III] 0.0146-0.1900 0.0122 6348+71 Si II 0.0037-0.1950 0.0031 6363 [O I] 0.0023-0.1950 0.0019 6548 [N II] 0.2709-0.2180 0.2195 6563 Halpha 3.5744-0.2200 2.8907 6583 [N II] 0.8610-0.2220 0.6950 6678 He I 0.0361-0.2330 0.0288 6716 [S II] 0.1164-0.2380 0.0925 6731 [S II] 0.1273-0.2390 0.1011 7075 He I 0.0423-0.2780 0.0323 7136 [Ar III] 0.1306-0.2860 0.0991

3. Data Reduction Analysis 84 Table 3.47. Observed and Extinction Corrected Line Ratios: 15west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0700 0.1450 0.0750 4069+76 [SII] 0.0170 0.1220 0.0180 4102 H I 0.2257 0.1170 0.2385 4340 Hgama 0.4447 0.0860 0.4631 4363 [O III] 0.0052 0.0820 0.0054 4471 He I 0.0356 0.0640 0.0367 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5358-0.0150 0.5320 5007 [O III] 1.6566-0.0220 1.6395 5199 [N I] 0.0043-0.0520 0.0042 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0043 5538 [Cl III] 0.0044-0.0960 0.0042 5755 [N II] 0.0074-0.1230 0.0070 5876 He I 0.1239-0.1380 0.1161 5979 Si II 0.0012-0.1500 0.0011 6300 [O I] 0.0079-0.1900 0.0072 6312 [S III] 0.0158-0.1900 0.0144 6348+71 Si II 0.0025-0.1950 0.0023 6363 [O I] 0.0033-0.1950 0.0030 6548 [N II] 0.2594-0.2180 0.2341 6563 Halpha 3.2065-0.2200 2.8907 6583 [N II] 0.8631-0.2220 0.7774 6678 He I 0.0354-0.2330 0.0317 6716 [S II] 0.1133-0.2380 0.1013 6731 [S II] 0.1203-0.2390 0.1075 7075 He I 0.0361-0.2780 0.0317 7136 [Ar III] 0.1323-0.2860 0.1156

3. Data Reduction Analysis 85 Table 3.48. Observed and Extinction Corrected Line Ratios: 16east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0421 0.1450 0.0439 4069+76 [SII] 0.0178 0.1220 0.0184 4102 H I 0.2247 0.1170 0.2325 4340 Hgama 0.4510 0.0860 0.4624 4363 [O III] 0.0037 0.0820 0.0038 4471 He I 0.0220 0.0640 0.0224 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.2406-0.0150 0.2396 5007 [O III] 0.7376-0.0220 0.7329 5199 [N I] 0.0074-0.0520 0.0073 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 0.0040 5538 [Cl III] 0.0031-0.0960 0.0030 5755 [N II] 0.0085-0.1230 0.0082 5876 He I 0.0719-0.1380 0.0691 5979 Si II 0.0017-0.1500 0.0016 6300 [O I] 0.0061-0.1900 0.0058 6312 [S III] 0.0114-0.1900 0.0108 6348+71 Si II 0.0039-0.1950 0.0037 6363 [O I] 0.0028-0.1950 0.0026 6548 [N II] 0.3520-0.2180 0.3304 6563 Halpha 3.0815-0.2200 2.8907 6583 [N II] 1.0602-0.2220 0.9940 6678 He I 0.0187-0.2330 0.0175 6716 [S II] 0.1506-0.2380 0.1405 6731 [S II] 0.1412-0.2390 0.1317 7075 He I 0.0178-0.2780 0.0164 7136 [Ar III] 0.0584-0.2860 0.0537

3. Data Reduction Analysis 86 Table 3.49. Observed and Extinction Corrected Line Ratios: 16mid Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0640 0.1450 0.0706 4069+76 [SII] 0.0115 0.1220 0.0125 4102 H I 0.2256 0.1170 0.2441 4340 Hgama 0.4543 0.0860 0.4813 4363 [O III] 0.0034 0.0820 0.0036 4471 He I 0.0266 0.0640 0.0278 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3546-0.0150 0.3510 5007 [O III] 1.0759-0.0220 1.0601 5199 [N I] 0.0079-0.0520 0.0076 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0044-0.0930 0.0041 5538 [Cl III] 0.0037-0.0960 0.0035 5755 [N II] 0.0097-0.1230 0.0089 5876 He I 0.0871-0.1380 0.0794 5979 Si II 0.0022-0.1500 0.0020 6300 [O I] 0.0096-0.1900 0.0084 6312 [S III] 0.0134-0.1900 0.0118 6348+71 Si II 0.0033-0.1950 0.0029 6363 [O I] 0.0033-0.1950 0.0029 6548 [N II] 0.3629-0.2180 0.3134 6563 Halpha 3.3514-0.2200 2.8907 6583 [N II] 1.1308-0.2220 0.9741 6678 He I 0.0270-0.2330 0.0231 6716 [S II] 0.1611-0.2380 0.1373 6731 [S II] 0.1576-0.2390 0.1342 7075 He I 0.0260-0.2780 0.0216 7136 [Ar III] 0.0807-0.2860 0.0666

