Lecture 2: Magnetic Anisotropy Energy (MAE)

Similar documents
Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Lectures on magnetism at the Fudan University, Shanghai October 2005

Magnetism of ultrathin films: Theory and Experiment

A15. Circular dichroism absorption spectroscopy and its application

WHAT IS THE DIFFERENCE IN MAGNETISM OF SIZE CONTROLLED AND OF BULK MATERIAL?

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

Lecture 6: Spin Dynamics

SPIN DYNAMICS IN NANOSCALE MAGNETISM BEYOND THE STATIC MEAN FIELD MODEL. Handbook of Magnetism Adv. Magn.. Mater. (Wiley & Sons 2007) Klaus Baberschke

Self-organized growth on the Au(111) surface

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Low dimensional magnetism Experiments

Magnetic recording technology

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Supplementary Figure 1 Representative sample of DW spin textures in a

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Energy Spectroscopy. Ex.: Fe/MgO

MAGNETIC ANISOTROPY IN TIGHT-BINDING

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Magnetic ordering, magnetic anisotropy and the mean-field theory

Outline. Surface, interface, and nanoscience short introduction. Some surface/interface concepts and techniques

Manipulating Magnetism at Organic/Ferromagnetic Interfaces by. Molecule-Induced Surface Reconstruction

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Spin-resolved photoelectron spectroscopy

Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

SUPPLEMENTARY INFORMATION

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

X-ray Imaging and Spectroscopy of Individual Nanoparticles

Surface and Electronic Structure Study of Substrate-dependent Pyrite Thin Films

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Magnetic Order with Neutron Scattering

The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS

Nanomagnetism Part III Atomic-scale properties

Electronic, magnetic and spectroscopic properties of free Fe clusters

PEEM and XPEEM: methodology and applications for dynamic processes

XMCD analysis beyond standard procedures

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Interaction between a single-molecule

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information.

Photon Interaction. Spectroscopy

Damping of magnetization dynamics

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

Reduced Dimensions II: Magnetic Anisotropy

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Energy Spectroscopy. Excitation by means of a probe

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

Structure of CoO(001) surface from DFT+U calculations

STM spectroscopy (STS)

Size- and site-dependence of XMCD spectra of iron clusters from ab-initio calculations

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Competing Ferroic Orders The magnetoelectric effect

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

Magnetism of TbPc 2 SMMs on ferromagnetic electrodes used in organic spintronics

2.1 Experimental and theoretical studies

ESR spectroscopy of catalytic systems - a primer

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

An introduction to magnetism in three parts

Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Supplementary Figures

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Manipulation of interface-induced Skyrmions studied with STM

SUPPLEMENTARY INFORMATION

Band calculations: Theory and Applications

Skyrmions à la carte

Magnetic Moment Collapse drives Mott transition in MnO

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

SUPPLEMENTARY INFORMATION

Nanoparticles. Carolin Schmitz-Antoniak Peter-Grünberg-Institut (PGI-6) Forschungszentrum Jülich Jülich.

structure and paramagnetic character R. Kakavandi, S-A. Savu, A. Caneschi, T. Chassé, M. B. Casu Electronic Supporting Information

Ferromagnetism and a temperature-driven reorientation transition in thin itinerant-electron films

Introduction to Near Edge X- ray Absorption Fine Structure of Molecules Maddalena Pedio TASC-INFM Trieste

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Vanadium Oxide Surfaces

X-ray absorption spectroscopy.

Structure analysis: Electron diffraction LEED TEM RHEED

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

Ferromagnetism and Anomalous Hall Effect in Graphene

Induced magnetic moments make MAE calculation fun or nightmare

ESR spectroscopy of catalytic systems - a primer

Transcription:

Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy 1-1 ev/atom [111] exchange energy 1-13 mev/atom µl ~~.1 G cubic MAE (Ni). µev/atom [1] uniaxial MAE (Co) 7 µev/atom Ni 1 B (G) 3 1µeV/atom is very small compared to 1 ev/atom total energy but all important K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 1

There are only origins for MAE: 1) dipol-dipol interaction (µ 1 r)(µ r) and ) spin-orbit coupling? L S (intrinsic K or E band ) O. Hjortstam, K. B. et al. PRB 55, 156 ( 97) R. Wu et al. JMMM 17, 13 ( 97) Structural changes by.5 Å increase MAE by -3 orders of magnitude (~. 1µeV/atom) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 3

