Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

Similar documents
Nanophotonics: solar and thermal applications

Research Article Effect of Strain on Thermal Conductivity of Si Thin Films

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

Nanostrukturphysik (Nanostructure Physics)

Tungsten based Anisotropic Metamaterial as an Ultra-broadband Absorber

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

Supplementary Information

PLASMONICS/METAMATERIALS

Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

Research Article Size Effect and Material Property Effect of the Impactor on the Damage Modes of the Single-Layer Kiewitt-8 Reticulated Dome

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Absorption enhancement in double-sided nanocone hole arrays for solar cells

Ultra-Compact Metamaterial Absorber with Low-Permittivity Dielectric Substrate

Supplementary Information for Semiconductor Solar Superabsorbers

Engineering heavily doped silicon for broadband absorber in the terahertz regime

Effective Light Absorption Using the Double-sided Pyramid Gratings for Thin- Film Silicon Solar Cell

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

arxiv: v1 [physics.optics] 29 Jul 2014

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

Fundamentals of Light Trapping

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

FINITE DIFFERENCE TIME DOMAIN SIMULATION OF LIGHT TRAPPING IN A GaAs COMPLEX STRUCTURE

Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films

Research Article Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

Sub-wavelength electromagnetic structures

Research Article Visible Light Communication System Using Silicon Photocell for Energy Gathering and Data Receiving

Progress In Electromagnetics Research Letters, Vol. 42, 13 22, 2013

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes

Research Article Study of the Plasmon Energy Transfer Processes in Dye Sensitized Solar Cells

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

Graphene conductivity mapping by terahertz time-domain reflection spectroscopy

Quantum Dots for Advanced Research and Devices

Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Design and Characterization of a Dual-Band Metamaterial Absorber Based on Destructive Interferences

Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays

Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars

SUPPLEMENTARY INFORMATION

DIELECTRIC nanoparticles (NPs) have recently been proposed

Subcell misalignment in vertically cascaded metamaterial absorbers

Monolayer Black Phosphorus

Supporting Information:

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

Embedded metallic nanopatterns for enhanced optical absorption

A POLARIZATION-INDEPENDENT WIDE-ANGLE DUAL DIRECTIONAL ABSORPTION METAMATERIAL AB- SORBER

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

Plasmonic metamaterial as broadband absorptive linear polarizer

Metamaterials & Plasmonics

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Electronic Supplementary Information for

Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain

Photonics Beyond Diffraction Limit:

Supplementary Figure 1 SEM images and corresponding Fourier Transformation of nanoparticle arrays before pattern transfer (left), after pattern

Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

Research Article Effect of the on/off Cycling Modulation Time Ratio of C 2 H 2 /SF 6 Flows on the Formation of Geometrically Controlled Carbon Coils

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Strong Absorption in a 2D Materials-based Spiral Nanocavity

Light Concentration in Polymer Bulk Heterojunction Solar Cells with Plasmonic Nanoparticles

Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids

Research Article Design and Fabrication of the Large Thrust Force Piezoelectric Actuator

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

Supporting Infromation

Substantial influence on solar energy harnessing ability by geometries of ordered Si nanowire array

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Nanocomposite photonic crystal devices

Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position

Homogenous Optic-Null Medium Performs as Optical Surface Transformation

Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Electronic Supplementary Information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

Organic Solar Cell: Optics in Smooth and Pyramidal Rough Surface

Broadband Absorption in the Cavity Resonators with Changed Order

Research Article The Magnetic Nanoparticle Movement in Magnetic Fluid Characterized by the Laser Dynamic Speckle Interferometry

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

photonic crystals School of Space Science and Physics, Shandong University at Weihai, Weihai , China

Research Article Performance Analysis of γ-radiation Test Monitor Using Monocrystalline n+pp++ Silicon Solar Cell: CsI(Tl) Scintillator

arxiv: v1 [physics.optics] 1 May 2011

Chapter 7. Solar Cell

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Large-area omnidirectional antireflection coating on low-index materials

Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure

Nanostrukturphysik (Nanostructure Physics)

Leaky Mode Engineering: A General Design Principle for Dielectric Optical. Antenna Solar Absorbers

Plasmon-suppressed vertically-standing nanometal structures

Supplementary Information Supplementary Figures

Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability

Transcription:

Nanomaterials, Article ID 893202, 5 pages http://dx.doi.org/0.55/204/893202 Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect in Visible Regime Qi Han, Lei Jin, Yongqi Fu, and Weixing Yu 2,3 School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 60054, China 2 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 30033, China 3 Institute of Micro & Nano Optics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 58060, China Correspondence should be addressed to Qi Han; hanqi5@63.com Received 8 July 204; Accepted September 204; Published 23 December 204 Academic Editor: Fengzhou Fang Copyright 204 Qi Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report the broadband efficient light absorbing property of a structure of quadrangular frustum pyramid array in visible regime. The structure can absorb light efficiently with an average absorptivity of over the whole visible waveband. In addition, it is found that this kind of super light absorbing can maintain an average of for a wide incident angle range. The perfect absorbing property of the metamaterial-based nanoring array is attributed to the effect of the Fabry-Perot resonance. The structure is possible to be used as a type of Si photonics devices in future photonic circuits.. Introduction With the decrease of fossil fuel and the constant aggravation of pollution, solar energy is regarded as one of the most plenty sources of renewable energy and much effort has been made to develop highly efficient photovoltaic devices. Nanostructured photovoltaics promise simultaneously to increase the efficiency and decrease the cost of solar cells. Recently, various nanostructures including nanopillar, nanowire, nanocone, and nanohole arrays have been proven possessing unique optical and electronic characteristics for light absorbing and harvesting [ 0]. Tseng et al. demonstrated the enhancing light absorption property of Au nanorings due to their strong localized surface plasmon resonance [].Sturmbergetal.showedmodalanalysisofenhanced absorptionin siliconnanowirearrays [2]. These reports laid an academic foundation of optical absorption. Metamaterialbased structures have gained increasingly interest for the last decade due to their unique and extraordinary optical properties. Cui et al. recently reported a one-dimensional metamaterial-based saw-tooth shape absorber and it shows good absorptive property in middle infrared waveband [3]. More recently, a two-dimensional pyramidal shape metamaterial based absorber was developed, which shows the surprisingly high absorptive property in an extraordinary broad waveband ranging from near infrared to long infrared [4]. Most recently, a two-dimensional subwavelength metananopillar array was reported that can achieve an extraordinaryabsorptioninvisiblewaveband[5]. In addition, it was reported that the perfect absorption materials are useful for being used as refractory materials [6]. However, these structures are difficult to be produced in industry due to the complicated nanostructures and materials issue. Current solar cells are Si substrate-based absorption structure. The incorporation of nanostructures in silicon photovoltaics is of particular importance as these currently make up over 80% of the photovoltaic market due to silicon s low cost, natural abundance, and compatibility with mature fabrication techniques. Considering this, Si substrate-based structure is an important issue for designing photovoltaic structures. Dühring and Sigmund reported that Si-based nanowires are better than metals (Al, Ag, and Au) for optical absorption in visible regime [7]. We created a new Si substrate-based metamaterial which has ultrabroad waveband with high absorption in visible regime. Unique features of this proposed metamaterial structure and