3. Data Reduction Analysis 87 Table 3.50. Observed and Extinction Corrected Line Ratios: 16west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0895 0.1450 0.0934 4069+76 [SII] 0.0179 0.1220 0.0185 4102 H I 0.2297 0.1170 0.2377 4340 Hgama 0.4625 0.0860 0.4742 4363 [O III] 0.0060 0.0820 0.0061 4471 He I 0.0361 0.0640 0.0368 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5152-0.0150 0.5130 5007 [O III] 1.5721-0.0220 1.5621 5199 [N I] 0.0061-0.0520 0.0060 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0037-0.0930 0.0036 5538 [Cl III] 0.0050-0.0960 0.0049 5755 [N II] 0.0086-0.1230 0.0083 5876 He I 0.1131-0.1380 0.1086 5979 Si II 0.0009-0.1500 0.0009 6300 [O I] 0.0186-0.1900 0.0176 6312 [S III] 0.0148-0.1900 0.0140 6348+71 Si II 0.0039-0.1950 0.0037 6363 [O I] 0.0080-0.1950 0.0076 6548 [N II] 0.2678-0.2180 0.2513 6563 Halpha 3.0821-0.2200 2.8906 6583 [N II] 0.8996-0.2220 0.8432 6678 He I 0.0316-0.2330 0.0295 6716 [S II] 0.1691-0.2380 0.1578 6731 [S II] 0.1600-0.2390 0.1492 7075 He I 0.0295-0.2780 0.0272 7136 [Ar III] 0.1077-0.2860 0.0991

3. Data Reduction Analysis 88 Table 3.51. Observed and Extinction Corrected Line Ratios: 17 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0849 0.1450 0.0855 4069+76 [SII] 0.0187 0.1220 0.0188 4102 H I 0.2293 0.1170 0.2306 4340 Hgama 0.4694 0.0860 0.4714 4363 [O III] 0.0049 0.0820 0.0049 4471 He I 0.0294 0.0640 0.0295 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.3970-0.0150 0.3967 5007 [O III] 1.1914-0.0220 1.1901 5199 [N I] 0.0097-0.0520 0.0097 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0037-0.0930 0.0037 5538 [Cl III] 0.0034-0.0960 0.0034 5755 [N II] 0.0072-0.1230 0.0072 5876 He I 0.0912-0.1380 0.0906 5979 Si II 0.0018-0.1500 0.0018 6300 [O I] 0.0074-0.1900 0.0073 6312 [S III] 0.0115-0.1900 0.0114 6348+71 Si II 0.0033-0.1950 0.0033 6363 [O I] 0.0030-0.1950 0.0030 6548 [N II] 0.2808-0.2180 0.2778 6563 Halpha 2.9226-0.2200 2.8906 6583 [N II] 0.8973-0.2220 0.8874 6678 He I 0.0257-0.2330 0.0254 6716 [S II] 0.1375-0.2380 0.1359 6731 [S II] 0.1136-0.2390 0.1123 7075 He I 0.0254-0.2780 0.0250 7136 [Ar III] 0.0802-0.2860 0.0791

3. Data Reduction Analysis 89 Table 3.52. Observed and Extinction Corrected Line Ratios: 18 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0632 0.1450 4069+76 [SII] 0.0124 0.1220 4102 H I 0.2166 0.1170 4340 Hgama 0.4480 0.0860 4363 [O III] 0.0035 0.0820 4471 He I 0.0286 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.4018-0.0150 5007 [O III] 1.2553-0.0220 5199 [N I] 0.0080-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0046-0.0930 5538 [Cl III] 0.0036-0.0960 5755 [N II] 0.0069-0.1230 5876 He I 0.0941-0.1380 5979 Si II 1.1482-0.1500 6300 [O I] 0.0102-0.1900 6312 [S III] 0.0101-0.1900 6348+71 Si II 0.0020-0.1950 6363 [O I] 0.0018-0.1950 6548 [N II] 0.2566-0.2180 6563 Halpha 2.7500-0.2200 6583 [N II] 0.8291-0.2220 6678 He I 0.0238-0.2330 6716 [S II] 0.1289-0.2380 6731 [S II] 0.1109-0.2390 7075 He I 0.0243-0.2780 7136 [Ar III] 0.0821-0.2860

3. Data Reduction Analysis 90 Table 3.53. Observed and Extinction Corrected Line Ratios: 19east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4465 0.0860 0.4567 4363 [O III] 0.0820 4471 He I 0.0254 0.0640 0.0258 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5386-0.0150 0.5365 5007 [O III] 1.6483-0.0220 1.6390 5199 [N I] 0.0258-0.0520 0.0254 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0078-0.0930 0.0076 5538 [Cl III] 0.0038-0.0960 0.0037 5755 [N II] 0.0097-0.1230 0.0094 5876 He I 0.0930-0.1380 0.0897 5979 Si II 0.0018-0.1500 0.0017 6300 [O I] 0.0106-0.1900 0.0101 6312 [S III] 0.0146-0.1900 0.0139 6348+71 Si II 0.0078-0.1950 0.0074 6363 [O I] 0.0036-0.1950 0.0034 6548 [N II] 0.3300-0.2180 0.3116 6563 Halpha 3.0635-0.2200 2.8910 6583 [N II] 0.9704-0.2220 0.9152 6678 He I 0.0261-0.2330 0.0245 6716 [S II] 0.2058-0.2380 0.1933 6731 [S II] 0.1801-0.2390 0.1691 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 91 Table 3.54. Observed and Extinction Corrected Line Ratios: 19west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4707 0.0860 4363 [O III] 0.0820 4471 He I 0.0136 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.2526-0.0150 5007 [O III] 0.7533-0.0220 5199 [N I] 0.0159-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0048-0.0930 5538 [Cl III] 0.0035-0.0960 5755 [N II] 0.0112-0.1230 5876 He I 0.0483-0.1380 5979 Si II 0.0015-0.1500 6300 [O I] 0.0095-0.1900 6312 [S III] 0.0133-0.1900 6348+71 Si II 0.0062-0.1950 6363 [O I] 0.0031-0.1950 6548 [N II] 0.4166-0.2180 6563 Halpha 2.8209-0.2200 6583 [N II] 1.1991-0.2220 6678 He I 0.0118-0.2330 6716 [S II] 0.2715-0.2380 6731 [S II] 0.2087-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 92 Table 3.55. Observed and Extinction Corrected Line Ratios: 20 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0518 0.1450 4069+76 [SII] 0.0163 0.1220 4102 H I 0.2199 0.1170 4340 Hgama 0.4507 0.0860 4363 [O III] 0.0023 0.0820 4471 He I 0.0264 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.3333-0.0150 5007 [O III] 1.0306-0.0220 5199 [N I] 0.0080-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0039-0.0930 5538 [Cl III] 0.0030-0.0960 5755 [N II] 0.0076-0.1230 5876 He I 0.0932-0.1380 5979 Si II 0.0029-0.1500 6300 [O I] 0.0078-0.1900 6312 [S III] 0.0131-0.1900 6348+71 Si II 0.0052-0.1950 6363 [O I] 0.0026-0.1950 6548 [N II] 0.2885-0.2180 6563 Halpha 2.8145-0.2200 6583 [N II] 0.9386-0.2220 6678 He I 0.0243-0.2330 6716 [S II] 0.1489-0.2380 6731 [S II] 0.1202-0.2390 7075 He I 0.0212-0.2780 7136 [Ar III] 0.0752-0.2860