Free energy density of MAE, K (intrinsic, after substraction of πm ) tetragonal [e.g. Ni, Co, Fe (1) / Cu (1) ]: E tetr = - K a z - 1 / K 4^ a 4 z - 1 4 / K 4 (a x + a 4 y ) +... (B.Heinrich et al.) = - K cos q - 1 / K 4^ cos 4 q - 1 / K 1 4 / 4 (3+cos4j) sin 4 q +... (Bab et al.) = (K + K 4^) sin q - 1 / ( K 4^ + 3 / 4 K 4 ) sin 4 q - 1 / 8 K 4 cos4j sin 4 q +... = K sin q + K 4^sin 4 q + K 4 cos4j sin 4 q +... (traditional) hexagonal [e.g. Ni (111), Gd (1) / W (11) ]: E hex = k sin q + 1 / k cosϕ sin θ + k 4 sin 4 q + k 6^ sin 6 q + k 6 cos6j sin 6 q +... K = k Y + k 4m Y m 4 +... Legendre polyn. (B. Coqblin) each K i has a volume and surface contribution K i = K i v + K i s /d K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 4

Spin reorientation in bulk Gd from B. COQBLIN p. PR 13, 19 (63) TC Gd c AXIS c c 33 6 M M c M Gd ist not isotropic, it has K, K 4, K 6 Note also finite MAE above T C K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 5

Spin reorientation in bulk Ni und Co Ni fcc SRT for hcp Co sinθ = (K /K 4 ) 1/ T/T~.8 C~ LB III, 19a, p.45 At the extremal value of K a reorientation and second maximum in χ appears K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 6

Ferromagnetic resonance on Fe n /V m (1) superlattices K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 1 MAE (µev/ atom) Fe 1-1 - b). MAE=E [1] -E [11] -.5-1. -1.5 -. a=3.5 Å (+.8%) a=.83 Å (-1.3%) [1]Fe/V [11] MgO MgO T/T C...4.6.8 1. 1. 4 a) K.4 3.3 K,K 4 (µev/atom) K 4 K 4II Fe V 5 -.5 5 1 15 T (K)..1. -.1 -. K4II (µev/atom) XMCD Integral (arb. units) 1-1 prop. µ S prop. µ L L 3 L XMCD V x5 Fe µ S µ L µ S µ L g< g> 51 5 53 7 7 74 Photon Energy (ev) A.N. Anisimov et al. J. Phys. C 9, 1581 (1997) and PRL 8, 39 (1999) and Europhys. Lett. 49, 658 () g.64.9 g µ / µ L S.68.9.1.6 XMCD: µ L / µ S(Fe) FMR: µ L / µ S (Fe+V) µ L / µ S(V) 4nm Fe Fe Fe4/V 4 Fe /V 5 µ/µ L S µ(µ ).133.45 4 /V bcc (1) Fe/V superlattice 5 µ(µ ) L B S B.15 bcc Fe-bulk.1 FMR 1.6.13 bulk Fe XMCD MAE µev/atom -. -1.4

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 11 For thin films the Curie temperature can be manipulated vacuum K S1 K V ε = -3.% K S substrate ε 1 = +.5% (a p Ni bulk =.49Å) (a p Cu bulk =.55Å) t=t/t C (d) P. Poulopoulos and K. B. J. Phys.: Condens. Matter 11, 9495 (1999)

Free energy density of MAE, K K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 1 (intrinsic, after substraction of πm ) tetragonal [e.g. Ni, Co, Fe (1) / Cu (1) ]: E tetr = - K a z - 1 / K 4^ a 4 z - 1 4 / K 4 (a x + a 4 y ) +... (B.Heinrich et al.) = - K cos q - 1 / K 4^ cos 4 q - 1 / K 1 4 / 4 (3+cos4j) sin 4 q +... (Bab et al.) = (K + K 4^) sin q - 1 / ( K 4^ + 3 / 4 K 4 ) sin 4 q - 1 / 8 K 4 cos4j sin 4 q +... = K sin q + K 4^sin 4 q + K 4 cos4j sin 4 q +... (traditional) hexagonal [e.g. Ni (111), Gd (1) / W (11) ]: E hex = k sin q + 1 / k cosϕ sin θ + k 4 sin 4 q + k 6^ sin 6 q + k 6 cos6j sin 6 q +... K = k Y + k 4m Y m 4 +... Legendre polyn. (B. Coqblin) each K i has a volume and surface contribution K i = K i v + K i s /d

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 13

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 14 b ab initio calculations anisotropic µ L MAE O. Hjortstam, K. B. et al. PRB 55, 156 ( 97) MAE x LS µ L 4µB

SP-KKR calculation for rigit fcc and relaxed fct structures layer resolved E b =ΣK i at T= C. Uiberacker et al., PRL 8, 189 (1999) R. Hammerling et al., PRB 68, 946 (3) The surface and interface MAE are certainly large (L. Néel, 1954) but count only for one layer each. The inner part (volume) of a nanostructure will overcome this, because they count for n- layers. K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 15

