Interactions between Levels in an Agent Oriented Model for Generalisation

Similar documents
Object-field relationships modelling in an agent-based generalisation model

INTELLIGENT GENERALISATION OF URBAN ROAD NETWORKS. Alistair Edwardes and William Mackaness

Road Network Generalization: A Multi Agent System Approach

Improving Map Generalisation of Buildings by Introduction of Urban Context Rules

A TRANSITION FROM SIMPLIFICATION TO GENERALISATION OF NATURAL OCCURRING LINES

AN EVALUATION OF THE IMPACT OF CARTOGRAPHIC GENERALISATION ON LENGTH MEASUREMENT COMPUTED FROM LINEAR VECTOR DATABASES

A methodology on natural occurring lines segmentation and generalization

Harmonizing Level of Detail in OpenStreetMap Based Maps

GENERALISATION OF SUBMARINE FEATURES ON NAUTICAL CHARTS

A PROCESS TO DESIGN CREATIVE LEGENDS ON-DEMAND

GENERALIZATION APPROACHES FOR CAR NAVIGATION SYSTEMS A.O. Dogru 1, C., Duchêne 2, N. Van de Weghe 3, S. Mustière 2, N. Ulugtekin 1

Intelligent Road Network Simplification in Urban Areas

How to design a cartographic continuum to help users to navigate between two topographic styles?

The Application of Agents in Automated Map Generalisation

A Practical Experience on Road Network Generalisation for Production Device

AN ATTEMPT TO AUTOMATED GENERALIZATION OF BUILDINGS AND SETTLEMENT AREAS IN TOPOGRAPHIC MAPS

Algorithmica 2001 Springer-Verlag New York Inc.

A CONCEPTUAL FRAMEWORK FOR AUTOMATED GENERALIZATION AND

BUILDING TYPIFICATION AT MEDIUM SCALES

An Ontology Driven Multi-Agent System for Nautical Chart Generalization

Exploring representational issues in the visualisation of geographical phenomenon over large changes in scale.

Automatic Generalization of Cartographic Data for Multi-scale Maps Representations

Ontological modelling of cartographic generalisation

The Application of Agents in Automated Map Generalisation

Deutsche Gesellschaft für Kartographie e.v.

GENERALIZATION PROCESS FOR URBAN CITY-BLOCK MAPS

Encyclopedia of Geographical Information Science. TITLE 214 Symbolization and Generalization

ESTIMATION OF GEOGRAPHICAL DATABASES CAPTURE SCALE BASED ON INTER-VERTICES DISTANCES EXPLORATION

Large scale road network generalization for vario-scale map

Development of a Cartographic Expert System

Level of Details Harmonization Operations in OpenStreetMap Based Large Scale Maps

Applying DLM and DCM concepts in a multi-scale data environment

1 Generalisation of Spatial Databases. William Mackaness

AGENT Selection of Basic Algorithms. ESPRIT/LTR/ Report. Zurich, Switzerland: AGENT Consortium, University of Zurich.

Automated building generalization based on urban morphology and Gestalt theory

STATE-OF-THE-ART. Final report available from EuroSDR website OF AUTOMATED GENERALISATION IN COMMERCIAL SOFTWARE

OBJECT-ORIENTATION, CARTOGRAPHIC GENERALISATION AND MULTI-PRODUCT DATABASES. P.G. Hardy

Cell-based Model For GIS Generalization

Automated generalisation in production at Kadaster

Generalized map production: Italian experiences

Proceedings - AutoCarto Columbus, Ohio, USA - September 16-18, 2012

AN APPROACH TO BUILDING GROUPING BASED ON HIERARCHICAL CONSTRAINTS

THE GENERALIZATION METHOD RESEARCH OF RIVER NETWORK BASED ON MORPH STRUCTURE AND CATCHMENTS CHARACTER KNOWLEDGE

Smoothly continuous road centre-line segments as a basis for road network analysis

TOWARDS SELF-GENERALIZING OBJECTS AND ON-THE-FLY MAP GENERALIZATION

Analysis of European Topographic Maps for Monitoring Settlement Development

Laboratory on Geoinformatics and Cartography

Multi-scale Representation: Modelling and Updating

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Ladder versus star: Comparing two approaches for generalizing hydrologic flowline data across multiple scales. Kevin Ross