3. Data Reduction Analysis 93 Table 3.56. Observed and Extinction Corrected Line Ratios: 21 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0493 0.1450 4069+76 [SII] 0.0097 0.1220 4102 H I 0.2131 0.1170 4340 Hgama 0.4477 0.0860 4363 [O III] 0.0027 0.0820 4471 He I 0.0195 0.0640 4861 Hbeta 0.0000 4959 [O III] 0.2545-0.0150 5007 [O III] 0.7797-0.0220 5199 [N I] 0.0107-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0038-0.0930 5538 [Cl III] 0.0028-0.0960 5755 [N II] 0.0091-0.1230 5876 He I 0.0662-0.1380 5979 Si II -0.1500 6300 [O I] 0.0135-0.1900 6312 [S III] 0.0123-0.1900 6348+71 Si II 0.0037-0.1950 6363 [O I] 0.0038-0.1950 6548 [N II] 0.3378-0.2180 6563 Halpha 2.7938-0.2200 6583 [N II] 1.1205-0.2220 6678 He I 0.0172-0.2330 6716 [S II] 0.2188-0.2380 6731 [S II] 0.1741-0.2390 7075 He I 0.0149-0.2780 7136 [Ar III] 0.0457-0.2860

3. Data Reduction Analysis 94 Table 3.57. Observed and Extinction Corrected Line Ratios: 22 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0514 0.1450 4069+76 [SII] 0.0111 0.1220 4102 H I 0.2189 0.1170 4340 Hgama 0.4529 0.0860 4363 [O III] 0.0044 0.0820 4471 He I 0.0163 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.2866-0.0150 5007 [O III] 0.8889-0.0220 5199 [N I] 0.0143-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0041-0.0930 5538 [Cl III] 0.0051-0.0960 5755 [N II] 0.0096-0.1230 5876 He I 0.0557-0.1380 5979 Si II -0.1500 6300 [O I] 0.0182-0.1900 6312 [S III] 0.0111-0.1900 6348+71 Si II 0.0016-0.1950 6363 [O I] 0.0063-0.1950 6548 [N II] 0.3407-0.2180 6563 Halpha 2.8103-0.2200 6583 [N II] 1.1507-0.2220 6678 He I 0.0199-0.2330 6716 [S II] 0.2585-0.2380 6731 [S II] 0.2003-0.2390 7075 He I 0.0143-0.2780 7136 [Ar III] 0.0447-0.2860

3. Data Reduction Analysis 95 Table 3.58. Observed and Extinction Corrected Line Ratios: 23 Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.0474 0.1450 4069+76 [SII] 0.0234 0.1220 4102 H I 0.2105 0.1170 4340 Hgama 0.4456 0.0860 4363 [O III] 0.0045 0.0820 4471 He I 0.0180 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.4049-0.0150 5007 [O III] 1.2159-0.0220 5199 [N I] 0.0252-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0103-0.1230 5876 He I 0.0627-0.1380 5979 Si II -0.1500 6300 [O I] 0.0178-0.1900 6312 [S III] 0.0077-0.1900 6348+71 Si II 0.0019-0.1950 6363 [O I] 0.0049-0.1950 6548 [N II] 0.2958-0.2180 6563 Halpha 2.6165-0.2200 6583 [N II] 0.9903-0.2220 6678 He I 0.0132-0.2330 6716 [S II] 0.2605-0.2380 6731 [S II] 0.1957-0.2390 7075 He I 0.0190-0.2780 7136 [Ar III] 0.0512-0.2860

3. Data Reduction Analysis 96 Table 3.59. Observed and Extinction Corrected Line Ratios: 24north Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4336 0.0860 0.4649 4363 [O III] 0.0080 0.0820 0.0086 4471 He I 0.0396 0.0640 0.0417 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.8206-0.0150 0.8107 5007 [O III] 2.5383-0.0220 2.4934 5199 [N I] 0.0027-0.0520 0.0026 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0042 5538 [Cl III] 0.0044-0.0960 0.0041 5755 [N II] 0.0074-0.1230 0.0067 5876 He I 0.1447-0.1380 0.1294 5979 Si II 0.0012-0.1500 0.0011 6300 [O I] 0.0076-0.1900 0.0065 6312 [S III] 0.0174-0.1900 0.0149 6348+71 Si II 0.0031-0.1950 0.0026 6363 [O I] 0.0025-0.1950 0.0021 6548 [N II] 0.2652-0.2180 0.2222 6563 Halpha 3.4552-0.2200 2.8906 6583 [N II] 0.6930-0.2220 0.5788 6678 He I 0.0399-0.2330 0.0330 6716 [S II] 0.0671-0.2380 0.0553 6731 [S II] 0.0892-0.2390 0.0735 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 97 Table 3.60. Observed and Extinction Corrected Line Ratios: 24south Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4643 0.0860 4363 [O III] 0.0039 0.0820 4471 He I 0.0344 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.5154-0.0150 5007 [O III] 1.5179-0.0220 5199 [N I] 0.0096-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0048-0.0930 5538 [Cl III] 0.0034-0.0960 5755 [N II] 0.0077-0.1230 5876 He I 0.1080-0.1380 5979 Si II 0.0016-0.1500 6300 [O I] 0.0224-0.1900 6312 [S III] 0.0136-0.1900 6348+71 Si II 0.0034-0.1950 6363 [O I] 0.0087-0.1950 6548 [N II] 0.2799-0.2180 6563 Halpha 2.8049-0.2200 6583 [N II] 0.7663-0.2220 6678 He I 0.0271-0.2330 6716 [S II] 0.1398-0.2380 6731 [S II] 0.1144-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 98 Table 3.61. Observed and Extinction Corrected Line Ratios: 25north Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4594 0.0860 0.4649 4363 [O III] 0.0113 0.0820 0.0114 4471 He I 0.0306 0.0640 0.0309 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.4947-0.0150 0.4937 5007 [O III] 1.5042-0.0220 1.4996 5199 [N I] 0.0137-0.0520 0.0136 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 0.0044 5538 [Cl III] 0.0034-0.0960 0.0034 5755 [N II] 0.0082-0.1230 0.0081 5876 He I 0.1077-0.1380 0.1057 5979 Si II 0.0017-0.1500 0.0017 6300 [O I] 0.0157-0.1900 0.0153 6312 [S III] 0.0131-0.1900 0.0128 6348+71 Si II 0.0047-0.1950 0.0046 6363 [O I] 0.0049-0.1950 0.0048 6548 [N II] 0.3116-0.2180 0.3024 6563 Halpha 2.9798-0.2200 2.8907 6583 [N II] 0.8780-0.2220 0.8515 6678 He I 0.0313-0.2330 0.0303 6716 [S II] 0.1783-0.2380 0.1725 6731 [S II] 0.1496-0.2390 0.1447 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 99 Table 3.62. Observed and Extinction Corrected Line Ratios: 25south Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4650 0.0860 4363 [O III] 0.0022 0.0820 4471 He I 0.0270 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.2998-0.0150 5007 [O III] 0.9073-0.0220 5199 [N I] 0.0102-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0045-0.0930 5538 [Cl III] 0.0042-0.0960 5755 [N II] 0.0095-0.1230 5876 He I 0.0822-0.1380 5979 Si II 0.0010-0.1500 6312 [S III] 0.0112-0.1900 6348+71 Si II 0.0039-0.1950 6548 [N II] 0.3651-0.2180 6563 Halpha 2.7883-0.2200 6583 [N II] 1.0522-0.2220 6678 He I 0.0215-0.2330 6716 [S II] 0.1841-0.2380 6731 [S II] 0.1386-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 100 Table 3.63. Observed and Extinction Corrected Line Ratios: 26north Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4650 0.0860 4363 [O III] 0.0820 4471 He I 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.3240-0.0150 5007 [O III] 0.9889-0.0220 5199 [N I] 0.0146-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0057-0.0930 5538 [Cl III] 0.0034-0.0960 5755 [N II] 0.0094-0.1230 5876 He I 0.0535-0.1380 5979 Si II 0.0014-0.1500 6300 [O I] -0.1900 6312 [S III] -0.1900 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3999-0.2180 6563 Halpha 2.6999-0.2200 6583 [N II] 1.1219-0.2220 6678 He I 0.0136-0.2330 6716 [S II] 0.2945-0.2380 6731 [S II] 0.2188-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 101 Table 3.64. Observed and Extinction Corrected Line Ratios: 26south Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4580 0.0860 4363 [O III] 0.0820 4471 He I 0.0333 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.2938-0.0150 5007 [O III] 0.8880-0.0220 5199 [N I] 0.0069-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0033-0.0930 5538 [Cl III] 0.0030-0.0960 5755 [N II] 0.0092-0.1230 5876 He I 0.0946-0.1380 5979 Si II -0.1500 6300 [O I] -0.1900 6312 [S III] -0.1900 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3885-0.2180 6563 Halpha 2.7924-0.2200 6583 [N II] 1.0567-0.2220 6678 He I 0.0258-0.2330 6716 [S II] 0.1961-0.2380 6731 [S II] 0.1451-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 102 Table 3.65. Observed and Extinction Corrected Line Ratios: 27east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4591 0.0860 4363 [O III] 0.0040 0.0820 4471 He I 0.0391 0.0640 4861 Hbeta 1.0000 0.0000 4959 [O III] 0.3675-0.0150 5007 [O III] 1.1106-0.0220 5199 [N I] 0.0084-0.0520 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0040-0.0930 5538 [Cl III] 0.0033-0.0960 5755 [N II] 0.0093-0.1230 5876 He I 0.1193-0.1380 5979 Si II 0.0016-0.1500 6300 [O I] 0.0133-0.1900 6312 [S III] 0.0136-0.1900 6348+71 Si II 0.0037-0.1950 6363 [O I] 0.0044-0.1950 6548 [N II] 0.3243-0.2180 6563 Halpha 2.8700-0.2200 6583 [N II] 0.0010-0.2220 6678 He I 0.0340-0.2330 6716 [S II] 0.2547-0.2380 6731 [S II] 0.2104-0.2390 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 103 Table 3.66. Observed and Extinction Corrected Line Ratios: 27west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4508 0.0860 0.4514 4363 [O III] 0.0051 0.0820 0.0051 4471 He I 0.0305 0.0640 0.0305 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.2955-0.0150 0.2954 5007 [O III] 0.8943-0.0220 0.8940 5199 [N I] 0.0142-0.0520 0.0142 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0048-0.0930 0.0048 5538 [Cl III] 0.0034-0.0960 0.0034 5755 [N II] 0.0125-0.1230 0.0125 5876 He I 0.1041-0.1380 0.1039 5979 Si II 0.0012-0.1500 0.0012 6300 [O I] 0.0241-0.1900 0.0240 6312 [S III] 0.0146-0.1900 0.0146 6348+71 Si II 0.0037-0.1950 0.0037 6363 [O I] 0.0086-0.1950 0.0086 6548 [N II] 0.4457-0.2180 0.4442 6563 Halpha 2.9002-0.2200 2.8907 6583 [N II] 1.2522-0.2220 1.2480 6678 He I 0.0326-0.2330 0.0325 6716 [S II] 0.3772-0.2380 0.3759 6731 [S II] 0.2836-0.2390 0.2826 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 104 Table 3.67. Observed and Extinction Corrected Line Ratios: 28east Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4524 0.0860 0.4589 4363 [O III] 0.0820 4471 He I 0.0242 0.0640 0.0245 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.2811-0.0150 0.2804 5007 [O III] 0.0849-0.0220 0.0846 5199 [N I] 0.0236-0.0520 0.0234 5261+70+73 [Fe II] -0.0650 5518 [Cl III] 0.0044-0.0930 0.0043 5538 [Cl III] 0.0026-0.0960 0.0026 5755 [N II] 0.0132-0.1230 0.0129 5876 He I 0.0773-0.1380 0.0755 5979 Si II -0.1500 6300 [O I] 0.0269-0.1900 0.0261 6312 [S III] 0.0144-0.1900 0.0140 6348+71 Si II 0.0076-0.1950 0.0074 6363 [O I] 0.0092-0.1950 0.0089 6548 [N II] 0.4496-0.2180 0.4336 6563 Halpha 2.9982-0.2200 2.8907 6583 [N II] 1.3960-0.2220 1.3455 6678 He I -0.2330 6716 [S II] 0.4719-0.2380 0.4536 6731 [S II] 0.3658-0.2390 0.3516 7075 He I -0.2780 7136 [Ar III] -0.2860

3. Data Reduction Analysis 105 Table 3.68. Observed and Extinction Corrected Line Ratios: 28west Region [λ (Å)] Ion [F(line)/F(Hβ)] f λ I λ 3869 Ne[III] 0.1450 4069+76 [SII] 0.1220 4102 H I 0.1170 4340 Hgama 0.4219 0.0860 0.4395 4363 [O III] 0.0113 0.0820 0.0118 4471 He I 0.0319 0.0640 0.0329 4861 Hbeta 1.0000 0.0000 1.0000 4959 [O III] 0.5414-0.0150 0.5375 5007 [O III] 1.6482-0.0220 1.6310 5199 [N I] 0.0309-0.0520 0.0301 5261+70+73 [Fe II] -0.0650 5518 [Cl III] -0.0930 5538 [Cl III] -0.0960 5755 [N II] 0.0091-0.1230 0.0086 5876 He I 0.1049-0.1380 0.0982 5979 Si II -0.1500 6300 [O I] -0.1900 6312 [S III] -0.1900 6348+71 Si II -0.1950 6363 [O I] -0.1950 6548 [N II] 0.3302-0.2180 0.2976 6563 Halpha 3.2101-0.2200 2.8907 6583 [N II] 0.9838-0.2220 0.8851 6678 He I -0.2330 6716 [S II] 0.3014-0.2380 0.2691 6731 [S II] 0.2316-0.2390 0.2067 7075 He I -0.2780 7136 [Ar III] -0.2860

4. Results of Temperatures and Densities Derived From TEMDEN We will explain the iteration process in the IRAF task TEMDEN. This iteration process allows us to calculated the electron temperature and density for each sample. The iteration process calculates the electron temperatures of [N II] and [O III] and the electron densities of [S II] and [Cl III] for each sample. We will adopt the nomenclature of T e as electron temperature and N e as electron density. 4.1 Explanation of TEMDEN Temperature and densities were calculated with the IRAF task TEMDEN. TEMDEN is one of the most important task we used in IRAF. This IRAF package is located in STSDAS.analysis.nebular. TEMDEN calculates electron temperature or density from diagnostic line ratios. We calculated line ratios using the task splot; the results of the calculations are in Tables (1.6-1.70). This task requires the input of reddeningcorrected line ratios (Equation 1.44), name and spectrum of the atom, and an assumed value for the quantity not being calculated. The input parameters are as such: option is the quantity to be calculated either temperature or density; flux ratio are determined by the ratios specified below for temperature and density (Table 2.1); atom is either nitrogen, oxygen, sulfur, or chlorine; spectrum is the atomic spectrum number of each atom (e.g., [N II]=2, [S II]=2, [Cl III]=3,[O III]=3); result will either be density or temperature. 1 Electron temperatures and electron densities are directly dependent upon one another. We recall from equation (2.20) temperature was the only variable. To calculate (2.21) for [O III] and (2.22) for [N II] the corrections terms must be calculated from equation (2.34) and (2.35). These correction terms are dependent upon 1 (http://iraf.noao.edu/scripts/irafhelp?temden, 2010)

4. Results of Temperatures and Densities Derived From TEMDEN 107 electron temperature and density. Figure (2.14) indicates as the emissivity ratio increases the electron temperature will decrease. From the emissivity of ratio [S II] and [Cl III] we are able to determine densities, thus being able to determine the electron temperature of [N II] and [O III]. The emissivity of [S II] and [Cl III] must be calculated to determine the electron temperature of [NII] and from the electron density of [Cl III] the electron temperature of [O III] can be determined. Due to this dependence of temperature and density there are iteration processes that occur. To calculate the temperature of [N II] or [O III] the density of [S II] and [Cl III] must be used. For electron density of [S II] the ratio of I(6716)/I(6731) must be calculated and the ratio of I(5517)/I(5537) for [Cl III]. Electron temperature ratio of [N II] is I[6548+6583]/I(5755) and for [O III] the ratio is I(4959+5007)/I(4363).

4. Results of Temperatures and Densities Derived From TEMDEN 108 Table 4.1. Flux Ratios of [N II], [O III], [Cl III], [S II] for TEMDEN Sample Name [N II] [O III] [Cl III] [S II] I(6548+6583)/I(5755) I(4959+5007)/I(4363) I(5517)/I(5537) I(6716)/I(6731) 1east 161.66 65.72 0.9091 1.0968 1west 95.74 286.91 0.8333 0.9445 1westED 98.47 598.64 0.8750 0.9524 2east 83.30 241.87 0.3418 1.0750 2mid 116.54 317.38 1.2500 0.9659 2west 137.54 402.96 1.1081 1.0216 3east 88.39 353.79 1.3256 0.9752 3mid 115.57 340.54 1.1842 0.8770 3west 137.12 429.21 0.9487 0.9989 4east 107.90 204.26 0.8810 0.7763 4mid 116.04 453.85 1.0526 0.8417 4west 116.88 326.65 0.9070 0.9333 4midED 110.39 356.25 1.3235 0.8648 5east 123.97 0.7749 5mid 113.36 311.40 1.0882 0.7664 5west 143.35 333.80 0.6296 0.9025 6east 88.77 217.90 1.0625 6mid 105.76 356.01 1.0238 0.7062 6west 128.01 391.19 1.0000 0.9053 6midED 98.72 422.34 1.0732 0.7172 7east 176.71 391.08 0.7310 7mid 85.23 389.67 0.7778 0.6549 7west 108.55 434.01 0.9750 0.8032 7midED 85.65 402.12 0.8776 0.6702 8east 133.82 0.8198 8mid 83.46 351.05 0.9348 0.6318 8west 124.96 331.86 0.6406 0.7512 9eastED 107.84 271.05 0.8333 0.7544 9midED 82.35 424.67 0.9200 0.5681 9westED 127.80 550.66 1.1579 1.0159 10east 126.16 471.17 1.2286 0.7616

4. Results of Temperatures and Densities Derived From TEMDEN 109 Table 4.1 (cont d) Sample Name [N II] [O III] [Cl III] [S II] I(6548+6583)/I(5755) I(4959+5007)/I(4363) I(5517)/I(5537) I(6716)/I(6731) 10mid 63.32 413.03 0.7778 0.5953 10west 107.47 475.28 0.8140 0.7674 10midED 61.24 374.07 0.8696 0.5653 11east 108.45 327.73 1.0513 0.8302 11mid 76.14 450.68 0.7143 0.6133 11west 125.82 529.10 0.6222 0.1056 12east 162.75 350.07 1.2759 0.8425 12mid 94.67 503.74 0.8810 0.6520 12west 119.13 504.45 0.6875 0.8698 12eastED 162.06 303.40 1.5769 0.9135 12midED 96.39 561.29 0.8780 0.6516 13east 138.03 410.36 0.8649 0.8568 13mid 103.83 456.81 0.8478 0.7233 13west 131.53 361.73 0.6190 0.8404 13eastED 153.10 390.03 0.8421 0.8671 13westED 120.20 461.86 0.7500 0.8628 14east 170.40 392.34 1.1515 0.9480 14mid 115.46 405.73 1.3714 0.7827 14west 132.68 519.62 1.0000 0.9385 14eastED 148.22 407.38 1.3793 0.9754 15east 151.82 371.30 1.2333 1.0130 15mid 136.49 389.31 1.3750 0.9149 15west 142.80 367.52 1.0244 0.9275 15eastED 172.16 324.05 1.2424 0.9972 15westED 144.50 402.13 1.0238 0.9423 16east 161.51 255.92 1.3333 1.0668 16mid 144.66 391.97 1.1714 1.0231 16west 122.19 336.33 0.9474 1.0430 16westED 131.87 340.18 0.7347 1.0576 17 161.25 398.08 1.1944 1.1846 17ED 161.83 323.84 1.0882 1.2102

4. Results of Temperatures and Densities Derived From TEMDEN 110 Table 4.1 (cont d) Sample Name [N II] [O III] [Cl III] [S II] I(6548+6583)/I(5755) I(4959+5007)/I(4363) I(5517)/I(5537) I(6716)/I(6731) 18ED 157.35 473.46 1.2778 1.1623 19east 130.51 2.0541 1.1431 19west 144.26 1.3714 1.3009 20 161.46 593.00 1.3000 1.2388 21 160.25 383.04 1.3571 1.2567 22 155.35 267.16 0.8039 1.2906 23 124.86 360.18 1.3311 24northED 119.55 384.17 1.0244 0.7524 24southED 135.87 521.36 1.4118 1.2220 25northED 142.46 174.85 1.2911 1.1921 25southED 149.19 548.68 1.0714 1.3283 26north 161.89 1.3460 26south 157.09 1.1000 1.3515 27east 138.19 640.87 1.2941 1.2189 27west 135.38 233.22 1.4118 1.3301 27eastED 34.98 369.53 1.2121 1.2106 28east 137.91 1.2901 28west 137.52 183.77 1.3019

4. Results of Temperatures and Densities Derived From TEMDEN 111 The first step in this iteration process is to calculate the electron temperature of nitrogen. We must first guess an electron density for nitrogen; the output would be the first electron temperature of nitrogen, T e ([N II]) 1. T e ([N II]) Guess at [N II] T e ([N II]) 1 (4.1) For 2mid we guessed an electron density of 2400/cm 3 the output was an electron temperature of 9039.1 K. Step two is to calculate the electron density of [S II]. Using 9039.1 K as the T e ([N II]) 1 value, our output is 671.58/cm 3 for the N e ([S II]) 1. N e ([S II]) T e ([N II]) 1 N e ([S II]) 1 (4.2) Step 3 is to calculate electron density of [Cl III]. Again also using 9039.1 K as the T e ([N II]) 1 value, our output is 794.415/cm 3. N e ([Cl III]) T e ([N II]) 1 N e ([Cl III]) 1 (4.3) Next we took an average of N e ([S II]) 1 and N e ([Cl III]) 1. The sum will be used to calculate the second electron temperature of [N II], T e ([N II]) 2. T e ([N II]) Avg. N e ([S II]) 1 and N e ([Cl III]) 1 T e ([N II]) 2 (4.4) Step 4 is to take the average of N e ([S II]) 1 and N e ([Cl III]) 1. The result is 732.998/cm 3 and the second electron temperature of [N II], becomes 9286.6K. Steps 2 and 3 are now repeated using the electron temperature of [N II] 2.

4. Results of Temperatures and Densities Derived From TEMDEN 112 Step 5 calculates the second electron density, N e ([S II]) 2 as 678.215/cm 3. N e ([S II]) T e ([N II]) 2 N e ([S II]) 2 (4.5) Step 6 calculates the new N e ([Cl III]) 2 as 794.722/cm 3 N e ([Cl III]) T e ([N II]) 2 N e ([Cl III]) 2 (4.6) Step 7 averages the values produced in step 5 and 6 to produce the third electron temperature, T e ([N II]) 3. The average of N e ([S II]) 2 and N e ([Cl III]) 2 is 736.469/cm 3, and the electron temperature of [N II] 3 is 9286.0 K. T e ([N II]) Avg. N e ([S II]) 2 and N e ([Cl III]) 2 T e ([N II]) 3 (4.7) The electron temperatures of [N II] have converged; T e ([N II]) 3 has now become T e ([N II]) final. This pattern is continued until T e ([N II]) converges with T e ([N II]) final. In this sample of 2mid only one iteration was calculated. To calculate N e ([S II]) final and N e ([Cl III]) final the T e ([N II]) final is used. The final electron density of [S II] is 678.215/cm 3. N e ([S II]) T e ([N II]) final N e ([S II]) final (4.8) The final electron density of [Cl III] is 794.722/cm 3. N e ([Cl III]) T e ([N II]) final N e ([Cl III]) final (4.9) The final step is to calculate the electron temperature of [O III] using the final electron

4. Results of Temperatures and Densities Derived From TEMDEN 113 temperature value of [Cl III]. The end result for T e ([O III]) final is 8908.8 K. T e ([O III]) N e ([Cl III]) final T e ([O III]) final (4.10) If the [Cl III] doublet was too weak to get a flux ratio, then we only used the [S II] values for determining T e [N II] final and T e [O III] final. The [Cl III] doublet was too weak in 2east, 6east, 7east, 8east, 19east, 23, and 28west. Densities also could not be calculated for [Cl III] doublet ratio values more than 1.42, because any value beyond this is past the critical density. This occurred in 12east, 19east, 26north, and 29east. 4.2 Electron Temperatures and Densities Calculated from TEMDEN Before we were able to calculate the electron temperatures and densities using TEM- DEN we had to calculate the interstellar extinction correction, chβ from equation (2.45). Other corrections to the flux ratio values had to be made to correct for the error in the recorded slit. The slit width we expected was different from the observed slit width. A brief explanation of this is given in equation (4.11) after table (4.2).

4. Results of Temperatures and Densities Derived From TEMDEN 114 Table 4.2. Corrected Flux Values Sample Name F Hβ Values* Corrected F Hβ Values** Equivalent Width H β chβ 1east 4.192E-14 1.67428E-14 113.7 0.5125 1west 5.457E-15 2.17953E-15 168.1 0.3359 2east 3.184E-14 1.27169E-14 119.1 0.3631 2mid 2.041E-14 8.15175E-15 266.5 0.4241 2west 2.365E-13 9.44581E-14 396.3 0.1484 3east 5.629E-14 2.24822E-14 128.2 0.7281 3mid 3.025E-13 1.20819E-13 264.8 0.5339 3west 3.034E-13 1.21178E-13 153.0 0.1999 4east 1.052E-13 4.20169E-14 159.0 0.4820 4mid 4.12E-13 1.64553E-13 318.6 0.5354 4west 3.759E-13 1.50134E-13 364.8 0.2591 5east 4.76E-14 1.90154E-14 119.6 0.8529 5mid 5.572E-13 2.22546E-13 338.0 0.5765 5west 3.602E-13 1.43864E-13 400.6 0.2064 6east 7.108E-14 2.83894E-14 151.5 0.8659 6mid 6.950E-13 2.77583E-13 376.1 0.6937 6west 3.586E-13 1.43225E-13 348.2 0.2356 7east 1.537E-13 6.13878E-14 171.8 1.0771 7mid 1.318E-12 5.26409E-13 475.2 0.7097 7west 1.189E-13 4.74887E-14 142.5 0.2713 8east 1.189E-13 4.74887E-14 142.5 0.9753 8mid 1.690E-12 6.74986E-13 460.5 0.5957 8west 5.154E-13 2.05851E-13 384.2 0.2570 9east 7.5447E-13 3.01335E-13 266.8 0.9422 9mid 2.1835E-13 8.7209E-14 427.5 0.3324 9west 1.8324E-13 7.31861E-14 368.5 0.2147 10east 9.634E-15 3.84782E-15 381.7 0.4353 10mid 1.796E-12 7.17322E-13 471.4 0.5973 10west 5.555E-13 2.21867E-13 388.4 0.2933 11east 9.159E-13 3.6581E-13 322.1 0.4096 11mid 1.474E-12 5.88716E-13 481.6 0.5578 11west 4.502E-13 1.7981E-13 384.0 0.2566