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 16 K / π M 4 a) 1 (a) Ni(111)/rough W(11) Ni(1)/Cu(1) [1] 1 ^ K / π M (b) A. Berghaus, M. Farle, Yi Li, K. Baberschke Absolute determ. of the mag. anisotropy of ultrathin Gd and Ni/W(11). Second Intern. Workshop on the Magnetic Properties of Low-Dimensional Systems. San Luis Potosi, Mexico, Proc. in Physics 5, 61 (1989) M. Farle et al., PRB 55, 378 (1997) -1 (c) b) [11] - K 4 / π M [1] 1 (b) (c) (a) K / π M [1] ^ Only with K 4 a continues SRT is possible! Do not use K eff = πm K i because f(t) and f (T) are different. Use the ratio K i / πm f(t) / f (T)

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 17 Oxygen surfactant assisted growth: a new procedure to prepare ferromagnetic ultrathin films oxygen acts as surfactant for Fe, Co and Ni films on Cu(1) change of magnetic anisotropy by surfactant induced magnetic moment of surfactant

Improved growth by oxygen surfactant C. Sorg et al., Surf. Sci. 565, 197-5 (4) M. Farle, Surf. Sci. Perspectives 575, 1- (5) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 18

O( )R45 /Cu(1) missing row reconstruction c( )O/Ni/Cu(1) 47 ev evaporate 5.5 ML Ni nm.5 5 4 4 nm nm 4 nm [1] [1] nm 3 1.5 U =.11 V I =.65 na U =.11 V I = 1.55 na 4 nm [1] [1] oxygen top layer middle layer bottom layer [1] [1] from AES oxygen floats on top of Ni film oxygen top layer bottom layer R. Nünthel et al., Surf. Sci. 531, 53-67 (3) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 19

Local structure: Surface EXAFS Ni on O/Cu(1) oxygen K-edge SEXAFS 3 K hν R nn = (1.85±.3) Å h =.41 Å Comparison to theory (T.S. Rahman): R nn = 1.87 Å h =.44 Å R. Nünthel et al., Surf. Sci. 531, 53-67 (3) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 1 Electronic structure from X-ray absorption spectroscopy Ni L,3 -edge O K-edge p z 3d p xy 4sp NEXAFS no bulklike NiO is formed

Interface K S ( µ ev/atom) d C (ML) F V K film K (µev/atom) V Kbulk ( πm K ) cos θ ~ 5 15 1 5-5 -1-15 d(ml) 1 7 5 πm t=.75 Experiment Ni/Cu(1) Ni vacuum K = K Ni + Cu cap Ni + O surfactant V + K S 1 + K d S Ni/vacuum Ni/Cu Ni/CO (van Dijken et al.) Ni/H (van Dijken et al.) Ni/O (surfactant) Theory -17-59 -81-7 -17 1.8 7.6 7.3 6.8 4.9 -.5.1.15. 1/d (1/ML) Jisang Hong et al., Phys. Rev. Lett. 9, 147-1 (4) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5

Results of ab initio calculations K. Baberschke FU Berlin Jisang Hong Lectures et al., on magnetism Phys. Rev. #, Lett. Fudan 9, Univ. 147-1 Shanghai, Oct. (4) 5 3 Density of states MAE along ΓX axis O/Ni DOS (states/ev atom spin) surfactant grown Ni film clean Ni film E (ev) Γ clean Ni DOS shows that topmost Ni moment is basically unchanged O-induced surface state seen in the vicinity of X-point is responsible for change in MAE theory reveals induced moment in surfactant oxygen X

Induced magnetism in oxygen: Ni on O/Cu(1) oxygen K-edge XMCD orbital moment µ L BESSY: UE56/-PGM p xy 4sp theory: Ruqian Wu (UC Irvine): XAS (arb. units) - p z 3d 15 ML Ni on O/Cu(1) 3K Experiment Theory.. -. XMCD (arb. units) induced moments in oxygen: µ S =.53 µ B µ L =.1 µ B 53 54 55 Photon Energy (ev) K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 4

Induced magnetism in oxygen: Co and Fe films Co on O/Cu(1) norm. Norm. XAS (arb. units) 1 Fe on O/Cu(1) norm. XAS (arb. units) 1 p z 3d p xy 4sp grazing normal 4 ML Co on O/Cu(1) 3K 54 56 Photon Energy (ev) grazing normal 3 ML Fe on O/Cu(1) 3K 54 56 58 53 54 55 K. Baberschke FU Berlin photon energy (ev) Lectures on magnetism #, photon Fudan energy Univ. (ev) Shanghai, Oct. 5 norm. XMCD (arb. units) norm. XMCD (arb. units). -.4 -.8.4. -.4 -.8 BESSY: UE56/-PGM hν 53 54 55 hν M photon energy (ev) M 5

K. Baberschke FU Berlin Lectures on magnetism #, Fudan Univ. Shanghai, Oct. 5 6 Conclusion spin reorientation transition changes dramatically with surfactant surface anisotropy is strongly reduced in magnitude Fe, Co and Ni induce magnetic moment in surfactant fair agreement with ab initio calculations