EXPLORING THE LIFE OF SCREEN OBJECTS

Mappings For Cognitive Semantic Interoperability

Toward Self-Generalizing Objects and On-the-Fly Map Generalization

Implementing Visual Analytics Methods for Massive Collections of Movement Data

Multiscale Representations of Water: Tailoring Generalization Sequences to Specific Physiographic Regimes

CARTOGRAPHIC GENERALIZATION

Automatic identification of Hills and Ranges using Morphometric Analysis

Relations and Structures in Categorical Maps

ADDING METADATA TO MAPS AND STYLED LAYERS TO IMPROVE MAP EFFICIENCY

Multiple Representations with Overrides, and their relationship to DLM/DCM Generalization. Paul Hardy Dan Lee

A CARTOGRAPHIC DATA MODEL FOR BETTER GEOGRAPHICAL VISUALIZATION BASED ON KNOWLEDGE

Representing forested regions at small scales: automatic derivation from very large scale data

Representing Forested Regions at Small Scales: Automatic Derivation from Very Large Scale Data

Keywords: ratio-based simplification, data reduction, mobile applications, generalization

Geographical Information System (GIS) Prof. A. K. Gosain

A System Approach to Automated Map Generalization 1

Generalisation and Multiple Representation of Location-Based Social Media Data

GENERALIZATION OF DIGITAL TOPOGRAPHIC MAP USING HYBRID LINE SIMPLIFICATION

Development of the system for automatic map generalization based on constraints

GENERALISATION: THE GAP BETWEEN RESEARCH AND PRACTICE

The Development of Research on Automated Geographical Informational Generalization in China

Influence of network metrics in urban simulation: introducing accessibility in graph-cellular automata.

Cartographic Adaptations of the GAIA Visualization Method for Spatial Decision Support

AN ONTOLOGY FOR THE GENERALISATION OF THE BATHYMETRY ON NAUTICAL CHARTS

Identification of styles in topographic maps

A conservation law for map space in portrayal and generalisation

Taxonomies of Building Objects towards Topographic and Thematic Geo-Ontologies

Why Is Cartographic Generalization So Hard?

THE DIGITAL SOIL MAP OF WALLONIA (DSMW/CNSW)

$<, ) {^^r^l^^^aj^u. Geometric Matching of Areas Comparison Measures and Association Links

Towards a formal classification of generalization operators

COMPARISON OF MANUAL VERSUS DIGITAL LINE SIMPLIFICATION. Byron Nakos

AN AXIOMATIC APPROACH TO KNOWLEDGE-BASED MAP GENERALISATION

Partitioning Techniques prior to map generalisation for Large Spatial Datasets

6th ICA Mountain Cartography Workshop Lenk/Switzerland. Cartographic Design Issues Utilizing Google Earth for Spatial Communication

A STUDY ON INCREMENTAL OBJECT-ORIENTED MODEL AND ITS SUPPORTING ENVIRONMENT FOR CARTOGRAPHIC GENERALIZATION IN MULTI-SCALE SPATIAL DATABASE

Chris Rizos (IAG), Chair William Cartwright (ICA), immediate past Chair

Are Cartographic Expert Systems Possible? Peter F. Fisher Department of Geography, Kent State University, Kent, Ohio

Design and Development of a Large Scale Archaeological Information System A Pilot Study for the City of Sparti

WHAT IS SPATIAL CONTEXT IN CARTOGRAPHIC GENERALISATION?

Social Network Analysis. Mrigesh Kshatriya, CIFOR Sentinel Landscape Data Analysis workshop (3rd-7th March 2014) Venue: CATIE, Costa Rica.

UNI DOCTORAL PROGRAM: URBAN AND ARCHITECTONIC MANAGEMENT AND VALUATIONS

CARTOGRAPHIC INFORMATION MANAGEMENT IN COLOMBIA REACH A LEVEL OF PERFECTION

A GENERALIZATION OF CONTOUR LINE BASED ON THE EXTRACTION AND ANALYSIS OF DRAINAGE SYSTEM

China Published online: 29 May 2014.