2 Nanomaterials l A Ge h A Si l B h s Figure : Schematic diagram of quadrangular frustum pyramid absorber; cross-sectional view of a single quadrangular frustum pyramid. the corresponding physical mechanism of the light absorbing are presented and explained in below sections. 2. Computational Setup and Design A schematic diagram of the proposed quadrangular frustum pyramid array is shown in Figure. As can be seen from Figure, the structure with quadrangular frustum pyramid array is a two-dimensional periodic structure atop a Si thin film h s = 700 nm in thickness. For the quadrangular frustum pyramid array, its material is Ge. Germanium and silicon belong to indirect-gap materials, but germanium has lower band gap, resulting in photons with lower energy thatcanexciteelectronsfromvalencebandtoconduction band. It means that germanium material-based structures can increase optical absorptivity in broader band than silicon material. In the meanwhile, with the same energy photons excitation, more heat can be produced; higher temperature and higher photoelectric conversion efficiency are obtained in germanium structure. The top surface is square in which thesidelengthisl A =50nm;thebottomsurfaceisalsosquare with side length of h B = 30 nm. A single quadrangular frustum pyramid is h A = 900 nm in height. Filling factor of the pyramid is 425. It means that a single quadrangular frustum pyramid is constructed on a Si substrate which has side length of 200 nm. By employing finite-difference and time-domain (FDTD) algorithm, the absorptive spectrum of the quadrangular frustum pyramid array working in visible regime was calculated, as shown in Figure 2.Ascanbeseen,theaverageabsorptivity of the quadrangular frustum pyramid array in the whole visible waveband reaches as high as and has surpassed those solar energy absorbers reported before [ 5]. Then we discuss influence of several parameters while others are fixed. Figure2 shows the influence of Si substrate on absorptivity. It can be seen that with increasing of thickness, the average absorptivity increases as well. That means the deeper the Si substrate is, the better the absorptivity it can reach. For the large refractive index contrast between Ge and air, electromagnetic field can be coupled efficiently into the quadrangular frustum pyramids at Fabry-Perot resonances, resulting in a significant light-trapping ability boost. For quadrangular frustum pyramid array with small filling factor, apartoftheincidentlightcannotbecoupledintoquadrangularfrustumpyramidsbutisabsorbedinthesubstratethrough resonances. 3. Results and Analysis Prolonging the path of light can provide more times at Fabry- Perot resonances. That is to say, the longer the light path is, the higher the optical absorptivity will be. Figure 2(c) describes the influence of the height of Ge quadrangular frustum pyramid on absorptivity. It is found that the taller the quadrangular frustum pyramid is, the better the absorptivity it can reach. Figures 2(d)-2(e) display the influence of the length of top andbottomsurfacesonabsorptivity,respectively.ascanbe seen, the best association is that the length of the top and bottom surfaces is 50 nm and 0 nm, respectively. The base angle of the quadrangular frustum pyramid is 7.56. Figure 2 shows the superiorities of this structure. These parameters canbechangedinawiderange,buttheabsorptivitycan be kept in a similar high level. This is the reason that the structure can allow mechanical errors, and it consists of a Si substrateandagequadrangularfrustumpyramidarray.it is much easier than the other reported structures [3 5] for fabrication. To fully characterize the absorptivity of the quadrangular frustum pyramid array, the relations between the absorptivity and the wide waveband and the incident angle of incoming light were calculated, respectively. Figure 2(f) shows the absorptive spectrum in the waveband ranging from 200 nm to 000 nm. It is shown that although absorptivity drops

Nanomaterials 3.002 8 6 4 2 8 6 4 5 5 75 7 65 6 5 0.6 μm μm 0.8 μm μm μm.005 5 5 75 5 5 75 7 65 6 5 0.2 μm μm 0.5 μm μm 0.8 μm 2 μm 3 μm 4 μm 5 μm 6 μm 7 μm (c) (d) 7 6 0.8 0.6 0.5 4 200 400 600 800 000 9 μm 0. μm 0. μm 0.2 μm 0.3 μm (e) (f) Figure 2: spectra of the quadrangular frustum pyramid array under normal incident light for various parameters. Under the optimal conditions of l A =50nm, l B = 30 nm, h A = μm, and h s = μm. For the different height h A,whenl A =50nm, l B = 30 nm, and h s = μm. (c) For the different thickness h s,whenl A =50nm, l B = 30 nm, h A = μm (d) For the different length l A,when l B = 30 nm, h A = μm, and h s = μm. (e) For the different length l B,whenl A =50nm, h A = μm, and h s = μm. (f) spectra of the quadrangular frustum pyramid array with waveband from 200 nm to 000 nm.

4 Nanomaterials 0.85 0.85 0.8 0.8 5 5 20 30 40 50 60 70 80 20 30 40 50 60 70 80 Figure 3: Absorptive spectra of quadrangular frustum pyramid array under various angle. For different incident angles from 20 to 80. For different incident angles from 20 to 80. 0.6 0.3 0 4 8 0.2 0.6 0 4 8 0.2 0.6 0..0 0 4 8 0.2 0.6 0. (c) 0 4 8 0.2 0.6 (d) 0. Figure 4: Electric field distribution at y=0plane for different wavelengths. λ = 400 nm; λ = 500 nm; (c) λ = 600 nm; and (d) λ = 700 nm.