4. Results of Temperatures and Densities Derived From TEMDEN 115 Table 4.2 (cont d) Sample Name F Hβ Values* Corrected F Hβ Values** Equivalent Width H β chβ 12east 4.34E-13 1.73459E-13 209.8 0.1868 12mid 1.366E-12 5.4558E-13 425.2 0.5999 12west 4.212E-13 1.68227E-13 400.5 0.3693 13east 4.902E-13 1.95786E-13 217.3 0.2187 13mid 9.045E-13 3.61257E-13 428.6 0.5376 13west 3.865E-13 1.54368E-13 432.9 0.3485 14east 3.677E-13 1.46859E-13 295.5 0.1725 14mid 4.611E-13 1.84163E-13 325.0 0.4569 14west 3.491E-13 1.39431E-13 449.3 0.2110 15east 3.324E-13 1.32761E-13 329.2 0.1789 15mid 2.777E-13 1.10913E-13 299.1 0.4191 15west 2.557E-13 1.02127E-13 376.2 0.2047 16east 2.492E-13 9.95305E-14 372.0 0.1262 16mid 1.71E-13 6.84172E-14 274.7 0.2919 16west 1.145E-13 4.57313E-14 256.1 0.1266 17 5.957E-14 2.37923E-14 230.8 0.0217 18 6.571E-14 2.62446E-14 251.0 0.0000 19east 2.943E-14 1.17543E-14 157.1 0.1146 19west 3.701E-14 1.47818E-14 281.4 0.0000 20 5.230E-14 2.08886E-14 294.7 0.0000 21 4.671E-14 1.8656E-14 295.2 0.0000 22 2.906E-14 1.16066E-14 253.0 0.0000 23 2.052E-14 8.19569E-15 209.9 0.0000 24north 7.0568E-13 2.81849E-13 348.2 0.3522 24south 5.17E-14 2.0655E-14 189.3 0.3522 25north 8.1680E-14 3.2623E-14 176.4 0.0599 25south 2.5863E-14 1.03297E-14 126.8 0.0000 26north 1.173E-14 4.68496E-15 30.9 0.0000 26south 2.963E-14 1.18342E-14 83.9 0.0000 27east 5.979E-14 2.38801E-14 399.6 0.0000 27west 4.048E-14 1.61677E-14 373.3 0.0065 28east 2.816E-14 1.12471E-14 478.0 0.0721

4. Results of Temperatures and Densities Derived From TEMDEN 116 Table 4.2 (cont d) Sample Name F Hβ Values* Corrected F Hβ Values** Equivalent Width H β chβ 28west 1.171E-14 4.67697E-15 265.4 0.2069 Note. *F Hβ is in units of erg cm 2 s 1 pixel. **The corrected F Hβ is in units of erg cm 2 s 1 arcsec 2.

4. Results of Temperatures and Densities Derived From TEMDEN 117 The conversion of F Hβ values to corrected F Hβ values in table (4.2) is 1 1.35 = 0.3994 (4.11) 2.6 1.3 One pixel on slit is equivalent to 2.6 arcsec in width and one pixel on detector is equivalent to the height along the slit. The 2.6 arcsecs was the expected slit width and 1.3 acrsecs was the true height of slit. The true slit width was 1.93 arcsecs and 1.35 arcsec is the slit measurement we did not expect.

4. Results of Temperatures and Densities Derived From TEMDEN 118 Table 4.3. Electron Temperatures and Densities* Sample Name T e [N II] T e [O III] N e [S II] N e [Cl III] 1east 8116 15420 380 3440 1west 9650 7580 730 4050 2east 10690 9620 450 2mid 9290 8910 680 800 2west 8690 8360 530 1630 3east 10400 8660 680 430 3mid 9270 8740 970 1150 3west 8600 8220 580 3020 4east 9260 10070 1490 3930 4mid 9480 8640 1030 450 4west 9060 8800 770 3560 5east 8960 1480 5mid 9240 8870 1560 1790 5west 8030 8690 830 10220 6east 10340 9920 470 6mid 9710 8260 2020 1920 6west 8830 8420 850 2510 7east 7900 8430 1740 7mid 10060 8340 2630 4040 7west 9340 8200 1330 2790 8east 8140 1190 8mid 10180 8650 3350 3290 8west 8400 8700 1610 9830 9east 9200 9260 1650 4660 9mid 10050 8240 5440 3460 9west 8950 7750 550 1310 10east 8940 8050 1580 900 10mid 11390 8500 5820 4250 10west 9190 8000 1550 5000 11east 9360 8820 1740 2080 11mid 10210 8080 3800 7490 11west 8350 7750 1130 10690

4. Results of Temperatures and Densities Derived From TEMDEN 119 Table 4.3 (cont d) Sample Name T e [N II] T e [O III] N e [S II] N e [Cl III] 12east 8260 9020 800 12mid 9570 7690 2890 3990 12west 8690 7860 980 8080 13east 8170 8400 960 4390 13mid 9330 8080 1930 4440 13west 8770 8040 1010 6300 14east 8560 8350 630 230 14mid 9300 8360 1450 250 14west 8730 7850 740 2510 15east 8460 9200 570 670 15mid 8790 8450 820 250 15west 8490 8360 720 2280 16east 8310 9460 430 420 16mid 8570 8420 520 1220 16west 8490 8690 450 6640 17 8230 8850 220 1750 18 8380 8040 280 660 19east 8970 300 19west 8670 120 260 20 8320 7620 180 560 21 8360 8480 160 320 22 8140 9300 130 5050 23 9150 8620 90 24north 9010 8460 1650 2300 24south 8860 5990 210 110 25north 8680 10620 240 600 25south 8460 7750 90 1890 26north 8350 80 26south 8330 70 1670 27east 17140 8560 250 950 27west 8880 9720 90 110 28east 8820 130

4. Results of Temperatures and Densities Derived From TEMDEN 120 Table 4.3 (cont d) Sample Name T e [N II] T e [O III] N e [S II] N e [Cl III] 28west 8830 10460 120. Note. *The units of electron temperature is K and of electron densities is cm 3

4. Results of Temperatures and Densities Derived From TEMDEN 121 Figure 4.1 Distance vs. Electron Temperatures of [N II] and [O III]

4. Results of Temperatures and Densities Derived From TEMDEN 122 Figure 4.2 Distance vs. Electron Densities of [S II] and [Cl III]

4. Results of Temperatures and Densities Derived From TEMDEN 123 Figure 4.3 Electron Temperature of [N II] on Gendler Image

4. Results of Temperatures and Densities Derived From TEMDEN 124 Figure 4.4 Electron Densities of [O III] on Gendler Image