Designing and Evaluating Generic Ontologies

A GIS based Decision Support Tool for the Management of Industrial Risk

JUNCTION MODELING IN VEHICLE NAVIGATION MAPS AND MULTIPLE REPRESENTATIONS

Citation for published version (APA): Andogah, G. (2010). Geographically constrained information retrieval Groningen: s.n.

From taxonomies to ontologies: formalizing generalization knowledge for on-demand mapping

Transcription:

Interactions between Levels in an Agent Oriented Model for Generalisation Adrien Maudet Université Paris-Est, IGN, COGIT, Saint-Mandé, France adrien.maudet@ign.fr Abstract. Generalisation is a complex operation of the mapping process seeking to simplify geographic data. In order to carry out this process, algorithms are used. Multi-agent systems are an approach to orchestrate the application of these algorithms. Models were proposed in the literature, but some situation are not automatically generalised in a satisfying way. Our hypothesis is that, if the behaviour of the agents is described in a way that takes into account the organisation of geographic objects in levels, we may solve these issues. Methods to explore this hypothesis are introduced in this paper. Keywords: Cartography, Automated generalisation, Multi-agent systems, Multi-levels. 1 Introduction The PhD project exposed in this paper deals with cartographic generalisation. Cartographic generalisation is the process that aims at decreasing the level of detail of a vector database to fit a given scale and specific users needs in order to create a legible map. Indeed, when the scale decreases, the extent on the map to show information about the portion of the real world in reality is smaller (Figure 1). Fig. 1. Generalisation of a detailed map from vector data (copyright IGN).

This is a complex process as the generalisation of different objects (buildings, roads, etc.) is constrained by other objects. Among the different approaches used to automate the process, there are agent-oriented models. These models allow solving some specific issues. We assume that a more generic way to describe relations between objects will help us to generalise automatically more cases. In this position paper we first describe the motivation of the PhD project, then we give research questions and finally we describe our methodology. 2 Motivation The main idea of the agent oriented generalisation models is the fact than geographic objects are describe as an agent (Weiss, 1999) that attempts to satisfy personal constraint (e.g. minimal size constraint for a building) and shared constraints (e.g. proximity constraint between a building and a road symbol). These autonomous entities will execute interactions with other ones to solve locally issues produced by scale change. An interaction is an operation executed by one or more agent(s) taking into account their situation (Figure 2). Fig. 2. Simplified scenario of the execution of an interaction (copyright IGN).

Interactions may be hierarchical. In AGENT (Ruas 1999; Barrault et al. 2001), relationships are described between components (e.g. building) and a meso object (e.g. urban block), and the meso agents are able to trigger its components and give orders to them. Interactions may occur between objects from same levels too (e.g. two close buildings interact when one moves away from the other) like in the CartACom model (Duchêne 2004; Duchêne et al., 2012). The GAEL model (Gaffuri et al., 2008) introduces new interaction types when decomposing objects into points: the interactions between the decomposed object and its points, and the interaction between the points themselves. The interactions in these three models are showed in Figure 3. Fig. 3. Interactions between objects in existing models (copyright IGN). Some problems remain unsolved by these models. Indeed, other types of relations should be used to improve generalisation: The inclusion relationship type occurs when an object is included in another object, e.g. accidents or bus stations on a road (Jaara et al., 2012) (Figure 2b). Diagonal interactions between objects of different levels, e.g. two buildings interacting as a whole with other neighbouring objects (Figure 2a). Objects involved in a hierarchy can both interact with their parent and other objects in a same level, e.g. bus stations staying on a road when the shape of the road is modified while preserving consistency with other bus stations (Figure 2b).

An object can be included in two hierarchical relationships and therefore needs to make decisions taking into account these two relationships at the same time, which is currently not well handled, e.g. a building belonging to two alignments (Figure 2c) or a bridge included both in a road and a river (Figure 2d). We assume that a generic interaction model would help to solve these issues. A model used in the simulation domain called PADAWAN (Picault and Mathieu, 2011) has interesting properties for the issue (e.g. multi-level hierarchy, interaction-based model). Fig. 4. Instances of relation types not processed yet (copyright IGN). 3 Aims and research questions The objective of the PhD is to define an agent-oriented generalisation process taking into account relations between objects at different levels and to answer to those research questions: How can generalisation problems implying many levels of interaction be solved? The main purpose of the PhD is to provide solutions in order to improve an automatic generalisation process. How to orchestrate interactions between agents? The order the agents are activated and the order the algorithms are applied impacts the result of the generalisation. In an agent modelling perspective, we want to provide a generic way of modelling the agent behaviour in constraint solving problems.

4 Method PADAWAN is identified as a potential basis to solve remaining questions on interactions between agents in generalisation. First, I analysed similarities and differences between this model and the existing ones, in order to adapt PADAWAN to the specificities of generalisation. Then case study was defined: a map combining base topographic data and touristic thematic information. Figure 3 gives an instance of the case study: a series of bends can be schematised using a schematisation algorithm (Lecordix et al., 1997) that removes some bends (Figure 3a and 3b). But when the bend has a proximity relationship with a touristic point object (Figure 3c), how can this information be preserved? Solutions to such problems will be proposed, and will be evaluated by means of experiments. From these specific cases I will analyse in a more generic way the relations between objects and then I try to propose a decision process to orchestrate the activation of the agents. This process will have to be evaluated by means of experiments too. Fig. 5. (a) They are 13 bends between the two junctions of the circled road (1:100k). (b) The same portion gets only 8 bends (1:250k). (c) If we have to apply the same operation, how to preserve bends in relation with other map elements (like the encircled church)? (copyright IGN). 5 Conclusion and perspectives First, we introduced agent approaches to automate generalisation process and their limitations. Then, we expose our hypothesis: enhance the expression of interactions may help us solve unsolved generalisation case. We identify some of the unsolved case and their multi-levels aspects. Currently, the first results cover two aspects: the adaptation of existing processes to the PADAWAN model and the study of specific cases (Maudet et al. 2013). The next steps will be to give solutions to other specific cases in order to propose a generic way to manage multi-level interactions.

6 References 1. Barrault M., Regnauld N., Duchêne C., Haire K., Baeijs C., Demazeau Y., Hardy P., Mackaness W., Ruas A. and Weibel R.: Integrating Multi-agent, Object-oriented, And Algorithmic Techniques For Improved Automated Map Generalization. In: 20th International Cartographic Conference, vol.3, 2110-2116 (2001). 2. Duchêne C.: Généralisation cartographique par agents communicants : le modèle CartA- Com. PhD Thesis, Université Paris 6 Pierre et Marie Curie (2004). 3. Duchêne C., Ruas A. and Cambier C.: The CartACom model: transforming cartographic features into communicating agents for cartographic generalisation. International Journal of Geographic Information Science, 26(9):1533 1562 (2012) 4. Gaffuri J., Duchêne C. and Ruas A.: Object-field relationships modelling in an agent-based generalisation model. In: Proceedings of 11th ICA workshop on Generalisation and Multiple Representation, Montpellier, France (2008) 5. Jaara K., Duchêne C. and Ruas A.: A model for preserving the consistency between topographic and thematic layers throughout data migration. In: 15th International Symposium on Spatial Data Handling (SDH 12), Bonn, Germany (2012) 6. Lecordix F., Plazanet C. and Lagrange J.P.: A Platform for Research in Generalization: Application to Caricature. GeoInformatica, 1(2), pp. 161-182 (1997) 7. Maudet A., Touya G., Duchêne C. and Picault S.: Improving multi-level interactions modelling in a multi-agent generalisation model: first thoughts. In: Proceedings of 16th ICA workshop on Generalisation and Multiple Representation, Dresden, Germany (2013) 8. Picault S. and Mathieu P.: An Interaction-Oriented Model for Multi-Scale Simulation. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI/AAAI), Barcelona, Spain, 332 337 (2011) 9. Ruas A.: Modèle de généralisation de données géographiques à base de contraintes et d'autonomie. PhD Thesis, Université Marne La Vallée (1999) 10. Weiss G.: Multiagent systems: a modern approach to distributed artificial intelligence. Cambridge, MA, USA: MIT Press (1999)