Nanomaterials 5 down in the case of λ > 780 nm, the average absorptivity in the ultrabroadband still remains up to. Particularly in the violet waveband, it displays extraordinary high absorptive performance. The extremely high absorptivity of the quadrangular frustum pyramid array over the ultrabroad waveband has the significant advantage in comparison with the pure Si nanowires absorber which can only keep high absorptivity in the quite narrow waveband ranging from 300 nm to 400 nm [8]. Figures 3 and 3 show the absorptive spectrum at various incident angles for TE and TM waves, respectively. As can be seen from the figures, the absorptivity keeps nearly unchanged in visible regime when incident angle changes from 30 to 80.Theabsorptivity drops rapidly when the incident angle is 20 in visible regime. The most important point is that the absorptivity keeps a high level: > in a wide angle range; that is, influence of the absorptivity is insensitive on incident angle in the wide visible regime. To our knowledge, this is the best result in comparison to all the reported absorbers so far. Forthepolarizationofincidentlight,itcanbeseen thattheabsorptivityhasnodifferenceinthesameincident light angle. We believe that polarization is unnecessary to be considered here. In microscopic optics, photons with the same energy can excite electron which has the same velocity to conduction band from valence band. In the meanwhile, with the same energy photons excitation, the same heat can be produced. There is no contribution for polarization to the program. To understand the physical mechanism of the ultrabroad wavebandofthequadrangularfrustumpyramidarray,the electric field distribution for different incident wavelengths is investigated, as shown in Figure 4. In our case, light is mainly absorbed on the top or edge of the quadrangular frustum pyramid. It may be attributed to Fabry-Perot resonance. Light istrappedatthetoporedgeofthequadrangularfrustum pyramid at Fabry-Perot resonance. Light with different wavelengths as different photons energy has different penetration depth. In short wavelength, most of light is absorbed in the quadrangular frustum pyramid array. With increasing of the wavelength, the Si-based substrate begins to contribute to the absorptivity. 4. Summary In summary, we have analyzed a two-dimensional periodic quadrangular frustum pyramid array which can achieve an averageabsorptivityashighasinthewholevisible waveband. The absorber can retain very high absorptivity in a wide incident angle range. This high light absorptivity of quadrangular frustum pyramid array is explained as the synergetic effect of Fabry-Perot resonance. With the vast demandofthesustainableandgreenenergynowadays,we believe that the proposed absorber will find its application in those areas related to solar energy harvesting. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [] L. He, C. Jiang, D. Rusli, and H. Wang, Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells, Applied Physics Letters,vol. 99, Article ID 0204, 20. [2] O.L.Muskens,J.G.Rivas,R.E.Algra,E.P.A.M.Bakkers,and A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Letters, vol. 8, no. 9, pp. 2638 2642, 2008. [3] J. Zhu, Z. Yu, G. F. Burkhart et al., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Letters, vol. 9, no.,pp. 279 282, 2009. [4] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications, Nanotechnology, vol. 9, Article ID 255703, 2008. [5]M.D.Kelzenberg,D.B.Turner-Evans,B.M.Kayesetal., Photovoltaic measurements in single-nanowire silicon solar cells, Nano Letters, vol. 8, no. 2, pp. 70 74, 2008. [6] T. Stelzner, M. Pietsch, G. Andrä,F.Falk,E.Ose,andS.Christiansen, Silicon nanowire-based solar cells, Nanotechnology, vol.9,no.29,articleid295203,2008. [7] J. Li, H. Yu, S. Wong et al., Si nanopillar array optimization on Si thin films for solar energy harvesting, Applied Physics Letters, vol. 95, Article ID 03302, 2009. [8] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen et al., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nature Nanotechnology, vol. 2, no. 2, pp. 770 774, 2007. [9] S. E. Han and G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics, Nano Letters, vol.0,no.3,pp.02 05,200. [0] C. Lin and M. L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Optics Express, vol. 7, no. 22, pp. 937 938, 2009. [] H.-Y. Tseng, C.-K. Lee, S.-Y. Wu et al., Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography, Nanotechnology, vol. 2, no. 29, Article ID 29502, 200. [2]B.C.P.Sturmberg,K.B.Dossou,L.C.Bottenetal., Modal analysis of enhanced absorption in silicon nanowire arrays, Optics Express,vol.9,no.9,pp.A067 A08,20. [3] Y. Cui, J. Xu, K. Fung et al., Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab, Nano Letters,vol. 2, no. 3, pp. 443 447, 202. [4] Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting, Advanced Optical Materials,vol.,pp.43 49,203. [5] S. Cao, W. Yu, T. Wang et al., Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption, Applied Physics Letters, vol. 02, Article ID 609, 203. [6] U. Guler, A. Boltasseva, and V. M. Shalaev, Refractory plasmonics, Science, vol. 344, no. 68, pp. 263 264, 204. [7] M. B. Dühring and O. Sigmund, Optimization of extraordinary optical absorption in plasmonic and dielectric structures, JournaloftheOpticalSocietyofAmericaB,vol.30,no.5,pp. 54 60, 203. [8] L. Hu and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Letters, vol. 7, no., pp. 3249 3252, 2007.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials